PHILIPS

PHILIPS TERMINAL SYSTEMS

User Library

CREDIT-PROGRAMMER'S
REFERENCE MANUAL *

Module M04

eues] Data
% Systems

CREDIT REFERENCE MANUAL

PREFACE

Part 1 of this Manua! describes the use of the CREDIT programming language in

the Philips Termina!l System. Part 2 of the Manual describes the processing and
testing of CREDIT programs under the DOS 6800 System Software and TOSS
System Software.

This manual is based upon release 4.1 of the CREDIT language.

The use of those parts of DOS 6800 System Software designed specifically for
CREDIT programs is described in this Manual. Information concerning the use of
the general purpose components of DOS 6800 System Software is contained in the
DOS 6800 System Software PRM (M11}. Readers of the present Manual are expected
to be familiar with the contents of the DOS 6800 System Saftware PRM. The testing
and production running of CREDIT programs is done under TOSS System Software.
Information concerning TOSS System Software which is relevant to the writing,
testing and running of CREDIT programs is included in the present Manual.

Details about Data Management and TOSS utilities are described in the manuals

MO7 and MO8 respectively.

0.0.0
May 1979

CREDIT REFERENCE MANUAL

PREFACE

CONTENTS
Date

Weeosessesreaereioncsasersssssssessessssensss May

1. THE CREDIT LANGUAGE

1.1,

1.2,

INtrodUCHiON o 4 vwusvsvsvosnsessoccssscosovsessensess May

May
May
May
May
DIrECHIVES v o2 cvssvsceacanansvsossassvsossreavesssss May
. May
DDIV Datd DiviSiON s scscsesoccssvsasoeesesessnss March
DDUM Nata Division DUMMY ees e s venerencensonss May
EJECT EieCl < ssaeseassanns veeeoaeeesees March
END ENd sovineveososnnnssscen e oseeaseesoMarch
ENTRY Eritry POINTs e v eorasnsanasces v oeseeeeMarch
EQU EQUBTE svsescsavsaovansssnesorecnsess May
EXT External Reference sscevvsscees v o0 oaees March
IDENT 1dentifiCation «esvosceorsossvoosssassrsss May
INCLUDE INCIUTE veveveocnstasinossnoononsveeeoss July
LIST LiSt evrvocsacronsas oo July
NLIST NGO LISt erosvecscaasnscsannsens oo July
OPTNS Options «ve-creervssssoncsscosvsevoscrsne May
May
PDIV : Procedure DiviSion eceserocssscncacasaeees May
PEND © Subroutine End seeeeesvsrcosonscscssscssss May
PFRMT Formal format list parameter ¢+« eeceeoeeoeessss.May
PKTAB Format key table parameter ¢eeecoccseseeess. May
PLIT : Formal literal parameter svesesescossssssees May
PROC : Subroutine Start seeceecesccaesessosenoeas May
REENTER BEENTEI evvvevevnsvosracovessenneesness May
START StAtPOINT voevvusunssorvsacenvssassessas May
. Data Division

1.3.1. INtrOCUCTION v v vvnveeossroeaarvoeersenereess May
1.3.2. Terminal Class Declaration
1.3.3. Work Block Deciarations
1.3.4. DSET FMTCTL, START, REENTER AND STACK....May
1.3.5. Begin Block Declaration sssseveonsovcansseesssa.May
1.3.6. Datz Tterm and Array Declarations «..eesuveeoeee...May
May
May
1.3.7 Data ems sevvsvaesvenosoacsencsaasosssssss May
1.3.8 Weirk BI0cKS o vavrvaronsronrorneasssnsonasnnss May
1.3.9 Declaration Reference csciesvssesecsares-eesss May
BCD : Decimal Data ltem «eeveveecrss July
3COH : Decimal Array escscrssssse.-May
BIN . Binary Data item eeeeccocaaecs July
BNy : Binary Array sceesceccesesees May
L . Begin Block ssssssscsesnenscs May
BOOL . Boolean Data tem sevsseveecses July
CWB . Common Work Block sseesaaees July
DBL K © Begin Dummy Blocke.00... May
0.0.1

May 1979

1979

1979
1979
1979
1979
1979
1979
1979
1977
1979
1977
1977
1977
1979
1977
1979
1979
1978
1978
1979
1978
1979
1979
1979
1979
1979
1979
1979
1979

1978

1979
1979
1979
1979
1979
1979
1979
1979

1978
1979
1978
1979
1979
1978
1978
1979

Page
0.0.0.

_dM_AAdﬂdddﬂgﬂdgdd_ﬂd_ﬂd_ﬂdd
NN NI Ry N N S S IS T I AN T e
NNONNN S et el a2 D 2 OONOTTRWN=0TH WK =

WN=0O0ONDIOTDWN=O

-
w
o

[QN

Dwbhhbbhhb whbbhwb
SR DN RWN

JER NN NI
SNBAON O

CREDIT REFERENCE MANUAL

Date Page
DSET D DataSet seceersrianeaaesen.. July 1978 1.3.18
May 1979 1.3.19
DWB : Dummy Work Block 4...ceuvan.. July 1978 1.3.20
FMTCTL : Format Control 1/Q eevevone. .. Mav 1979 1.3.21
STACK ; SHACK csvesvrverariaseasoree May 1079 1.3.22
STRG : String Dataltem sovvvvvunn.ns . July -1978 1.3.23
STRGI : String Array ¢cooasaa. . 1979 1.3.24
SWB . Swappable Work Block .« -+ 1979 1.3.25
TERM : Terminal Class +«+oe0 1979 1.3.26
TWB : Terminal Work Block 1979 1.3.27
uwB 1 User Work Block «» - 1979 1.3.28
1.4. Procedure Division
1.4.1. Introduction ,..... . aeeses.. May 1979 1.4.1
1.4.2, Instructions ... vessses May 1979 1.4.2
: May 1879 1.4.3
May 1979 1.4.4
May 1979 145
May 1979 1.4.6
. May 1979 1.4.7
1.4.3 Declarationsveecsvesnvovecssseass-snaes .My 1979 1.4.8
. May 1979 1.4.9
May 1979 1.4.10
)) . May 1979 1.4.11
; May 1979 1.4.12
1.44. Subroutine Handlingovuu.. tisesesesanses May 1979 1.4.13
’ o ‘ May 1979 1.4.14
1.4.5 Attach/Detach a device /file teteerseases.. May 1979 1.4.15
1.4, Inter task communication 2.v.seseevseeasses May 1979 1.4.16
ot ’) May 1979 1.4.17
1.4.7. Notation cecreneeresrreensesarsesss May 1979 1.4.18
1.4.8. Instruction Reference ’ T
ABORT : Abort YO request +veevocens . May 1979 1.4.19
ACTV T Activate cesseenn . . May 1979 1.4.20
ADD Add ceselel. S e May 1979 1.4.21
ASSIGN : Assign datafile esececovcecessss May 1979 1.4.22
May 1979 1.4.23
ATTFMT : Attach Format sesevecsconcesnes, May 1979 1.4.24
B D Branch «eceaceccenacas vevees. May 1978 1.4.25
BBEOD : Branch on Begin/End Devnce eseeeees May 1979 1.4.26
BE : BranchonEqual +vevvveneenvsn.. May 1979 1.4.27
BEOF : Branchon End Of File evevvineonans May 1979 1.4.28
BERR : Branch on Effor eeeveevnceransas May 1979 1.4.29
BG : Branch on Greater May 1979 14,30
BL : Branchon Less sesvess vese May 1979 1.4.31
BN ;. Branch on Negative +vceveee.n.... May 1979 1.4.32
BNE : Branchon Not Equal,.May 1979 1.4.33
BNEOF : Branch on Not End Of File May 1979 1.4.34
BNERR : Branchon NGO Error +vevevena. ce0. May 1979 1.4.35

0.0.2
May 1979

CREDIT REFERENCE MANUAL

BNG
BNL
BNN
BNOK
BNP
BNZ
BOFL
BOK
BP

BZ
CALL
CcB

CBE
CBG

CBL
CBNE
CBNG
CBNL
CLEAR
CMP
CoPY
DELAY
DETFMT
DISPLAY
DIV
DLETE
DSCOo

DsC1

DSC2

: Call saeens seresassonesens

Date

Branch on Not Greatereseeesosee .. May
Branch on Not Less s...avecaoes. May

: Branch on Not Negative May
: BranchonNot OK ,............. May

Branch on Not PositiveMay
Branch on NOt Zero e..vevivan... May
Branch on Overflows.... May
Branchon OKecvveeenee...May
Branch on Positive e vacesnes May
Branch on Zero .+ e.e.c.c o060 0.0.0.0.000. May
.. May

: Compare and Branch eevevonseseea May

May

: Compare and Branch on Equal «+.... May

May

: Compare and Branch on Greater May

May

: Compare and Branch on Less e <+ +..s May

May

: Compare and Branch on Not Equal «- - May

May

: Compare and Branch on Not Greater- - May

May

: Compare and Branch on Not Less ... May

B May
Clear seesonesncncnncoccosnonss May

: COMPAre sevsvevsscessrenonsss May
: Copy cevennn ceessenssesseaess May

Defay vieeenea eeeereasns May
Detach Format veesssecsa May
Display «oevsvvosns bevsesnenan May
. May

Divide ++v00n. tiesssearesesass May
Delete v...0.v... ceeessnsesssas May
Data Set Control Zero vovusuuevea. May
May

Data Set Control One .eesoens eses May
May

May

May

May

May

Sept.
Sept.
Sept.
Data Set Controltwo Sept.

Sept

Sept.
Sept.
Sept.
Sept.

June

Sept.

June

Sept.
Sept.

0.0.3
September 1979

1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1879
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

Page

1.4.36
1.4.37
1.4.38
1.4.39
1.4.40
1.4.41
1.4.42
1.4.43
1.4.44
1.4.45
1.4.46
1.4.47
1.4.48
1.4.49
1.4.50
1.4.51
1.4.52
1.4.53
1.4.54
1.4.56
1.4.56
1.4.57
1.4.58
1.4.59
1.4.60
1.4.61
1.4.62
1.4.63
1.4.64
1.4.65
1.4.66
1.4.67
1.4.68
1.4.69
1.4.70
1.4.71
1.4.72
1.4.73
1.4.74
1.4.75
1.4.76
1.4.77
1.4.78
1.4.79
1.4.80
1.4.81
1.4.82
1.4.83
1.4.84
1.4.85
1.4.86
1.4.87
1.4.88
1.4.89
1.4.89A
1.4.89B

CREDIT REFERENCE MANUAL

DUPL
DVR .
DYK!

EDFLD

EDIT
EDSUB
EDWRT

ERASE

EXIT
GETABX
GETCTL
GETFLD
GETID
GETTIME
IASSIGN

1B

IINS
INSRT
INV
IREAD
IRNEXT

IRWRITE
Ki

LB
MATCH

MOVE

MUL
MWAIT
NK1

PAUSE
PERF
PERF!
PRINT
READ

RET
RREAD

RSTRT

Get lnput Field
: Get Task ldentifier . ..
: GetClock vuvwvnnann

. Indexed Branch , ..,

Date

: Duplicate e seovuvscennas eciase. May
Divide Rounded « -+« . Ceseecaeann May
Display Keyboard Input +..... o... May
May

Nay

Edit Input Field « e v vt eiaeeen May
May

fay

Edit -eovevreacsnns e Nay
Edit SUbStING seveosvocencaonss May
Editand Write erecesvsvsevecasne May
May

Sept

Sept

Erasescesesns Perearas crereanes May
May

DUEXIt eeverecsrvsvenes [P May
1 Get current Input Fleld Number May
GetControl Value ,.everinivanans May

Indexed [nsert

nsert vaverseseseren

Invert o ovevvsvonees . .
indexed Random Read +eoveevon.n May
indexed Read Next «ocvuusn.s v ees May
May
Indexed Rewrite «.vvevenvnn s, May
Keyboard Input -vevvraorroseas . May
May
: LongBranch .ecvevvan. veseisass May
: Match [P veessene .« May
May
MOVE eovvvavonnnoes cees e .« May
May
: Multiply ceee.n. seeersrensses May
T MultipleWait oeveeeneran. seeses May
Numberic Keyboard Input ««csvev.e May
May
D PausSE csivciirincncncacsanens » May
. Perform ...e.v.. aeveesenenees May
 Indexed Perform oo eoenn..s weeee May
HE o 1101 P veeevaee.s May
Read ..ovvverernienenvannonss May
May
REWrN v ovtvenvennsenns vesee May
RandomRead, May
. May
Restart +........ eesssveas .o May

0.04

September 1979

1979
1979
1979
1879
1979
1979
1979
1979
1979
1879
1879
1979
1979
1979
1978
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

Page ’

1.4.90
1.4.91
1.4,92
1.4.93
1.494
1.4.95
1.4.96
1.4.97
1.4.98
1.4.99
1.4.100
1.4.101
1.4.102
1.4.103
1.4.104

»
-

1uo
107
.108
.109
110
11
112
113
114
115
116
117
118
119
120
121

-
MNONN
W N

26

N
-~

WWWWWWWNIN
DAHBWN-=2OO®

w
~

N g O N S S S e e e gy
W W
©

ARNRARARARRRRAPAARAARRANPASARARARARSS
Shanbhanbhrrbanpanees

S hp
N—=O

CREDIT REFERENCE MANUAL

1.4.9.

Date

RWRITE Random Write seeceveeessseess May
May
SB t ShortBranch «esevcanccsceeess May
SET D Seteecevrerencnnanecesonnnas May
SETCUR : SetCursor ...eeeensee
SETTIME 1 SetClock svvvvsvosrcnnevevenas May
SuUB U Subtract seccacvssvacesseness May
SWITCH : Switch Task on same Level May
TB : Testand Branch sceevevcocncees May
TBF : Testand Branch on False -........ May
TBT : Testand BranchonTrue .«....... May
TBWD : Tabulate Backward «vscevsveeess May
TOOWN : Tabulate Down »+ceescsveceesss May
TEST : Test soven cesesverecan May
TESTIO : Test 1/0O Completion ... May
TFWD : Tabulate Forward cscesececocas July
THOME : Tabulate Home seeveveecceses July
TLDOWN : Tabulate Left Down. seeccesceeas July
TLEFT : Tabulate Left everescssvenresss July
TRIGHT : Tabulate Right sesssevcessncess July
TSTCTL : Test Control Flag eeeseecesoneesss May
TUP : Tabulate Up cecevesnsecosonsas July
UNUSE Unuse cevreccccenccsensranss May
UPDFLD : Update tnput Field... .« May
USE clUse L.o...liel. . May
WAIT T Wait e May
WRITE Write00.. . May
May
Sept.
May
XCorPY Extended COPDY +..vevvesesescn. May
XSTAT Extended Status Transfer Call May
Declaration Reference0..v... seseeeneas .. May
CON : Constant sevsesnees.. May
FBN
FBNN
FBNP
FBNZ Format Branch on Condition May
FBP
FBZ
FB8 FormatBranchcveevuns ... May
FBF
EBT Format Branch on False/True - May
FBN Format Branch on Negative May
FBNN Format Branch on Not Negative May
FBNP Format Branch on Not Positive May
FBNZ . Format Branch on Not Zero o May
FBP Format Branch on Positive May
FBZ Format Branch on Zero v.......... May
FCOPY FormatCopy veseeeass . May
0.0.5

September 1979

1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1978
1978
1978
1978
1978
1979
1978
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

1979
1979

1979

1979

1979

1979
1979
1979
1979
1979
1979
1979

1.4.177

1.4.178

1.4.179

1.4.180
1.4.181
1.4.182
.4.183
184
185
.186

[N
D

CREDIT REFERENCE MANUAL

Date
FCW Format Control Word <.« ... 0u... May
FEOR Format End of Record «.......... Juty
FEXIT FOrmat EXit «esucennueeonnrsons July
FHIGH Format High Intensity e v o v oo s e n . July
FILLR FilRepeats v sesneencococnanes July
FINP Formatlnput v evcveerannsenene July
FKI Format Keyboard input --.-r... . July
July
FLINK Format Link s.cauevoanan . July
FLOW Format Low Intensity ««... sreenan July
FMEL Format Element «.eeevsosveasss May
July
FMELI Format Element Immediate «-»«v-. May
FMEND FormatEnd +.ocvovvenn. ceeevan May
FNL Format Next Line «.... creesnenn < duly
FNUL Format No Underlining -«.... e o on July
FRMT FOrmMat ee-vevesonavoanne veeeseJuly
FSL FormatStart Linesveeesvasneasss Juty
FTAB Format Tabulation «eceeen. eaeeene Juty
FTABLE Format Table Generation «eeoevoven May
FTEXT Format Immediate Text sesoresenen L July
FUuL Format Underlining v seoeeeesso. July
KTAB : KeyTable00.us . . July
PLIST : Parameter List eiea e May
2. PROGRAM TESTING
2.1, Introduction seeessevinnceriinieioaas tessveroaas .. May
May
May
2,2, CREDIT Transiator
2.2.1. Introduction +.eveuverereranenas [N May
2.2.2. Running the Translator
2.2.3. Translator Listing eesonn beeseneen eeve. May
May
May
2.3. CREDIT Memory Management Linker
2.3.1. Introduction P, e May
2.3.2. Building up segments v .es v evrsanennnas May
2.3.3. Running Linkero, PN May
May
May
May
May
Vay
May
May
May
May
0.0.6

May 1379

1979
1978
1978
1978
1878
1978
1978
1978
1978
1978
1979
1978
1979
1979
1978
1978
1978
1978
1978
1979
1978
1978
1978
1879

1979
1879
1978

1979

1979
1979
1979

1979
1979
1879
1979
1979
1979
1979
1979
1979
1979
1979
1979

Page

187
.188
.189
.190
191
192
193
194
195
.196
197
.198
199
1.4.200
1.4,201
1.4.202
1.4.203
1.4.204
1.4.205
1.4.206
1.4.207
1.4.208
1.4.209
1.4.210

e il)
b#hbhhhhhbbhb

SISEN
oan
WA~

2.2.1

222
223
224

2.3.1
2.3.2
2.3.3
2.3.4
2.35
2.36
23.7
238
2.3.9
2.3.10
2.3.11
2.3.12

-~

CREDIT REFERENCE 4

Date

May
May
May
May
N!ay

3. TOSS SYSTEM START

3.1

3.2,

3.3.
3.4,

4.1
4.2
4.3.

4.4,

General eorcosceescanan siresasaseresacesuvsaseeas, May
May
Loading procedures PR sesesasssanesesvrsnss Nay

May
May
Program file {ayoul e cvrevecooenannn ceeseesssceseassaa May

Configuration file s essveessrviosrcsnnasssoscassareass May
tlay
May
May
May
May
May

CREDIT DEBUGGING PROGRAM

{ntroduction .« Ceiecceesecssscncsesecnnscanss May
Running CREBUG ... vveavrvueennon. siseiesoisensess May
CREBUG INpUt vvvvesseenssesisssssseasassaseasesas May

CREBUG OUtDUL v iucsvnssnnnrsvronnnsninnonansnasss May

Halt,
Open dataitem
Open boolean data item _ , |
Lock segment ,.......,.
Unlock segment . e s iiessoranrenreonsananssensss May

Loop through tran e tseersaaesaneseacsscaass May
Dump memory s eseissaaseesscasneeveesess May
Proceed fromtrap: ., ivceeseenaarssensesess. May
Open refocation register ., e tvbvecssseanesessnesas. May
TIBCE 4r s vt et e e ceeeesases s May
Open task control zreg /Condilion re@ister .« ..o u et vueevveaoaas May
SELITA0 . e seeaens May

Verify ..
Open memaory word
Remove trag .. .
Openbyte
Calculate coisieecnnnsen

0.0.7
May 1979

1979
1979
1979
1979
1979

1679
1979
1979
1979
1879
1979

1979
193
167
1975
1979
1979
1979

1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1879
1979
1979
1979
1979
1979
1979
187¢
197G

Page

CREDIT BEFERENCE MANUAL

APPENDIX A : CREDIT SYNTA L DTrminiy.ony

APPENDIX B : EXTENDED STATw 2D

DRCRO1 ceecwnn v PR

DRDCO? e e

DRDCIE s

DRDC17

DRDC22 e e

DRDIGT ... S R

DRDYCT ..o

DRGPOT

DRICOT e e e e

DRKBOT ...t iveinaannn e e e

DRKBCZ e e

DRLPOT, .. ;

DRMTOT

DRSOPOT ,........... .

DRCTOT ..itinrionennnne . il

DRTPOZ ..o, cee e May

DRTPO3.....cu-.. PR P Y4

DRTWOT . .viiiiinnrnnnns P v s s May

TIODM e e {

ATTACH/ DETACH wevvrnvrnrnrncn el N Aay
APPENDIX C : CONTROL WORD INFORMATION %ay

APPENDIX D : STANDARD ASSEMBLER SUBRCUTINES May

EMPTY 1 Empry Test
GETCW :
FMOVE
ICLEAR
MASK
TYPET

APPENDIX E : CHARACTER SET iSO~ CODE ,......... .. May

APPENDIX F : SCREEN MANAGEMENT
F.1. INTroducTion + oo eerenrnneon nue .o

F.2. Using Screen Management MoGuie cvevev. oo W

F.3. Communicaian netween Screen Managemern:
Module and Agslication v eeivnnaa.. e

F.4. Key Tabiles uses: by Screen Management oo ...

2.0.8
Mav 1379

1979
1979
1979
1979
1979
1979

197¢

1979

1879
1979
1979
1979
1678
1979

1679

DO.1

D.0.2
D.C.3
C.0.4
D05
0.0.6
0.0.7

E.01

TV
N = A ==

m T m
el b
[CRE RN

CREDIT REFERENCE MANUAL

APPENDIX G

Date

May

May

F.5. Error Handling s eveveeevevevesssoese, May

F.6. Control from Package to Application ««......May
F.7. Required Definitions outside Screen . *

Management Module e s v e e cvevevvvecsens May

F.8. Example of a coded Format «-.... IEETRRE May

July

: STANDARD CREDIT SUBROUTINES +c:cov0vc.. l\;lay

STRINP : StringInput -.... cereesenseersesas July
July
STROUT : StringOutput seevvercocoreressesss July
July

APPENDIX H :OBJECT CODE FORMAT May

May
May

a.0.9
May 1979

1979
1979

1979
1979

1979
1979
1978

1979

1978
1978
1978
1978

1979
1979
1979

Page

F.4.3
F.4.4

omm o mm
o@~ o
RN - N == -

III DHOOHO O
oo bopod ©

WN =

CREDIT REFERCNCE MANUA L

1 THE CREDIT L ANGUAGE

1.1 Introduction
1.1.1 Genera/

The CREDIT programming tanguage has been developed specifically for the Philips
Terminal System. It is an interpretive language.

The object code generated from CREDIT is executed via an Interpreter. A CREDIT
application program is normally subdivided into a number of modules, each module con-
taining the statements necessary 1o perform a logically discrete processing step.

Modules are written and transiated separately. Translation is the process of canverting
CREDIT source statements into intermediate object code.
A CREDIT module is comyposed of three types of statement:

Directives

Declarations

Instructions
Directives direct the CREDIT Transfator during the production of intermediate object
code. They are not translated into object code but provide a framework within which
the programmer codes his program module.
Declarations are used 1o specify the type, length and value of data items used as operands
in the module. They are alsc used to define the interface between the application pro-
gram and the rest of the PTS System.
Instructions direct the input, processing and output of data. That is, they specify the
functions to be carried out by the computer and direct the sequence of events.
Declarations and instructions are translated into the data and instructions which comprise
the object program,

1.1.2 Terminal/Application Program Interface
1.1.2.1 Programs

CREDIT appiications programs are developed under DOS 6800 System Software. However,

they can be run only under TOSS System Software.

Under TOSS System Software only one application program can be held in memory.

Hence, all the application processing for a PTS System is normally incorporated into one

application program (which may, of course, be subdivided into modules}.

When the total size of the TOSS-monitor plus the CREDIT application exceeds 64K bytes,

different possibilities exist to run such applications on the PTS range of computers.

a) For systems having a maximum main memory capacity of 64K bytes, the only
possibility is to use secondary memory (disk, flexible disk}. From this secondary
memory seqments ¢f the application are loaded into main memory at runtime, when
necessary. This is under controi of the memory management software.

b) For systems has ed inain memaory, memory addressing upto 256K bytes,
the whole anpi aced in main memory. Extended main memory may
also be combiriea wit condary memory.

A hardware featu.:, e m y management unit (MMU), enables memory address-
ing up to 256K bytes. This virtual storage technigue is implemented, with using
CREDIT memory manag software

1.7.1
May 1378

CREDIT REFERENCE MANUAL

1.1.2.2 Data Sets

A data set is a reference to an input/ouinut device or diskfile or whicn an ag plication
program may perform input/output operations. Mia:e than one data set may be con-
figured in a single device. For exam e, a ‘ournal orintzr, taily roli wrinter and front
feed printer are combined in the PT5 8221 Teile: Terminal Printer. However separate
input/output operations can be performed on each of the thres duta sets,

1.1.2.3 Terminal Classes

{n a PTS System thers s normally & device configuration ot eeen of several work positions,
Each device configuration comprises one or more ices. Some work positicns may have
the same type of device configurat.oii; e.g. bank tellers would normally all use the same
type of configuration. There are normally other work posit.ens with different configura-
tions. A group of similarly contigured work positions, handling the same tyn»s of trans-
action, is known as a terminal ¢iass

Because all work positions in a terivinar class handle the same types of trar
identical program code is used to service each of these work positions

L10n,

1.1.2.4 Tasks

The CREDIT language enables the programmer to utilize the same set of CREDIT state-
ments for each work position in a terminal class.

This is achieved in the foliowing manner.

The interpretive object code generated from CREDIT programs is re-entrant. This means
that a number of independent tasks can be achieved, all executing a single copy of the
application program, Each time data is sent from a work position a task is activated by
the TOSS Monitor. Thus, several tasks can be active at the same time for a number of
terminal classes.

The TOSS Monitor schedules the various tasks so that, at any time, several tasks may

be waiting for input/output to be completed, whiist other tasks are queued waiting for
execution. Though only one task may be executed at a given instant, the overall
impression is that all work positions are being serviced simu!taneously.

Each task is assigned a unigue task identifier by the system. This identifier is derived
from the task identifier assigned 1o esch terminal class by the programmer, With extended
main memory, the TOSS-monitor always resides in the first 64Kbytes of main memory.

1.1.2.5 Work Blocks

One or more work blocks must be assigned by the programmer to each terminal class.
These work blocks define areas of memory which may be used as working storage for
e.g. input/output buffers. Dummy work blocks redefine these areas of memory.
Swappable workblocks are stored on disk and wil! only on request be loaded into main
memory.

1.1.3 Program Design

1.1.3.1 General

It is recommended that CREDIT programs be subdivided into modules. Each module
should contain the statements necessary 1o perform a logically discrete processing step.
There must be one main module in each program. This module will contain a complete
data division headed by the DDIV directive. The remaining modules rmiust not define a
data division.

11

May 1579

CREDIT REFERENCE MANUAL

They should contain, instead, 8 DDUM directive followed immediately by the procedure
division directive PDIV.

The result of this is that a single date division will be used by all modules in the program.
At least one terminal class should contain a program start point definition.

The remaining modules of the program may contain the statements required for the
various types of transaction which the program is designed to process.

It is recommended that each module be devoted to the processing of a single transaction
type.

It is the responsibility of the programmer to identify individual transaction types within
a terminal class. This can be accomplished, for example, by testing a transaction code
keyed-in at the work position by the user.

CREDIT programs may cail subroutines written in PTS Assembler.

Certain system functions can be utilized only via Assembler programs. So it may be
necessary to write a mixed CREDIT/Assembler program. However, the main module
must always be written in CREDIT.

1.1.3.2 Disk Resident Programs

This way of extending the memory will lead to a decreasing of the performance, compared
to memory extension with the memory management unit,

The code part consist of program segments just as for extended main memory. However,
here the number of memory pages are not sufficient to permit all segments to be loaded
in main memory together. The tasks have, as for other type of system resources to
compete for main memory. The memory page replacing technigue used is the least
recently used method. This indicates that when the load in the computer goes down

e.g. only a few tasks are running, these tasks will get a relatively large amount of main
memory each. In situations of heavy computer [oad the tasks will get only the amount
of main memory that is absolutely necessary. The dynamic allocation of main memory,
when the system condition change, is controlled and supervised by the operating system
itself. When looking at the code part it is important to consider the fact that the different
tasks are using the same code to a great extent, in almost every application some or a lot
of tasks are doing the same work on different physical work stations. These tasks are
running the same instruction sequences but they are working on different and partly
unigue data areas. The situation above is valid for terminal systems in general. However
the memory management technique is designed to handle also systems where the work
within the system is delegated to a number of unique “'specialist’’ tasks, each of themn
running its own program sequence. The difference will be that the competition for main
memory will be harder in last-mentioned cases.

If no MMU is present the 12age size can be chosen to every value between sector size, 400
bytes, to 64K bytes, (also for flexible disk). The segmentation of the code part is made
at linking time and the segments consists of; interpretable code, literal pool and address
tables of the segment. Branches and subroutine calls will be solved automatically invisible
to the user, Every segment can be lcaded anywhere in main memory (in a page) and this
decision is made by the system exclusively. Actually the only thing the user has to do is
to define the program segment size.

The fetch policy used is, to (oad the segment at the point of time when it is needed,
since it is very difficult to predict what segments will have to be loaded in a near future.

1.1.3
May 1979

CREDIT REFERENCE MANUAL

The replacement policy used e.g. the durision of which segment to overload wien a new
segment has to be loaded, is the Least facently Used Method (LRU). A queue is buiit up
telling which page in main memary to be raplaced next time. This queve will Le dynamic-
ally updated by the system each time is reactivated

Note that the method described above implic: that no dead-locks car appear, since there
is always place for a new segment in ma:n memory,

To take care of error situaticns {disk nct operable, segment (mpossible to read) a special
entry is defined in the resident part oi 12 application program. (REENTER).

This virtual memory solution gives en-ugh Hexibility to the programmer to optimize the
program execution, The most important thing is the concept of locality. When writing an
application for a virtual memory system, the programmer should try to pack the frequent-
ly used modules to as small number of resulting segments as possible. In practice the
following things can for example be considered when writing an application:

— remove exception and error-handling routines from the main path of the program.

— put all low Use routines in segments on ihesr own.

— routines should be piaced close to the routines they call or are called by.

Following rules should be noted, improving the locality of the program:

— there will be empty areas in the end of the pages, due to impossibility to make all the
segments to the same size, The programmer, however, has the possibility to keep these
empty areas at a low level.

— to have the possibility to build up and restructure the program segments, the program-
ming technique to be used should be strongly modular,

— literals are placed in the segments where they are used.

1.1.3.3 Extended Main Memory (up to 256K bytes)

When using extended main memory, a special hardware feature the memory management
unit (MMU) must be present.

The page size in systems with memory management unit {MMU) may be chosen by the
user and should be a multiple of 1K bytes. This hardware feature allows a very fast
paging system compared to disk as paging device. The page size is setected during linking.
(TLK command, see chapter 2.3}. The same rules are valid as mentioned for disc resident
applications.

1.1.3.4 Extended Main Memory and Disk Resident Programs

The same rules are valid as mentioned for disk resident applications. The memory page
replacement technique used, is the Least Recently Used Method, which will guarantee
that the memory pages most frequentiy used will most of the time be situated in main
memory.

1.1.4 Source Input Formar

A CREDIT source program can be read into the PTS 6800 System using one of a variety
of source input devices. Regardless of the input device used, the source data must have
the following form.

A source line is an 80-character card image. If the input device ailows records of

variable length {(console typewriter) each record must contain no more than one source
statement. Input records longer than 80 characters are truncated, whereas shorter records
are augmented by spaces up to column 80.

1.1.4
May 1979

CREDIT REFERENCE MANUAL

The source line is suhdivided into four fields: labe! field, operation field, operand field
and comments fieid. The label field begins in column 1, The Jabe!, operation and oper-
and fieids are each terminated by a tabulation character [\) or at least one space each.
The operand field extends at maximum to column 71, If there are no non-space
characters fotlowing the tabel {if any} befare column 30, the rest of the statement is
interpreted as a comment. Columns 73—~80 are ignored in the translation process.

An asterisk in column 1 indicates that the source line is a comment. A source line
containing spaces in calumns 1-71 is ignored.

{f column 72 contains a “C”, the next line is interpreted as a continuation. For fixed
length input records, the operand field may be terminated by a comma (leaving spaces
up to column 72}, the next operand starting on the continuation line. if a value inside
quotes is split between two lines, ail columns up to 72 are significant. For variable
length records the operand field is terminated by two tabulation characters followed
by a “C” for continuation. In this case, the character positions from the first tabulation
character up to column 77 are not significant, and the operand field is immediately
continued on the next line,

In continuation tines, the label and operation fields should be empty.

1.1.5 CREDIT Syntax Definition

The following symbols (Backus/Naur-Form) are used to define the syntax of CREDIT
statements:

= is defined as
w space
[1 the symntatic items between these square brackets may be omitted

{1 select one of the items between the braces

alb select either a or b. This has the same meaning as braces. [t is used
with long strings.
eltipsis indicates that the last syntatic item may be repeated.

These symbo|s are used throughout the manual to define the syntax of CREDIT state-
ments. They are also used in the parameter syntax definition in appendix 1.

1156
May 1979

CREDIT REFERENCE MANUAL

1.2 Directives

1.2.1 Structure Directives

The framework of a CREDIT module is constructed from the directives IDENT,
DDV, DDUM, PDtV, PROC, PEND and END. The use of these directives is
illustrated below:

FDENT

[DDIV (or DDUM)

The data division contains declarations which define the type, length and

value of data items used as operands in the program, together with declarations
which define the interface between the application program and the rest of the
{_PTS System.

CPDIV

The procedure division contains the instructions which direct the input,
processing and output of data. It also contains some declarations which must
be used in conjunction with certain instructions,

PROC
Subroutines contain instructions and declarations.
PEND
L Several subroutines may be written in one module.
END

The IDENT and END directives define the start and end of a module. They must
be the first and last statements, respectively, of the module.

The DDIV or DDUM directive defines the start of the data division. 1t must be the
second statement in the module. DDIV is used in the main module of a program.
DD UM is used in all other modules.

The PDIV directive defines the start of the procedure division. The PROC and
PEND directives define the start and end of a subroutine.

The IDENT, DDIV (or DDUM}, PDIV and END directives must appear ance only
in each module. The PROC and PEND directives may be repeated. However,
subroutines may not be nested. That is, two or more PROC directives cannot be
written without an intervening PEND directive. Subroutines may, though, perform
other subroutines,

1.2.2 Linkage Directives

CREDIT modules which have to be linked into an application program contain
references to statements or subroutines in other modules, In order to achieve the
correct inter-module linkages, entry points and external references must be
specified. The ENTRY and EXT directives are used for this purpose. They must
be written in the procedure division,

There must be at least one START directive for each program. When the

TOSS System is started (i.e. the TOSS Monitor is loaded and the application
program begins execution) a task is activated for each work position in the System.
The tasks are activated at the start points specified in the START directives of the
relevant terminai classes. The START directive(s) must be written in the data
division and must be specified as entry points (ENTRY).

1.2.1
May 1979

CREDIT REFERENCE MANUAL

if more than one START directive appaars in a terminal class only the first start point
will be activated when the system is started. The other start points become pending.
They will be activated after the first task ~as executed an EXIT instruction. When
using memory management, the REENTER directive refers to a closing routine in case
of a page fault ar read ecror on disc. The staiement identifier in this directive must be
declared as ENTRY in the module it is driined.

1.2.3 Listing Directives

The directives LIST, NLIST and EJEC™ are used to controf the CREDIT listing during
the translation process. They may be written in any part of the module. The OPTNS
directive must follow after the DDUM or DDIV directive.

1.2.4 Eguate directive

This directive is used to equate an identitier with a value. When this identifier i used

in an instruction the Translator automatically replaces it with the specified valug, i.e.

the instruction is translated as if the programmer had actually written the value in the
instruction.

The directive may be used free in the procedure division (PDIV}, but it shouid follow
the ENTRY and EXT directives.

1.2.5 Parameter directive

The directives PFRMT, PKTAB and PLIT define the type of formal parameter, declared
in the heading of the subroutine and must be used in two byte addressing mode or when
a format table is used as formal parameter, or when in one byte addressing mode the
literal constant name, keytable name or formatlist name, does not begin with a $ sign.
These directives follow the PROC directive immediately.

1.2.6 Directive reference

This section describes the syntax and use of each directive. The possible values of the
variables in the directives is given in appendix 1. The notation conventions are described
in section 1.1.5.

1.2.2
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:

Description:

Data Division

i_J DDIV Lt [module-name]
Structure directive

Indicates the beginning of the data division of a module and causes a
page feed in the listing during translation.

1f module-name is specified, the data division statements will be fetched
from the module indicated by module-name.

However, these data divisions will be entirely separate at execution time.

The use of common data divisions is achieved through the DDUM
directive.

No more than orie module in a CREDIT program may contain a DDIV
directive. The remaining modules must use the DDUM directive.

7.2.3
March [977

CREDIT REFERENCE MANUAL

Data division dummy DDUM

Syntax: L DDUM Li[moduie-name}
Type: Structure directive.
Description: Beginning of a data division is indicated and the data division state-
ments will be fetched from the module indicated by module-rame.
No object code is output during processing of the data division.
Note: A DDUM-module may contain declaration of data items.
The only difference between DDUM and DDIV directives is,

when DDIV is declared the object modules of the data division
are output on a /0 type file.

1.24
May 1979

CREDIT REFERIZNCE MANUAL

1 THE CREDIT LANGUAGE
11 Introduction
1.1.1 General

The CREDIT programming language has been developed specifically for the Philips
Terminal System. {1 is an interpretive language.

The object code generated from CREDIT is executed via an interpreter. A CREDIT
application program is normaily subdivided into a number of modules, each module con-
taining the statemants necessary to perform a logically discrete processing step.

Modules are written and transiated separately. Translation is the process of converting
CREDIT source statements into intermediate object code.
A CREDIT module is composed of three types of statement:

Directives

Declarations

frstrusitons
Directives direct the CRED!T Transiator during the production of intermediate object
code. They are not translated into object code but provide a framework within which
the programmer codes his program module.
Declarations are used to specify the type, length and value of data items used as operands
in the module. They are aisc used to define the interface between the application pro-
gram and the rest of the PTS System.
Instructions direct the input, processing and output of data. That is, they specify the
functions to be carried out by the computer and direct the sequence of events.
Declarations and instructions are translated into the data and instructions which comprise
the object program. .

1.1.2 Terminal/Application Program Interface
1.1.2.1 Programs

CREDIT applications programs are developed under DOS 6800 System Software. However,

they can be run only under TOSS System Software.

Under TOSS System Software oniy one application program can be held in memory.

Hence, ali the application processing for a PTS System is normally incorporated into one

application program (which may, of course, be subdivided into maodules).

When the total size of the TOSS-monitor plus the CREDIT application exceeds 64K bytes,

different possibitities ¢xist to run such applications on the PTS range of computers.

a) For systems having a maximum main memory capacity of 64K bytes, the only
possibility is to use secondary memory (disk, flexible disk). From this secondary
memory segiments of the agilication are loaded into main memory at runtime, when
necessary. This is undger control of the memory management software.

b) For systems hiavi «rended main memory, memory addressing upto 256K bytes,
the whole aps: hleced in miain memory. Extended main memory may
also be compin condary memory.

A hardware featu sry management unit (MMLU), enables memory address-
ing up to 256K bytus. Tr tug! storage technigue is implemented, with using
CREDHT memory managem:nt software

111
May 1879

CREDIT REFERENCE MANUAL

1.1.2.2 Data Sets

A data set is a reference to an input/ou “uut device or diskfile an which an ap plication
program may perform input/output operstions. Mote than one data set may be con-
figured in a single device, For exar favrnal nrintzr, tatly rolt rinter and front
feed printer are combined in the PTS 8221 Teller Terminai Fri {owever separate
input/output operations can ba wartormed on each of the three dava sets.

3

1.1.2.3 Terminal Classes

in a PTS System there 1s normally 2 device configuration ot eech of several work positions.
Each device configuration comprises one or mon ices Some work positic ns may have
the same type of device configurat.oi, e.g. bank eifsrs would aormally all use the same
type of configuration. There are normally other work positiuns with differert canfigura-
tions. A group of similarly configured work positions, handiing die same tynes of trars-
action, is known as a terminal class

Because all work positions in a terminai £lass handle the same types of tran
identical program code is used to service each of these work positions

1.1.2.4 Tasks

The CREDIT language enables the programmer to utilize the same set of CREDIT state-
ments for each work position in a terminal class.

This is achieved in the foliowing manner.

The interpretive object code generated from CRED!T programs is re-entrant. This means
that a number of independent tasks can be achieved, all executing a single copy of the
appiication program. Each time data is sent from a work position a task is activated by
the TOSS Monitor. Thus, several tasks can be active at the same time for a number of
terminal classes.

The TOSS Monitor schedules the various tasks so that, at any time, several tasks may

be waiting for input/output to be completed, whilst other tasks are queued waiting for
execution. Though only one task may he executed at a given instant, the overall
impression is that all work positions are being serviced simulfaneously.

Each task is assigned a unique task identifier by the system. This identifier is derived
from the task identifier assigned to each terminal class by the programmer. With extended
main memory, the TOSS-monitor aiways resides in the first 64Kbytes of main memory.

1.1.2.5 Work Blocks

One or more work blocks must be assigned by the programmer to each terminal class.
These work blocks define areas of memory which may be used as working storage for
e.g. input/output buffers. Dummy work blocks redefine these areas of memory.
Swappable workblocks are stored on disk and will only on request be loaded into main
memory.

1.1.3 Program Design

1.1.3.1 Generaf

It is recommended that CREDIT programs be subdivided into modules. Each module
should contain the statements necessary to perform a logicalty discrete processing step.
There must be one main module in each program. This modute will contain @ complete
data division headed by the DDIV directive. The remaining modules must not define a
data division.

1.1.2
May 15789

CREDIT REFERENCE MANUAL

They should contain, instead, a DDUM directive followed immediately by the procedure
division directive PDIV.

The result of this is that a single date division will be used by all modules in the program.
At least one terminal class should contain a program start point definition.

The remaining modules of the program may contain the statements required for the
various types of transaction which the program is designed to process.

It is recommended that each module be devoted to the processing of a single transaction
type.

it is the responsibility of the programmer to identify individual transaction types within
a terminal class. This can be accomplished, for example, by testing a transaction code
keyed-in at the work position by the user.

CREDIT programs may call subroutines written in PTS Assembler.

Certain system functions can be utilized only via Assembler programs, So it may be
necessary to write a mixed CREDIT/Assembler program. However, the main module
must always be written in CREDIT.

1.1.3.2 Disk Resident Programs

This way of extending the memory will lead to a decreasing of the performance, compared
to memory extension with the memory management unit.

The code part consist of program segments just as for extended main memory. However,
here the number of memory pages are not sufficient to permit all segments to be loaded
in main memory together. The tasks have, as for other type of system resources to
compete for main memory. The memaory page replacing technique used is the least
recently used method. This indicates that when the load in the computer goes down

e.g. only a few tasks are running, these tasks will get a relatively large amount of main
memory each, In situations of heavy computer load the tasks will get only the amount
of main memory that is absolutely necessary. The dynamic allocation of main memory,
when the system condition change, is controlled and supervised by the operating system
itself, When fooking at the code part it is important to consider the fact that the different
tasks are using the same code to a great extent. In almost every application some or a lot
of tasks are doing the same work on different physical work stations. These tasks are
running the same instruction sequences but they are working on different and partly
unique data areas. The situation above is valid for terminal systems in general. However
the memory management technique is designed to handle also systems where the work
within the system is delegated to a number of unigue “’specialist’” tasks, each of them
running its own program sequence. The difference will be that the competition for main
memory will be harder in last-mentioned cases.

If no MMU is present the page size can be chosen to every value between sector size, 400
bytes, to 64K bytes, {also for flexible disk). The segmentation of the code part is made
at linking time and the segments consists of; interpretable code, literal pool and address
tables of the segment. Branches and subroutine calls will be solved automatically invisible
to the user, Every segment can be loaded anywhere in main memory (in a page) and this
decision is made by the system exclusively. Actually the only thing the user has to do is
to define the program segment size.

The fetch policy used is, to load the segment at the point of time when it is needed,
since it is very difficult to predict what segments will have to be ioaded in a near future.

1.3
May 1979

CREDIT REFERENCE MANUAL

The replacement policy used e.g. the duriston of which segment to overload wnen a new
segment has to be loaded, is the Least Hecently Used Method (LRU}. A queue is built up
telling which page in main memory to be replaced next time. This queue will be dynamic-
ally updated by the system each time & tas« is reactivated.

Note that the method described abave implics tiat no dead-locks can appear, since there
is always place for a new segment in ma‘n memory,

To take care of error situaticns (disk no: operable, segment impossible to read) a special
entry is defined in the resident part o t3e application program. (REENTER),

This virtual memosy solution gives enaugh flexibility to the programmer to optimize the
program execution, The most important thing s the concept ot locality. When writing an
application for a virtual memory system, the programmer should try to pack the frequent-
ly used modules to as small number of resulting segments as possible. In practice the
following things can for example be considered when writing an application:

— remove exception and error-handlirg routines from the main path of the program.

— put all low Use routines in segments an their own.

— routines shouid be ptaced close to the routines they call or are called by.

Following rules shoutd be neted, improving the locality of the program:

— there will be emipty areas in the end of the pages, due to impossibility to make all the
segments to the same size. The programmer, however, has the possibility to keep these
empty areas at a low level.

— to have the possibility to build up and restructure the program segments, the program-
ming technique to be used should be strongly modular,

— literals are placed in the segments where they are used.

1.1.3.3 Extended Main Memory (up to 256K bytes)

When using extended main memory, a special hardware feature the memory management
unit (MMU) must be present.

The page size in systems with memory management unit (MMU) may be chosen by the
user and should be a multiple of 1K bytes. This hardware feature allows a very fast
paging system compared to disk as paging device. The page size is selected during linking.
{TLK command, see chapter 2.3}, The same rules are valid as mentioned for disc resident
applications,

1.1.3.4 Extended Main Memory and Disk Resident Programs

The same rules are valid as mentioned for disk resident applications. The memory page
replacement technique used, is the Least Recently Used Method, which will guarantee
that the memory pages most frequentiy used will most of the time be situated in main
memory.

1.1.4 Source Input Format

A CREDIT source program can be read into the PTS 6800 System using one of a variety
of source input devices. Regardless of the input device used, the source data must have
the following form.

A source line is an 80-character card image. If the input device allows records of

variable length {console typewriter) each record must contain no more than one source
statement. Input records longer than 80 characters are truncated, whereas shorter records
are augmented by spaces up to column 80,

1.1.4
May 1979

CREDIT REFERENCE MANUAL

The source Jine is subdivided into four fields: label field, operation field, operand field
and comments field. The label field begins in column 1. The iabel, operation and oper-
and fields are each terminated by a tabulation character (\) or at least one space each.
The operand field extends at maximum to column 71. If there are no non-space
characters following the Jabel {if any) before column 30, the rest of the statement is
interpreted as a comment. Columns 73—80 are ignored in the transiation process.

An asterisk in column 1 indicates that the source line is a comment. A source line
containing spaces in columns 1—71 is ignored.

If column 72 contains a “'C”’, the next line is interpreted as a continuation. For fixed
length input records, the operand field may be terminated by a comma (leaving spaces
up to column 72}, the next operand starting on the continuation line. it a value inside
quotes is split between two lines, all columns up to 72 are significant. For variable
length records the operand field is terminated by two tabulation characters followed
by a “’C” for continuation. In this case, the character positions from the first tabulation
character up to column 71 are not significant, and the operand field is immediately
continued on the next line.

In continuation lines, the label and operation fields should be empty.

1.1.5 CREDIT Syntax Definition
The following symbols {Backus/Naur-Form) are used to define the syntax of CREDIT
statements:

= is defined as
o space
1] the syntatic items between these square brackets may be omitted
{ } select one of the items between the braces

alb select either a or b, This has the same meaning as braces. it is used
with long strings.
ellipsis indicates that the last syntatic item may be repeated.

These symbols are used throughout the manual to define the syntax of CREDIT state-
ments. They are also used in the parameter syntax definition in appendix 1.

115
My 1829

CREDIT REFERENCE MANUAL

1.2 Directives
1.2.1 Structure Directives
The framework of a CREDIT module is constructed from the directives 1DENT,
DD}V, DDUM, PDIV, PROC, PEND and END. The use of these directives is
illustrated below:
IDENT
DDIV {or DDUM)
The data division contains declarations which define the type, length and
value of data items used as operands in the program, together with declarations
which define the interface between the application program and the rest of the
PTS System.

PDIV
The procedure division contains the instructions which direct the input,
processing and output of data. 1t also contains some declarations which must
be used in conjunction with certain instructions,

PROC

Subroutines contain instructions and declarations.

PEND
Several subroutines may be written in one module.

LEND

The IDENT and END directives define the start and end of a module. They must
be the first and last statements, respectively, of the module. 7

The DDIV or DDUM directive defines the start of the data division. It must be the
second statement in the module. DDV is used in the main module of a program.
DDUM is used in all other modules.

The PDIV directive defines the start of the procedure division. The PROC and
PEND directives define the start and end of a subroutine.

The IDENT, DDV {or DDUM}, PDIV and END directives must appear once only
in each module. The PROC and PEND directives may be repeated. However,
subroutines may net be nested. That is, two or more PROC directives cannot be
written without an intervening PEND directive. Subroutines may, though, perform
other subroutines.

1.2.2 Linkage Directives

CREDIT modules which have to be linked into an application program contain
references to statements or subroutines in other modules. tn order to achieve the
correct inter-module linkages, entry points and external references must be
specified. The ENTRY and EXT directives are used for this purpose. They must
be written in the procedure division.

There must be at least one START directive for each program. When the

TOSS System is started {i.e. the TOSS Monitor is loaded and the application
program begins execution) a task is activated for each work position in the System,
The tasks are activated at the start points specified in the START directives of the
relevant terminal classes. The START directive{s) must be written in the data
division and must be specified as entry points (ENTRY).

L2171
May 1979

CREDIT REFERENCE MANUAL

{f mare than one START directive appears in a terminal class only the first start point
will be activated when the system (s sta-:ad. The other start points become pending.
They will be activated after the first task has executed an EXIT instruction. When
using memory management, the REENTE & directive refers to a closing routine in case
of a page fauit or read error on disc. The statement identifier in this directive must be
declared as ENTRY in the module it is ¢efines.

1.2.3 Listing Directives

The directives LIST, NLIST and EJEC™ are used to control the CREDIT listing during
the translation process. They may be written in any part of th= module. The OPTNS
directive must follow after the DDUM or DDIV directive.

1.2.4 Equate directive

This directive is used to equate an identifier with a value. When this identifier ic used

in an instruction the Translator automatically replaces it with the specified value, i.e.

the instruction is translated as if the programmer had actually written the value in the
instruction.

The directive may be used free in the procedure division (PD{V}, but it shouid follow
the ENTRY and EXT directives.

1.2.5 Parameter directive

The directives PFRMT, PKTAB and PLIT define the type of formal parameter, declared
in the heading of the subroutine and must be used in two byte addressing mode or when
a format table is used as formal parameter, or when in one byte addressing mode the
literal constant name, keytable name or formatlist name, does not begin with a & sign.
These directives follow the PROC directive immediately.

1.2.6 Directive reference

This section describes the syntax and use of each directive, The possible vatues of the
variables in the directives is given in appendix 1. The notation conventions are described
in section 1.1.5.

122
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:

Description:

Data Division

L1 DDIV L} [module-name]
Structure directive

Indicates the beginning of the data division of a module and causes a
page feed in the listing during translation.

{f module-name is specified, the data division statements will be fetched
from the module indicated by module-name.

However, these data divisions will be entirely separate at execution time.

The use of commaon data divisions is achieved through the DDUM
directive.

No more than one module in a CREDIT program may contain a DDIV
directive. The remaining modules must use the DDUM directive.

123

March 1977

CREDIT REFERENCE MANUAL

DDUM Data division dummy

Syntax: L1 DDUM Lifmodule-name]
Type: Structure directive.
Description: Beginning of a data division is indicated and the data division state-
ments will be fetched from the module indicated by module-rame,
No object code is output during processing of the data division.
Note: A DDUM-module may contain declaration of data items.
The only difference between DDUM and DDIV directives is,

when DDV is declared the object modules of the data division
are output on a /0 type file,

124
May 1979

CREDIT REFERENCE MANUAL

EJECT Eject

Syntax: LI EJECT L

Type: Listing directive.

Description: Listing will be continued at the top of the next page.

1.25
March 1977

CREDIT REFERENCE MANUAL

Syntax: LIEND
Type: Structure directive.

Description: This directive terminates a module. it must be the last statement
appearing in each module.

1.26
March 1977

CREDIT REFERENCE MANUAL

ENTRY Entry Point ENTRY

subroutine-identifier
statement-identifier

Syntax: LLIENTRY LU {

Type: Linkage directive.

Description: The statement-identifier or subroutine-identifier within this module
may be referred to by other modules.

Each identifier may comprise a maximum of six characters.

1.2.7
March 1977

CREDIT REFERENCE MANUAL

EQU
Syntax:

Type:

Description:

Example:

Equate EQU

equate-identifier L) EQU [value-expression
Equate directive.

Equate-identifier takes on the type and value as specified by value-
expression. The value must be between 0 and 255 inclusive.

it should be used after the ENTRY and EXT directives, but may
be written everywhere in the procedure division.

KEY EQU X'09'
KEY2 EQU KEY+2

1.2.8
May 1979

CREDIT REFERENCE MANUAL

External reference

Syntax: L1 EXT L external-identifier
Type: Linkage directive.

Description: External-identifier points to a statement identifier or a subroutine
identifier which is not in this module.

External-identifier consists of a maximum of six characters.

1.2.9
March 1877

CREDIT REFERENCE MANUAL

Identification

Syntax: LJ IDENT Lt module-name
Type: Structure directive,

Description: This directive specifies the name given to a module. It must always be
present and must be the first statement in a module. Module-name may
consist of a maximum of 8 characters, but it is truncated by the trans-
lator to 6 characters.
1f comment follows the IDENT directive, a module name of at least
6 characters is recommended. v

1.2.10
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description

Example:

Include INCLUDE

s INCLUDE s module-name [, LIST]
Directive.

This directive enables source code to be shared between modules in
an application. The directive is used in the procedure division. The
contents of the auxiliary file specified by module-name is included
in the translation process. The auxiliary input file must not include
the module directives IDENT, END or an INCLUDE directive,

If the option, LIST is specified, the source statements from the
auxiliary file are listed. Otherwise they are not listed.

In the program listing, lines from the auxiliary file are identified by
a hypen which follows directly the line number.

)
« INCLUDE MAUX, LIST

1.2.11
July 1878

CREDIT REFERENCE MANUAL

LIST List LIST

Syntax: L LIST I
Type: Listing directive,

Description: CREDIT source code listing is resumed after it has been suspended by
a NLIST directive.

1.2.12
July 1978

CREDIT REFERENCE MANUAL

NLIST No list NLIST

Syntax: LINLIST U
Type: Listing directive.

Description: CREDIT source code listing is suspended from the point where this
directive is given until either the END directive or LIST directive is
met. Lines which contain syntax errors will continue to be printed
during this phase.

1.213
July 1978

CREDIT REFERENCE MANUAL

OPTNS

Syntax:

Type:

Description:

OPTNS

Directive.

Options OPTNS

LINES=value [,LITADR=decimal-integer]
[, ADRMOD=decimal-integer]
LITADR=decimal-integer [,LINES=value]
[,ADRMOD=decimal-integer]
ADRMOD=decimal-integer [,LINES=value]
[,LITADR=decimal-integer]

This directive should follow immediately after a DDIV or
DDUM directive and is valid for the whole program (global).
The keyword parameters are LINES, LITADR and ADRMOD.

They have th
LINES

LITADR

First digit:

Second digit:

Third digit:

Fourth digit:

e following significance.

Value specifies the number of lines per page
on the output listing.

Literal constant, pictures, keytables and
formats are addressed by a one or two byte
addressing system. A four digit, decimal integer
indicates which addressing system is used. The
first digit refers to literal constant, the second
digit to keytables, the third to pictures and the
fourth to formats. Each digit may have a value
for2,

1 One byte addressing system selected
for literal constants.

2 Two byte addressing system selected
for literal canstants,

1 One byte addressing system selected
for keytables.

2 Two byts addressing system selected
for keytables.

1 One byte addressing system selected
for pictures.

2 Two byte addressing system selected
for pictures.

1 One byte addressing system selected
for formats.

2 Two byte addressing system selected
for formats.

Default value LITADR=1111,

1.2.14
May 1979

CREDIT REFERENCE MANUAL

OPTNS

ADRMOD

Continued OPTNS

With one digit, a two byte addressing mode
can be selected for data-items, data-sets, literal
constants, keytables, formats and pictures.

One byte addressing for data-items, data-sets,
literal constants, keytables, formats and
pictures, With LITADR two byte addressing
can be selected for literal constants, keytables,
pictures and/or formats.

-

N

Two byte addressing for data-items, data-sets,
literal constants, keytables, formats and
pictures. LITADR is automatically set to two
byte addressing.

Default value ADRMOD=1.

1.2.15
May 1979

CREDIT REFERENCE MANUAL

I PDIV Procedure division PDIV]

Syntax : wa PDIV
Type : Structure directive

Description : Indicates the beginning of the procedure division and causes the data
division processing to be terminated. A new page of program listing
is thrown.

1.2.16
May 1979

CREDIT REFERENCE MANUAL

Subroutine end

Syntax: — PEND
Type: Structure directive.

Description: This directive marks the end of a subroutine. Formal parameters may
not be referred to by an instruction which is written after a sub-
routine PEND directive,

1.217
May 1979

CREDIT REFERENCE MANUAL

PFRMT

Syntax:

Type:

Description:

Example:

Formai fo.mat list parameters ! PFEMT I

— PERMT —. jiu’cv":ﬁnr 1
iS:denm‘;er}"

Parameter diractive,

In two-by1e addressing mode this directive defines a rormal
parameter of the type format list reference. it follows the
PROC directive and must also be used when the formal
parameter corresponds to 2 format table reference (F TABLE).
The $ sign s coutited in the total number of charactars in the
identifier. (formai parameter) When the formal pararieter does
not start with a $ sign and the referenced type is formar list,
then the type has to be defined by a PFRMT directive, also in
one byte addressing mode.

SUBF_PROC .. $FORM1 {ADRMOD=2)
PFRMT SFORM1

SUBF,_PRQC__SFORM1 (ADRMOD=1)

SUBF._PROC._FORM1 (ADRMOD=1)
PFRMT FORM1

1218
May 1979

CREDIT REFERENCE MANUAL

PKTAB

Syntax:

Type:

Description:

Example:

Format key table parameter PKTAB

— PKTAB — [identifier
Sidentifier

Parameter directive

In two-byte addressing mode, this directive defines a formal
parameter of the type key table reference. it follows the
PROC directive.

The $ sign is counted in the total number of characters in the
identifier {formal parameter). When the formal parameter does
not start with a $ sign and the referenced type is key table,
then the type has to be defined by a PKTAB directive, also

in one byte addressing mode.

SUBK _, PROC __ $SKTB1 {ADRMOD=2)
PKTAB $KTB1

SUBK . PROC _. $KTB1 (ADRMOD=1}

SUBK _.PROC __KTB1 {ADRMOD=1)
PKTAB KTB1

1.2.19
Mav 1379

CREDIT REFERENCE MANUAL

PLIT

Syntax:

Type:

Description:

Example:

Formal iiteral parameter PLIT

. PLIT __ fidentifier }
iSidenttfieri

Parameter directive

In two byte addressing mode, this directive defines a formal
parameter of the type literal reference. 1t follows the PROC
directive.

The $ sign is counted in the total number of characters in the
identifier. (formal parameter) When the formal parameter does
not start with a § sign and the referenced type is litetal con
stant then the type has te be defined by a PLIT directive,

also in one byte addressing mode.

SUBL _.PROC _$LITC (ADRMOD=2)
PLIT 3LITC
SUBL —PROC_. $LITC (ADRMQOD=1)
SUBL .. PROC _. LITC {ADRMOD=1)
PLIT LITC
1.2.20

May 1979

CREDIT REFERENCE MANUAL

PROC Subroutine start PRQOC

Syntax: Subroutine-identifierL JPROCL_] [formal-parameter] [formal-parameter]

Type: Structure directive.

Description: The PROC directive forms the heading of a subroutine, A maximum of
eight formal parameters may be specified. (ADRMOD=2}.
With ADRMOD=1 the number of formal parameters is limited to 8
bytes. When using literal constants, keytables or format lists as formal
parameter in two byte addressing mode, selected with the LITADR
option, the maximum number of formal parameters is decreased.

1221
May 1979

CREDIT REFERENCE MANUAL

REENTER Reenter REENTER

Syntax: -~ REENTER _ statement-identifier.
Type: Linkage directive.
Description: When using memory management, this directive refers by

means of the statement identifier to a closing routine.

This routing, written by the user, will be executed when it
is impossible to read a code segment in main memory or
from disk.

This directive should be located following the start directive.
Statement-identifier must be declared as ENTRY in the
module it is defined.

1.2.22

May 1979

CREDIT REFERENCE MANUAL

I START l Start Point START

statement-identifier }

Syntax: LISTART ‘{ external-identifier

Type: Linkage directive.

Description: For each terminal class, START indicates the first instruction to be
executed in the program.
This directive should precede the STACK declaration.
The start address has to be specified as an ENTRY in the relevant
module.

1.2.23
May 1979

CREDIT REFERENCE MANUAL

1.3 Data Division

1.3.1 Introduction

The data division contains declarations which define the type, length and value of data
jitems used as operands in the program, together with declarations which define the
interface between the application program and the rest of the PTS System, The use of
directives in the data division is discussed in Section 1.2, The general layout of the data
division is shown below.

There must be one terminal class declaration for each terminal class used by the program.
The terminal class declarations may be made in any sequence, but they must all appear
at the start of the data division.

There must be one begin block declaration for each block identifier specified in the work
block declarations. The begin block declarations may be made in any sequence and must
appear after the last terminal class declaration.

[TERM etc. — Terminal class declaration(s)
CWB etc.
TWB ete.
UWB etc. — Workblock declarations
DW8 etc.
SWB etc.
[DSET] etc. — Data set declarations
[FMTCTL] etc. — Format control {/0O declaration
{START] etc. — Start point declaration
[REENTER] etc. — Reenter point declaration
| STACK etc. - Stack declaration
BLK or DBLK — Begin block or begin dummy block
declaration
BIN etc.
BINI etc.
BCD etc.
BCDl etc. }en — Data item declaration(s)
BOOL etc.
STRG etc.
. STRGI etc.

1.3.2 Termina/ Class Declaration

The TERM dectaration identifies the terminal class with a unique two character task
identifier. 1t is followed immediately by the relevant work block declaration(s), start
point directive, data set declaration(s} and stack declaration.

1.3.3 Work Block Declarations

There may e a maximum of 16 work block declarations in each terminal class. These
declarations refer to the block identifiers specified in the begin block declarations (BLK
or DELK).

131
Mene 1979

CREDIT F

2L AAAN A

[HNs (araﬂon For term:inal work
o1oeks this facility is mere«y a fcrm of

ratl these wori blocks are “overtayed’” or
2riort o1 writing out identical sets of

wory blocks, more than one reference to
giation of @ single work block which ~an be

cae g lerminai-, coimamon-, user-, or swappable

work bice
1 anloch wdeny [ENEVEY
must always 1 the sarne
the samie fernunai class Hus

T OThis rui

1.3.4 &

- ries ora work block deciaration, each dectaration
tive 1o the other work block declarations in
auon Reference Section (1.23.9) for an i'lustration

SWTER and STACK

The DSET de s those darg sets which are 10 pe used in this tarminal
clags, Tne e s optional.

The FMTCTL vecaration :
terminal class.
The START 4
terminal class.
The REENTER girective can bs used with memory management, to refer to a closing
routine winoh wii r zeuted when it is impossible to read a code segment in main

memory o1 iy i

e STACK declaraii
class. The teclaration

es the format control 1O feature will be used in this

v tive indicates the start point for the task({s) associated with this

ifies the size of the stack to be allocated to this terminal
is optonal,

1.3.5 Bequ Biork Geciaration

1.3.5.1 Geneca:

The BLK ¢r DBLK declarauon identifies the work block defined by the data item and
array declaraticns wi: iallow.

Work blocks are used to define areas of mermory which may be used for input/output
buffers and/or work locations. Dumimy work blocks do not occupy memory locations
hut are redefining existing work Sioeks in the same terminal class.

The instruction of s CREDIT program: are held ir as a single memory copy during
execution. However, the rurntrnr (,1 copies of work blocks which exist in memory
depends upon the configuration of the PTS System used by the application. The number
of work blocks needed dep=nds upon the nurrber of wark pasitions and upon the number
of users who will operate these work positions, The work blocks are actually generated
when the application program is 'oaded into core.

They are generatea 0y a part of TOSS System Software, the SYStem LOADing program
(SYSLOD). The use of SYSLOD s d.scussed in part two of this manual.

1.3.5.1 Terminal Work Blocks

One or more terminal work blocks (TWE; may be defined for each terminal class within
a program. A separate copy of the terminal work blocks will exist in memory for each
task activated for a particular terminal class. Each copy may be used only by its associa-
ted task and cannot be used for exchanging data with other tasks.

2y be defined for each terminal ~lass with a
i ed. They may be refer-
ifier is used in the work
i chass. then the tasks belonging to *hese
mon work Diock

= cweratar, 1t may be necessary for the
stion, e.g. cash accumulators, for each

tor one relationship between work positions

zr o:f users as work positions. The users may

are reautred which are associated with
These areas of memory are called user

Te i
v,
wore
One
€ac:
Tasks

STy

HNETRATON

i ditterent olock-identifier, may be defined for

ek it they belong to a terminal class which

3k Bincis, Furthermore, a task may only refer to
s LSE nion specifying the block identifier and
won e pdecin Anoindex identifier is a reference to a decimal
wr o Flerentiate between user work blocks of the

ok tyze may be connected to one task,

e wser workblock type at the same time,

@, 11 15 the responsibility of the application

T which may result from this type of access.

‘oex nferenced by the block identifier,
“wition starts at the beginning of the

fal Claxs, ana continues sequentially.

vne ~f Gata itemns but is restricted to the size of

CREDIT REFERENCE MANUAL

DB1 OBLK

DuU1 B8CD g wetetines BT and BN2

STRU1 STRG i1 redefines 01, D2 and ST1

When data item DU is processed mory iocations for BN1 and BN2 are ised as

of tms sttuauon when data-item BN 1 or

d as binary data item. Dummy
iN, BCD, STRG, BINI, ECDI or
ese data-items as no memaory space is
st the length of each item must be

decimal-data-item. The user must e
BN2Z is processed afterwards, wt
work blocks may centain data-items o tyy @
STRGI. No initial values may be ass:; 5
allocated. For data-items of type o
declared expiicitly.

HES TR

1.3.5.6 Swappable Work Bic: += [SWE;

dent and in use similar to user work blocks. A
swappable work biock type, differen: . 5ot identifiar, is read into memory oniy when
it is attached to a task witi: the USE instrecnon,

One copy of a swappable work bicck iywse Mmay Se present in main memory at the same
time and is allocated to one task as iory ag 11 ¢rays in main memory. However, they can
be used by a multiple of tasks but not simuitanecusly. One area in majin memory is
reserved for each swappable work block type per task.

The swappable work block is set under exclusive access on the diskfile $SWAP. Exclu-
sive access is released when the instruction UNUSE is executed for that particular work
block type. Data which is not frequently used can be stored in these work blocks. A
swappable work biock is rewritten on disk after it is detached from the task, by executing
the UNUSE instruction. The work blocks are copies onto a disk file $SWAP, at system
loading time by the system loading program {SYSLOD).

File $SWAP must be a standard file { 3 type} with record length 400 and blocking
factor 1.

Swappable work blocks are disk ¢

1.3.6 Data Item and Array Leclarations

1.3.6.1 General

These declarations describe the data items and arrays of which the work blocks are
composed.

Data items may be binary coded decimal (BCD), binary (BIN), booiean (BOOL} or
string (STRG). The mnemonics BCD, BIN, BOOL and STRG are known as “dat'a
iten types”. Arrays may be binary coded decimal (BCDI), binary (BINI} or String
(STRGI}. The mnemonics BCOI, BINI and STRG! are known as ““array types”. These
types should be distinguished from the “‘value types’ described below.

Any BIN or BINI declarations must appear at the start of the work block.

1.3.6.2 Data Item Declarations
A data item declaration has the following yenerai format:

oo [BCD U
|dem|ﬂeru{STRG}u data-item-specification
identifieres BIN « {data-item-specification)
TRUE
. e T
identifier «a BOOL w FALSE
F

.34
May 1979

CREDIT REFERENCE MANUAL

Data-item-specification specifies the length, value type and value of the data item. It has
the following generai format in both data item declarations and array declarations:

length [[value-type] {'value’]]
value-type |'value’]

‘value’
where:
Length is a decima! integer indicating the length of the item. it has the following
significance:
BCD and BCD! — Length indicates the number of (4 bit) digits in the data

item.
BIN and BiNi — Length need not be used. |f value-type is W, length mzy only
be 1. If value-type is X or D, length indicates the number
of {4 bit) digits in the data item. if value-type is C, length
indicates the number of {8 bit) 1SO-7 characters in the data
item,
Value-type is one of the characters D, W, X or C, and specifies whether value is to be
stored in memory as decimal (D), binary {W), hexadecimal (X) or string (C).
The following combinations of data item type and vaiue-type are allowed:

BCD and BCD! - Dor X
BIN and BINI — C,D,WorX
STRG and STRGI — CorX
tf value-type is not specified, the following defaults are assumed:
BCD and BCD! - D
BIN and BiN| — w
STRG and STRGI - C
Value specifies the vaiue to be assigned 1o the data item. If value is longer than

the specified length will allow, then:

BCD, BCDJ, BIN and BINI— value is truncated at the left. The least
significant digits are placed in the data item.

STRG and STRGI - value is truncated at the right. The ieftmost characters
in value are placed in the data item.

H value is shorter than the specified length will allow, then:

BCD, BCDY, BIN and BINI — value is right adjusted and zero filled on the
teft.

STRG and 3TRGI — value is lett adjusted and the data item is filled on the
right by repeating the rightmost character of value.

if value is not specified, then:

B8CD, BCDi, BilN and BINt - value is assumed ta be zera.

STRG znc STRGI -- value is assumed to be 1S0O-7 spaces.

Value mus* be written as a decimal number, a hexadecimal integer or a
character string. depending upon value-type, The rules are as follows:

O -- decimat number
X — nexadecimeal integer
W~ decimal numbe:
T ~ cheracter string

1.3.56
May 1979

CREDIT REFERENCE MANUAL

Value will be stored in the data item in the following way:

BCD and BCD! — The digits in value are placed directly in the data item
without conversion. Each digit occupies four bits.

BIN and BINI — If value-type is W, value is converted from decimal to
binary representation and then stored. If value-type is X or D, value is placed in the data
item without conversion. Each digit occupies four bits. If value-type is C,

the 1SO-7 hexadecimal representation of the characters is placed in the data
item. One character occupies eight bits

STRG and STRG! — If value-type is C, the 1SO-7 hexadecimal representa-

tion of the character is placed in the data item. One character occupies eight
bits, if value-type is X, value is placed directly in data item without conversion.
Each digit occupies four bits. .

If length is omitted, the length of tha data item is implied by the specified
value-type and value.

Binary (BIN) data items have a fixed length of one word. For tiis type of
data item length, value-type and value may all be omitted.

1.3.6.3 Array Declarations
An array declaration has the following general formats.

av-identifier U BCDI U {dimension [, dimension]),
array ! STRGI data-item-specification [, ‘'value'] ...
{dimension [,dimension])

array-identifier i BINI Y | data-item-specification] [, 'value']

The use of the data-item specification has been described above. If ther.: are fewer

“values” in data-item-specification than there are data item occurrences in the array,

the last ""value” specified is repeated in the remaining data item occurrences.

If a value is defined, longer than the value defined by the first list element, it is

truncated according to the rules defined in 1.3.6.2.

“dimension” {or the product of the dimensions if there are two) indicates the number

of occurrences of the data item in the array. Each dimension must be a decimal integer.

A maximum of two dimensions is allowed.

When setting an index to refer to an array, the first occurrence in each imension is

always counted as one. For a two dimensional array both indices must lie in the range

1 to 256. A one dimensional array is not restricted in this way.

An initial value may be assigned to an array. This is done by listing, in the array decla-

ration, the values to be assigned to each occurrence. Each value must af pear in quotes

and must be separated from the next value by a comma. For example:

TABLBINI(4,4), "1',"2', "3, ‘4 '5", 6" ‘7", '8, "9, X'A", X'B, X'C', X'D’, X'E",
XFE. X0

The Translator will set these values up in the array row by row from lef- to right, as

follows:

0001 0002 0on3 0004
0005 0006 0007 0008
0009 000A 000B 00oC
000D 000E 000F 0000
1.5.6
May 7973

CREDIT REFERENCE MANUAL

The array will be referenced in the following manner:
TAB (X, Y) has the value 2 (where contents of binary-data-items, X = 1
and Y = 2)
TAB (X, Y) has the value X ‘A’ (where contents of binary-data-items,
X=3and Y =2)

137 Data Items

A data item is the most elementary unit of data that can be used as an operand in a
CREDIT instruction. Data items are defined by data item or array declarations and are
refered to by their data item identifier or array identifier and dimension(s):

Type of declaration Type of reference
data-item-declaration data-item-identifier
array-declaration array-identifier (index-identifier-1

[,index-identifier-21)
In this Manual data items are referred to as ""decimal data items”, "'string data items” etc.
These data items may be defined by either data items or array declarations (except for

boolean):

Type of declaration Type of data item

binary-data-item-declaration binary-data-item
binary-array-declaration
boolean-data-item-declaration boolean-data-item

decimal-data-item-declaration } decimal-data-item

decimal-array-declaration
string-data-item-declaration }
string-array-declaration
Data items which have a special significance in a group of instructions have been given
special names. There are three data items in this category: index, pointer and size.
These names are used in order to simplify the descriptions of these groups of
instructions. However, the data items are held in memory and operated upaon in
exactly the same way as other data items.
An index is used in the |B and PERFI instructions.
It is used in these instructions to select a particular statement identifier or external
identifier from a specified identifier list. Index must always be defined as a binary
data item.
A pointer is used in the COPY, DLETE, EDIT, INSRT, MATCH and XCOPY instructions.
It is used in these instructions to point to an individual character in a data item. Pointer
must always be defined as a binary data item.
A size is used in the COPY, DLETE, INSRT, KI, MATCH, NKI, WRITE, IREAD, IWRITE,
RREAD, RWRITE and READ instructions. It is used in these instructions to indicate the
size of the data item segment upon which the instruction is operating. Size must always be
defined as a hinary data item.

string-data-item

1.3.7
May 1979

CREDIT REFERENCE MANUAL

1.3.8 Work Blocks

For each work block the translator generates a 16 or 256 entry pointer table maximum,
depending on the value assigned to ADRMOD in the OPTNS directive. The entries in
each of these tables point to the non-boolean {i.e. binary, decimal or string) da*a items
and arrays in the associated work block. Each non-boolean data item in a work block
occupies one entry in the pointer table. Each array occupies two entries. The number
of non-boolean data items and array declarations in each work block must be such that
the number of entries in the pointer table does not exceed 16 or 256.

The following combination is possible (ADRMOD=1}:

4 data item declarations — requiring 4 entries
6 array declarations — requiring 12 entries
Total 16 entries

The pointer table is not used for boolean data items, This is because all boolean data
items in a work block are stored in the first word of that block. The maximum number
of boolean data items in a work block is therefore 16.

Memory for non-boolean data items and arrays is allocated in the same sequence as
the corresponding data item and array declarations appear in the CREDIT listing.

An example work block tayout is shown below:

Sequence of data
items and arrays Boolean data items
is the same as
sequence of Binary data item
declarations —
except for Binary data item
boolean data N
items which are
all in the first

word. Binary Binary array
declarations are
always made at
the start of a

work block. Binary data item

String array

Decimal data item
etc.

1.3.8
May 1979

CREDIT RES

FENCE MANUAL

The last data item osclared in a work block may not have a start from a displacement
higher than 32767,

1.3.9 Declararion Reference

This section describes the syntax and use of each declaration. The possible values of
the variables in declarations is given in appendix 1. The notation conventions are
described in section 1.1.5.

1.3.9
Vay 1979

CREDIT REFERENCE MANUAL

BCD

Syntax:
Description:

Example:

Decimal data item [BCD I

data-item-identifier LJ BCD L data-item-specification

Decimal data items are of variable length, varying from 1 to 510 decimal
digits (sign included) and occupying a whole number of bytes,

memory representation:
R BCD 4'-9' X’'D00Y’
S BCD X'BFF40’ X'BFF400’
The sign is the most significant tetrad: D = negative, B = positive

The character 'F’ in the above example denotes a “BCD space””. This
character is treated as zero in arithmetic operations. However, if the
data item is edited and printed, BCD spaces will appear as blarks.
Under certain circumstances BCD spaces are generated by the MOVE
instruction,

1.3.10
July 1978

CREDIT REFERENCE MANUAL

BCD!

Syntax:

Description:

Exampie:

Decimal array BCDI

array-identifier Ly BCDI v {dimension [,dimension}),
data-item-specification [,'value’] - - -

Within the array all elements have a fixed size. The size for decimal
array elements may vary from 1 to 510 digits (sign included). The size
of an element is derived from the first element in the list. A one
dimensional array may contain maximum 32767 elements. A two
dimensional array may vary from 1 to 255 elements per row and 1 to
255 elements per column.

(Maximum 255*225 elements)

When an array is partly initialized, the last defined element will be
copied until all remaining elements are filled.

TAB1 BCDI (25),6D'—94278"

TAB2 BCDI (3),'1,2','3"

TAB3 BCDI (2, 5),6D'0"
1.3.11

May 1979

CREDIT REFERENCE MANUAL

Binary data item

Syntax: data-item-identifier L_j BIN I_] [data-item-specification]

Description: Binary data items are allocated full words and thus have a fixed length
of 16 bits. All binary data items within a block must be deciared before
the decimal and string data items and arrays.

The data item value must be within the range —32768 to 327€7.

Example: memory representation:
A BIN W20 X '0014’
B BIN X'FF’ X ‘00FF*
c BIN 30100’ X 'B100’
D BIN 2C'NO X ‘4E4F'
E BIN X ‘0000
1.3.12

July 1978

CREDIT REFERENCE MANUAL

Syntax:

Description:

Example:

Binary array

array-identifier «sBINI «s {dimension [,dimension])
[,data-item-specification] [,‘value] . . -

Binary array elements are allocated full words and each element has a
fixed length of 16 bits.

The value of an element in the array must be within the range —32768
to 32767.

A one dimensional array may contain maximum 32767 elements. A two
dimensional array can vary from 1 to 255 elements per row and 1 to

255 elements per column. {Maximum 255*255 elements). When an array
is partly initialized, the last defined element will be copied until all
remaining elements are filled.

TAB1 BINI (100),0"
TAB2 BINI (5),'1",72", 3", '4", &’
1.3.13

May 1979

CREDIT REFERENCE MANUAL

Syntax:

Description:

Begin block BLK

block-identifier Lt BLK

Defines the beginning of a work block.

The three leading characters of the block-identifier should be unique
since the identifier is truncated if longer. The block-identifier has to
correspond with the one specified in the work block directive (TWB,
CWB, UWB or SWB).

The begin block declaration must be followed by at least one data
item declaration or array declaration.

1.3.14
May 1979

CREDIT REFERENCE MANUAL

BOOL Boolean data item BOOL

Syntax: TRUE

R . e T
data-item-identifier L1 BOOL [{ EALSE
F

Description: The length of a boolean variable is always one bit. A value may be
declared by selecting one of the foltowing:-
TRUE, T, FALSE or F.
TRUE or T corresponds with “‘1"” and FALSE or F corresponds with
“0”. The default value is always FALSE (zero}.

Booiean variables may not be indexed.

Example: FLAG 800L TRUE

1.3.15
July 1978

CREDIT REFERENCE MANUAL

cwB Common work block CWB

Syntax: L_| CWB | block-identifier

Description: The block-identifier refers to a begin block declaration (BLK). The
three leading characters of the biock identifier must be unique. The
identifier is truncated if longer,

The same block-identifier may be used in different terminal ciasses. If
this is done the comman work block declaration must always occupy
the same position relative to the other work blocks in the same terminal
class.

A common work block is only common for those terminal classes in
which it is defined,

Example: Legal: Itiegal:
TERM AD TERM AQ
CWB A CWB A
TWB B TWB B
UWB C UwWB C
TERM BO TERM BO
CWB A TWB D
TWB D UWB E
UWB E cwe A

1.3.16

July 1978

CREDIT REFERENCE MANUAL

Syntax:

Description:

Begin dummy block DBLK

Block-identifier u DBLK

Defines the beginning of a dummy work biock. The three leading
characters of the block-identifier should be unique since the identifier
is truncated if longer, The block-identifier has to correspond with the
one defined in the DWB directive. (block-identifier-1).

This begin dummy block declaration must be followed by at least
one data item declaration or array declaration. It serves to declare a
redefinition of a work block.

1.317
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Description:

Example:

TOSS Device type:

CR
DC
DG
Dl

DL
DN
DYy
GP

Data Set DSET

data-set-identifier « DSET w FC = file-code
[, BUFL = decimal-integer]
[, DEV = device-type;
[, BUFDS = data-set-identifier]

A data set is an /O device. Particular data sets may only be accessed
from a task if the task belongs to a terminal class containing a DSET
declaration for that data set.

The same dataset declaration may be used in different terminal
classes. If this is done, the dataset declaration must always occupy
the same position relative to the other dataset declarations in

all terminal classes in which it is used.

The keyword parameters FC, BUFL and DEV may be written in
any sequence. They have the following significance:

BUFL Buffer length. If this parameter is present
a fixed buffer is allocated.
The parameter value is a decimal integer
giving the length in characters.

BUFDS Buffer data set. {f this parameter is present,
the preceding buffer length (BUFL) will be
shared with the data set buffer indicated by
the data-set-idientifier after BUFDS. The
buffer size must be smaller than the shared

buffer.

DEV Device type. Parameter value consists of two
letters (see following device type list).

FC TOSS file code. Parameter value consists of
two hexadecimal digits (see following file
code list).

Any unrecognized keywords are ignored.

PRT - DSET FC =40, DEV = LP, BUFL =120

OWNER DSET FC =32, DEV =TV, BUFL = 100

SHARE DSET FC =31, DEV = TR, BUFL = 36,

BUFDS = QWNER
Meaning:
Card Reader
Data Communication
Graphic display
Indicator disptay
Logical disk file
Numeric display
Alphanumeric display {VDU)
General printer

1.3.18
July 1978

CREDIT REFERENCE MANUAL

Continued

TOSS Device type: Meaning:
i Intertask input
1O Intertask output
KA Alphanumeric keyboard
Kl Keyboard indicators
KN Numeric keyboard
LP Line Printer
MT Magnetic Tape (1/2 inch)
Si System Operator’s panel Switches
SO System Operator’s panel lamps
TK Cassette Tape
TS Tefler terminal printer :
Journal print station
TR Teller terminal printer :
Tally roll print station
TV Teller terminal printer :
Voucher print station
™ Typewriter
Recommended TOSS File codes : Meaning:
{hexadecimal}
10 System operator panel-in.
1 System operator panel-out.
12 Cassette recarder nr, 1
13 Cassette recorder nr. 2
15 Remote line test
20 Keyboard
25 Reserved for future use.
30 General Printer.
30, 31, 32 Teller printer (TJ, TV, TR)
40 Signal display
41 Numeric display
50 Character display
60 Data communication
70 Magnetic tape
80 Line printer
90 Card reader
AQ, BO-B3, B6 Reserved for future use
CO—CF Data management disk files
DO Inter task communication-input
D1 Inter task communication-output
FO-FB Reserved for system
FC—FF Reserved for user
1.3.19

May 1979

CREDIT REFERENCE MANUAL

Syntax:

Description:

Example 1:

Example 2:

Dummy work block E’ WB

U DWB u block-identifier-1{block-identifier-2)

Block-identifier-1 refers to the begin dummy block declaration
(DBLK}, where block-identifier-2 refers to a work block declared
in the same terminal class, which will be redefined.

The three leading characters of both block identifiers must be
unique. The identifiers are truncated if longer. The same block-
identifier-1 may be used in different terminai classes. 1 this is
done the dummy work blocic declaration must always occupy
the same position relative to the other work blocks in the same
terminal class.

TW8 181
DWB DB1(TBMN

TB1 BLK

DB1 DBLK

Legal
TERM A0
TWB TB1
TWB TB2
DWB DB2 (TB1)

TERM BO

TWB TB1

TWB TB4

bwB DB2 (TB1)

Hegal

TERM AO

TWB TB1

TWB TB2

DWB DB2 (T81)

TERM BO

TWB TB1

DWB DB2 (TB1)
TWB TB3

1.3.20
July 1978

CREDIT REFERENCE MANUAL

FMTCTL

Syntax:

Description:

Example:

Format control 1/0 FMTCTL

INDS=data-set-identifier,
OUTDS=data-set-identifier

OUTDS=data-set-identifier,
INDS=data-set-identifier

w FMTCTLY

A format control 1/0 declaration, must follow the data set
declarations immediately.

It specifies that this terminal class will use the format contro!
1/0O feature.

Data-set-identifier atter INDS specifies the input device and after
OUTDS the output device, used for format controlled 1/0,
FMTCTL and referenced data sets must be in the same termiral
class.

DSKB DSET FC =20, DEV =KB

DSDY DSET FC =50, DEV = DY, BUFL =90

DSGP DSET FC =30, DEV =GP, BUFL =90
FMTCTL INDS = DSKB, QUTDS = DSDY

CREDIT REFERENCE MANUAL

STACK Stack STACK l

Syntax: LI STACK L_j size

Description: Allocates a user memory stack,
Size is a decimal integer indicating the size of the stack in bytes. If the
stack declaration is omitted a default stack size of 128 bytes is aliocated.
This declaration should occur after the START or REENTER declara-
tion.

1.3.22
May 1979

CREDIT REFERENCE MANUAL

STRG String data item STRG

Syntax: data-item-identifier Ll STRG | data-item-specification

Description: Strings are of variable length and occupy a whole number of characters.
The length varies from 1 to 4095 characters.

Example: memory representation:
ALL STRG 7'HEADING’ X'48454144494E47'
BTA STRG 8X'42455441" X'42455441
BET STRG 4'BETA’ X’'42455441"
F1 STRG 5C’AB’ X'4142424242’
F2 STRG 5C'ABCDEF’ X'4142434445’
1.3.23

July 1878

CREDIT REFERENCE MANUAL

STRGI

Syntax:

Description:

Example:

String array STRGI

array-identifier L1 STRGI [{dimension [,dimension])
,data-item-specification [,‘vatue’]

Within an array all elements have a fixed size. The size for a string array
element may vary from 1 to 4095 bytes. The size of an element is
derived from the first element in the list. A one dimensional array may
contain maximum 32767 elements. A two dimensional array may vary
from 1 to 255 elements per row and 1 to 255 elements per column.
{Maximum 255%255 elements). When an array is partly initialized, the
last element will be copied until all remaining elements are filled.

TAB1 STRGI (10, 10}, 32C" '
TAB2 STRGI {10).40C
1.3.24

May 1979

CREDIT REFERENCE MANLIAL

Syntac:

Description:

Example:

Swappable Warkblock

s SW8B s block-identifier.

The block-identifier refers to a begin block declaration (BLK). The
three leading characters of the block-identifier must be unique. The
identifier is truncated if longer.

The same block-identifier may be used in different terminal classes. |f
this is done the swappable workblock declaration must always occupy
the same position relative to the other workblocks in the same terminal
class.

A task can only access a swappable work block after the USE instruction
has been executed by that task. {t can be detached from the task by
executing the UNUSE instruction.

Legai: Iliegal:
TERM AC TERM ACQ
CWB A cwe A
TWB B TWB B
uws C uws C
SWB D SWB D a—
TERM BO TERM BO
CWB E CWB E
TWB F TWB F
TWB G Swe D =-—
SWB D TWB H
7.3.25

May 1979

CREDIT REFERENCE MANUAL

TERM Terminal class i TERM l

Syntax: s TERM _, task-identifier

Description: This declaration followed by a maximum of 15 work hlock declarations
describes aclass of terminal.
The task identifier must consist of a letter followed by a digit or a
fetter.
Note: Task identifier is the same as the task identifier specified at
system loading time. (SYSLOD)

1.3.26
May 1879

CREDIT REFERENCE MANUAL

Terminal work block TWB

Syntax: L1 TWB L] biock-identifier

Description: The biock-identifier refers to a begin block declaration (BLK). The three
leading characters of the biock identifier must be unigue. The
identifier is truncated if longer.
The same block-identifier may be used in different terminal classes. (f
this is done the terminal work block declaration must always occupy
the same position relative to the other work blocks in the same terminal

class.

Example: Legal: Illegal:
TERM AOQ TERM AO
CWB A CWB A
TWB B TWB B
UWB C uwB C
TERM BO TERM BO
CWB D cwB D
TWB B UWB E
UWB E TWB B

1.3.27
May 1979

CREDIT REFERENCE MANUAL

UWB

Syntax:

Description:

Example:

User work black uwe

L UWB LI block-identifier

The block-identifier refers to a begin block declaration (BLK). The
three leading characters of the block identifier must be unique. The
identifier is truncated if longer.

The same block-identifier may be used in different terminal classes.

If this is done the user work block declaration must always occupy the
same position relative to the other work blocks in the same terminal
class.

A task may only access a user work block after a USE instruction

has been executed by that task. It can be detached from the

current task by executing the UNUSE instruction.

Legal: llegal:
TERM AQ TERM AD
CwB A CWB A
TWB B TWB B
UWB C UwB C
TERM BO TERMBO
cwB D CwB D
TWBE UWB C
uwB C TWB E
1.3.28

May 1979

CREDIT REFERENCE MANUAL

14 Procedure Divisicn
1.4.1 Introduction

The procedure division contains the instructions which direct the input, processing
and output of data. It also contains some declarations which must be used in
conjunction with certain instructions. The use of directives in the procedure division
is discussed in Section 1.2. The general layout of the procedure division is shown
below.

The ENTRY and EXT directives (if present} must be the first statements in the proce-
dure division. Either ENTRY or EXT may be written first. The EQU directive may
occur anywhere in the procedure division, after the ENTRY and EXT directives. The
procedure division continues with the remaining instructions and declarations written
in a sequence dictated by the programmer.

Subroutines (enclosed in PROC and PEND directives} may appear anywhere in the
remainder of the procedure division, It is often desirable to make the whole of one
module a subroutine. This is achieved simply by making the PROC directive the first
statement after the ENTRY/EXT/EQU cluster and by making the PEND directive
the last statement before the END directive.

[ENTRY etcl — Entry point directive(s)
[EXT etc] — External reference directive(s)
[EQU etc] — Equate directive(s)

Instructions/Declarations in any sequence

PROC — Subroutine start directive
Instructions/Declarations in any sequence

PEND — Subroutine end directive

14.2 Instructions
1.4.2.1 General

The general format of an instruction is:

[staterient-tdentifier] _ instruction-mnemonic i_) [operand] [,operand]

The “instruction-mnemonic’’ specifies the basic operation to be performed by the
instruction, This mnemonic may be followed by one or more ""‘operands”’. These
operands have a different significance for each instruction. The operands of a

partic instruction are often referred to as operand-1, operand-2 etc. The leftmost
operar an ingtructiorn is counted as one.

14.1
Mav 1979

CREDIT REFERENCE MANUAL

1.4.2.2 Arithmetic Instructions
These instructions are:

Mnemonics Significance
ADD Add
CMP Compare
Div Divide
DVR Divide rounded
MOVE Move (conversions)
MUL Multiply
SUB Subtract

With the exception of MOVE all arithmetic instructions must operate on data items of
the same type. That is, the operands must both be binary, decimal or string.

The MOVE and CMP instructions may operate on binary, decimal or string data items.
The remaining arithmetic instructions operate on binary or decimal data items only.

The format of an arithmetic instruction cansists of an operation code followed by two

operands.

1.4.2.3 Branch Instructions
These instructions are:

Mnemonics Significance
CB Compare and branch
18 Indexed branch
LB tong branch
SB Short branch {within 255 bytes)
B Test and branch {Boolean data-items)

All branch instructions, except 1B, contain a condition mask. This is an integer ranging
from O to 7 inclusive. If the condition mask corresponds with the contents of the condition
register the branch instruction is obeyed. Otherwise the instruction following the branch

is executed.

In some branch instructions the condition mask is inciuded in the mnemonic as e.g.
branch on equal (BE), branch on OK (BOK} or branch on error {BERR). The transiator
will decide if this is going to be a short branch or tong branch,

Mnemonics Significance
B Branch
BBEOD Branch on begin/end device
BE Branch on equal
BEOF Branch on end of file
BERR Branch on error
BG Branch on greater
BL Branch on less
BN Branch on negative
BNE Branch on not equal

1.4.2
May 1979

CREDIT REFERENCE MANUAL

Mnemonics Significance
BNEOF Branch on no end of file
BNERR Branch on no error
BNG Branch on not greater
BNL Branch on not less
BNN Branch on not negative
BNOK Branch on not OK
BNP Branch on not positive
BNZ Branch on not zero
BOFL Branch on overflow
BOK Branch on OK
BP Branch on positive
B8Z Branch on zero
CBE Compare and branch on equal
CBG Compare and branch on greater
CBL Compare and branch on less
CBNE Compare and branch on not equal
CBNG Compare and branch aon not greater
CBNL Compare and branch on not less
TBF Test and branch on faise
TBT Test and branch on true

The condition register is a twao bit register which is automatically set during the execution
of certain instructions. It may contain an abbreviated status code, the previous value of a

boolean data item or the result of a compare instruction. The condition register is used by
the following instructions:

Contents of condition register: Instructions which set the condition register:

Abbreviated status code ADD, INSRT, MATCH, SUB, USE, MUL, DIV,
DVR and all 1/0 instructions

Previous value Ail logical instructions

Result of comparison CMP, CB, TB and TEST

The CB and TB instructions are the only branch instructions which actually set the
condition register,

The function of branch instructions is to control the instruction execution sequence by
updating the program pointer (PP}. During the execution of a CREDIT program the
program pointer holds the address of the next interpretive instruction to be executed.
The SB, CB and TB may branch forwards or backwards up to 255 bytes. The LB and B
instructions may branch forwards or backwards any number of bytes within addressable
memory.

tn the virtual memory system, each segment will contain a long branch table. Each
table may contain up to 255 entries.

1.4.2.4 Input/Qutput Instructions
These instructions are:
Mnemonics Significance
ABORT Abort |/0 operation
ASSIGN Assign a data file
1.4.3

May 1979

CREDIT REFERENCE MANUAL

Mnemonics Significance
ABORT Abort 1/O operation
ASSIGN Assign a data file
DSCO Data set control zero
DSC1 Data set control one
DSC2 Data set control two
EDWRT Edit and write
1ASSIGN Assign an index file
HINS Indexed insert
IREAD Indexed random read
IWRITE Indexed rewrite

K1 Keyboard input
MWAIT Mudtiple wait

NKI Numeric keyboard irput
READ Read

RREAD Random read
RWRITE Random write
TESTIO Test completion 1/0
WRITE Write

WAIT Wait

XSTAT Extended status transfer

1/0 instructions operate upon data sets. These are referred to by using the data set
identifiers included in the DSET declarations.

Unless the “'no wait” option is specified in an 1/0 instruction, execution of the task
will be suspended during each 1/0 operation and will not be re-started until the 1/0
operation is complete. The “'no wait* option is specified by including .NW in the

1/0 instruction.

This results in the 1/0 being started and the task being put directly into the dispatcher
queue. While 1/0 is being performed, the task may gain control, When the task reaches
a stage at which further processing is impossible untii the /O is completed, it can
request that execution be suspended by executing the WAIT instruction.

Unless the “no echo” option is specified in a keyboard input instruction (K1, NK1), the
input data will be echoed on the associated echo device. The echo device associated with
each keyboard is specified when the TOSS Monitor is generated. !t may be a Visual
Display Unit, a Plasma Display Unit, a Numeric and Signal Display Unit or a General .
Terminal Printer. The “‘no echo” option is specified by including .NE in the instruction.

If the EDWRT instruction is used the associated DSET declaration must specify a buffer
length. This is because this instruction edits directly into a buffer specified by the CREDIT
Translator. The keyboard input instructions (K|, NKI} and the READ and WRITE
instructions use buffers specified by the CREDIT programmer in the appropriate work
blocks.

During the 1/0 operation a device dependent status code is generated {known as the
extended status code}. The TOSS Monitor then generates an abbreviated status code which
it places in the condition register. This status code summarises the conditions indicated by
the extended status code. The abbreviated status code is generated in the following way.

1.4.4
May 1979

WENUAL

CREDIT REFERINCE

The extended status code is compared with the mask X’EBDF'. if there are any coirespon-
ding bits set to 1" in hath words then the value 2 (error) is placed in the conc:tion register.
H none of the '1” bits matches then the extended status code is compared with the mask
X'0420°, it any 17 bits match then the vaiue 3 (begin or end of device} is 2'1ced in the
condition register | there is stil! no match then the extended status register is compared
with the mask X’1000°. If the ‘1’ bit matches then the value 1 (end of file} is placed in
the condition regisier.

Since the sum of all the masks is 'FCFF’, two bits are not checked. These may be

checked by the CREDIT programmer if necessary.

An extended status code may be obtained by the CREDIT program via the XSTAT
instruction. The extended status code for each type of data set is described in

appendix 2.

Data set control {rewind of tape, grasp action of Teller Terminal, switching indicator
lights ete} is achieved by the data set control instructions (DSCO, DSC1, DSC2).

1.4.25 Logicai lustructions

These instructions are-

Mnemonic Significance
CLEAR Clear {Reset)

INV invert

SET Set

TEST Test boolean

Logical instructions operate upon boolean data items. At the completion of a logical
instruction the condition register is set at the previous value of the boolean data item.

Each togical instruction occugies two bytes of core. The first byte contains the operation
code and the second byte is a reference to the boolean data item.
1.4.2.6 Scheduling lustructions

These instructions are:

I—— Mncrnonic Significance
; ACTV Activate an other task
FOEXIT Terminate a task
l DELAY Delay task execution
H GETID Get task identifier
[PAUSE Inhibit a task
H R3TRT Restart paused task
SWITCH Switch control to another task

te or restart a task in a different terminal
ninat: the current task (PAUSE, EXIT),

1085 Monitor. The task identifier of each active task
12, Thisis a “first in first out’” queue of tasks awaiting
axecuizd task cannot proceed, for any reason, the
it the next task in the dispatcher queue.

Schegui
cfass {A

ng e
TV
“hedono s
is el s
exenution
T«

Ali

145
May 1879

CREDIT REFERENCE MANUAL

If an executing task performs an EXiT instruction, the TOSS Monitor will de-
activate the task. That is, execution wi‘t be ierminated and ail records of the rask
in the TOSS Monitor will be deteted. & ask may be re-sctivated by a task

in the same or another terminai ciass wh forms an ACTV instruction fcr the
de-activated task. The task wiil then be irimaiised and reinsarted in the dispat:her
queue,

ctior, the TOSS Monitor will place the
o the task witt cease and its task identifier

H an executing task performs a PAUSE
task in a "'pending’’ state. That is,
will not be entered in the dispaicher sue, However, ali registers will be saved.
Such a task may be restarted by ¢ 1 e si terminal class which
performs a RSTRT instruction for the punding 13 will then be reinserted
in the dispatcher queue.

The difference between the PAUSE and EX!7 | s is that after a PAUSE the
task remains active {and therefore cannot be s an ACTV instruction),
whereas after an EXIT instruction the task brcomss inechive

1.4,2.7 Storage control instruction
These instructions are:

Mnemonic Significance
USE Attach User of Swappable work block
UNUSE Detach User or Swanpable work block

With the USE instruction a user work block or swappable work biock can be attached
to the current task. A swappable work block wifl be loaded into main memory, from
disc. Execution of the UNUSE instruction results in a detaching cf a user work block
or swappable work block from the current task. The swappabie work block will be
rewritten on disk.

1.4.2.8 String Instructions
These instructions are:

Mnemonic Significance
COPY Copy

DLETE Delete

EDIT Edit buffer

EDSUB Edit substring

INSRT fnsert

MATCH Match

XCOPY Extended copy

The string instructions are used to manipulate string data items. The COPY and XCOPY
instructions may also be used with decima! data items.

String instructions occupy from three to seven bytes of core,

1.4.6
May 1679

CREDIT REFERENCE MANUAL

1.4.2.9 Subroutine Cortrol Instructions

These instructions are:

Mnemonic Significance
CALL Call assembler subroutine
PERF Call CREDIT subrcutine
PERFI(indexed perform

RET Return from subroutine

They are used ta transfer control to and from subroutines written in CR_EDIT or
Assembier. PERF!{, PERF and RET may be used with CREDIT subroutines only.
CALL may be used with Assembler subroutines only.

1.4.2.10 Format control 1/0 instructions
These instructions are shown in the table below?

Instruction Mnemonic Use
ATTEMT Attach a format list.
DETFMT Detach format list.
h—ﬂD;éP LAY o Display a format list on the screen.
’—_[;UPL. Duplicate a data-item.
DYK;i T Input from the device, present in
the FMTCTL deciaration.
EDFLD Edit input field.
ERASE o Erase on the screen.
»_‘GETABX o Get current input field number.
GETCTL Get controt value (MINL, MAXL
etc.)
. GETFLD Get field makes input field current.
PRINT o l;f};\t’forrnat fist on output device.

SETCUR Position cursor at 1st character
position of inpet field,

THOWME, TEWD, TBWD,
FOHT, THEFT TUP Tabutation

S TLBOWN

Test control tHag (ME, NEG! ete.).

Updare fieid.

id47
Mav 1879

CREDIT REFERENCE MANUAL

They operate on input fields and corresponding tems defined 1n a format ‘ist
which is made current by the attach formau instroction. Some of these instruct-ons
such as PRINT, DISPLAY, OYKI, EDF LD apersie on ata sets which are defined as
input and output device in the format control /0 decxardt:o‘ (FMTCTL), in the data
division (see 1.3.9).

The tabulation functions THOME, TFWD "8WD, TRIGHT, TLEFT, TUP, TDOWN
and TLDOWN serve for moving the cursor 1 the ditterent FK!-input fields of the
current format list.

Aadressing of the desired input field is always relative 10 the current input fieic An
exception is THOME, which will always tabu!ate o the first FKl-input field of the
current format list.

These tabulation functions require 2t ieast one FKI-input field to be present in the
current format list.

1.4.3 Declarations

1.4.3.1 Format lists

A FRMT declaration followed by a selection of the remaining format list declarations
and ending in a FMEND declaration is known as a format list. Two possibilities are
available when using the format lists.

a) The first possibility is that lines and keyed in data are displayed or printed
by using the instructions EDWRT, EDIT and WRITE.

In a format list is specified in which way an {/O buffer has to be edited.
Format list declarations which may be used are:

Mnemonics
FB, FBN, FBNN, Format branch on condition
FBNP, FBNZ, FBP,
FBF, FBT, FBZ
FCOPY Format copy
FCcw Format control word
FEOR Format end of record
FiLLR Fill repeat
FLINK Format link
FMEL Fo'rmat elernent according picture
FMELI string
FMEND Format end
FNL Format new line
FRMT -Format start
FSL Format start line
FTAB Format tabulation
FTEXT Format immediate text

1.4.8
May 1979

CREDIT REFEREMCE MANUAL

An example of a format list is shown below:

tdentifier Declaration Explanation
FORM? FRMT Begin format list FORM1.
FILLR w "uw’ 2 Spaces are inserted in columns

1 and 2 of the buiter,

FCOPY (| = C'TERMINAL’ The characters TERMINAL are
inserted in columns 3 to 10 of

the buffer.
FMEL w '99, The contents of data item TER1
TERM are edited into the buffer according

to the picture 99,

FLINK w SUBF1 The contents of format list SUBF1 are used
as if they were part of this format list. Editing
starts at the current position in the buffer.

FMEND End format list FORM1.

The above format list when used in an EDIT or EDWRT instruction would
resuit in a buffer containing the following:

o TERMINALNN etc
where NN is the value from the data item TERM.

A pointer is maintained during the editing process which points to the buffer
column into which edited data is currently being written. in the above example
this pointer would have had an initial value of 1. After the FILLR declaration it
would have had a value of 3. After the FMEL declaration it would have had a
value of 11 and s0 on. If necessary, this pointer can be moved backwards or
forwards through the buffer by the FTAB declaration.

As shown in the above example the FLINK declaration may be used to nest
format lists and thus avoid rewriting the same sequence of declarations a
number of times.

b} The second passibility is for one format list to describe a whole transaction
layout on the screen and data which is being keyed in to be displayed on the
current input field. A current input field always uses a data-item to contain
the data disblayed. It is now possible to display all the prompts on the screen
{Background!} with one instruction, These format lists may also be used by
screen management (see appendix 7). With format control /O instructions
it is possible tor keyed-in data to be displayed on the corresponding input
field on the screen. Also data received from a disk or via o data communicaticn
line can be displayed on the desired input field on the screen.

i4.9
May 1979

CREDIT REFERENCE MANUAL

NAME: input field 1
STREET: _input field 2
TOWN: input field 3
input field 4
——)
[—
PROMPTS input fields
{Background) {Foreground)

Each input field is described, with its options, in the format list by the format
list declarations format input (FINP) and format keyboard input (FKi}.

As different transactions have a different layout on the screen or on the

print device, each transaction can be defined complete in a format list.

Only one format list (transaction) can be current for one task. A format

list is made “"current’’ by the Attach Format instruction (ATTFMT). Initially,
after an attach format, none of the input fields is current. When a format list
{transaction) is attached, it is possible to make one of the input fields

current for receiving data. Only one input field may be current at a time.

An input field can be made current by using one of the format contro!
instructions such as get field (GETFLD) and the tabulation instructions
THOME, TFWD, TBWD, TRIGHT, TLEFT, TUP, TDOWN and TLDOWN,

Twao types of input fields are defined:
— aninput field which is used to receive data from a device {except keyboard)

or data item (Messages}. The input field is described by the FINP declaration
in the format list.

— aninput field which is supposed to receive data from a keyboard.

The input field is described by the FKI declaration in the format

list.
These input field declarations must be foliowed directly by a FMEL or FCOPY
format list declaration.
FMEL and FCOPY refer to decimal and string data items respectively in which
the data for the input field is stored.

All input fields are referenced in the sequence as they appear in the format list.

_
FRMT
FKI mn NAME: 1)
FKE ... (2) STREET: 2
FINP {3)
CODE: L3
FKl ..., (4)
|FMEND TOWN: . S

14.10
May 1979

CREDIT REFERENCE MANUAL

The numbering of the input fields as shown above can be selected by the

user in the format control instructions e.g. GETF LD when control value 2

is specified. X

To select the field sequence numbering of only FKi-fields or oniy FINP-fieids
‘the user has to specify the GETFLD instruction control value as zero for
FKI-input fields and one for FINP-input fields.

Sequence numbering of FKl-input fields only:

[FRMT
PRI ()
PRI L (2) NAME: '
FINP ... STREET: 2
FKI .. (3) CODE:
FMEND Town: 3
Sequence numbering for FINP-input fields only:
[FRMT
PRI L
: NAME: o
FKI ... (1
: STREET: 3
FINE ...
CODE: L
FMEND
TOWN: | B

With the PRINT instruction a hard copy is produced on the printer

(TTP or GTP) from the current format list.

When using format control 1/0 instructions, some rules have to be followed

for using the format list.

1. The first line on the output medium must be defined in the format
list by the FSL format list declaration and subsequent lines by the
FNL format list declaration.

2. Data items containing variables for conditional editing in the format
branch on condition declarations (FBP, FBZ etc.), may not be
altered while the concerned format list is current.

3. A format list must contain at least one input field (FKI or FINP
field).

However, the tabulation functions THOME, FFWD, TBWD, TRIGHT,

TLEFT, TUP, TDOWN and TLDOWN require at least ane FKI-field.

1.4.11
May 1979

CREDIT REFERENCE MANUAL

1.4.3.2

4. The format tist declarations FOW and FEOR may only be present
when immediater, suiceedzd by & FSL or FNL format list
declaration.

5. Formal parameters are 1.0 aifowed in {ormat lists which are using
the format controt 10 nateuctions,

1 dlata must be entered. These
sth the Most Enter (ME) bit set.
field t car result in a condition
ruction with indication

Compulsory input fields, wie fiuld
fields are defined in the F
When no data is entered 3 sucih an f
register se*ting for the next axecuf
"computsory input fieic’

Data is not directly ¢ritered 10 the dera-item, iuiowing the FKI-input

field description. The DYKl-instruction v il read cata from the input device,
defined in the FMTCTL declaration, and store in its own buffer. The data is
echoed on the echo device, but not edited. To cet the data in an edited format
on the output device {c.q. screen’ it has to be moved to the data-itein of the
current input field.

The UPDFLD instruction moves the contents of the input buffer (DYKI) to
the data-item of the current input fieid and redisplays with editing, if so
required.

When the name of the date-item of the current input tield is unknown, a
reserved name, ' FMTITEM, iz used to access this data-item. In this way data
may be moved from the mnput buffer {DYKij (¢ the data item of the current
input field.

Example: MOVE L : FMTITEM, SPINPUT

(SPINPUT is the buffer present in the DYKI instruction). The other way
round is also ailowed, e.g. MOVE L FIELD, :FMTITEM.

EDFLD instruction aiso uses its uwn butter 1o update and echo it. Buffer
handling is similar to the DYK1 instruction.

To display the contents of the input i:eids belonging to data items, the
DISPLAY instruction is used, which does not update the data items.

With the DUPL instruction, the contents of the data item mentioned in

the DUPL option of the FKl-input field description, is moved to the data
item mentioned in the DUPL instruction. When this data item happens to
be a data-item of a current input field, it is not directly displayed, but must
be displayed with the DISPLAY instruction.

Key Table Declarazion

This declaration is KTAB. tt is used to define a list of keyboard input termination
characters. These characters are used to detect an end of message during a keyboard input

- operation. KTAB is used in conjunction with the keyboerd input instructions Ki, NKI
and DYKI.

1412
M. 1079

JOE AANUAL

1,4.3.3 Parameter derc ration

This deciaration is FLIST. it is used to specify parameters to be passed to a subroutine
when it is calied wit the PERFI instruction, It is recommended, not to use tie CON
directive since this directive does not support passing parameters (e.g. literal constants,
format iists, key tabies) in virtual systems or when ADRMOD=2. A PLIST dir
oniy be usea followne & PERF| instruction.

1.4.4 Subroistine hanaling

1440 UREDIT subroutines

CREDIT subroutmes start with a PROC directive which may be followed by up to eight
formai parameters. This number depends on the addressing mode. When ADRMOD=2,
two byte adriressing mode, maximum 8 formal parameters are allowed. (See OPTNS
directive}, Whor ADRMOD =1, one byte addressing mode, maximum 8 bytes are avaiisle
for formai ers. I this case the maximum number of formal parameters depe.” -
on the value :2 LiTADR. When LITADR=1111, maximum 8 formal parameters are
allowed. When & formal parameter is using 2 byte addressing, selected with the LITADK
option, this parameter wili use 2 bytes of the maximum available 8 bytes and decreases
the number of formal parameters allowed.

The num? al carameters passed to the subroutine must be the same as the
number of form rarneters in the PROC directive, Actual and formal parameters are
used 1o pass var subroutine and to store results generated by the subroutine.
The variabies are specifiad as actual parameters in a PERF instruction or PLIST directive.
The format ot each variable is described in a formal parameter in the PROC directive

of the subroutine being called. Actual parameters are operated upon within the sub-
routine repiacing the corresponding positional formal parameters in the instruction
operands. The following list shows tne types of data that can be specified as actual
parameters and shows tne carresponding types of formal parameter which must appeci
in the PRGC directive.

%

Actual parameter Formal parameter
array-identifier identifier ()
[index-identifier-1; lidentifier]
[index-identifier 2; lidentifier]
data-set-identifier identifier
formad-list-identifier identifierl$identifier
format-tanie-idenufier identifier { M $identifier {)
key-table-identifier identifier!Sidentifier
literal constant identifier!$identifier

of the formal parameters two byte addressing is used, the PROC

wed by PFRMT, PKTAB or PLIT directive, even when the other
i tweee pyie addressing. PFRMT must always be used when a for-

el as parameter.

vt it the tormal parameter indicates a parameter type literal

< as tirst symbol, the type must be specified by using
T direciive, alsc in one byte addressing mode.

7413
Wy 1979

CREDIT REFERENCE MANUAL

Exampie:
OPTNS LITADR = 1111
SUB1 PROC FORM1, LITC, KTB1, DAT!
PKTAB KTB1
PFRMT FORM1
PLIT LITC
PEND
SUB2 PROC FTagl i
PFRMT FTABIL
As actual parameters may be passed:
— keytables
— format lists

— format tabies

— literal constant {except type ‘X’)

~— single data items

— one or two dimensional arrays

~— data sets

When a PERF or PERFI instruction is executed the program pointer is adjusted to point
to the instruction following the PERF/PERFI and is then saved on a stack. The program
pointer is set to the first instruction of the subroutine.

When a RET instruction is executed the saved program pointer is restored and execution
is continued at the instruction following the PERT or PERFI.

1.4.4.2 Assembler Subroutines

Assembler subroutines are called by the CALL instruction. [t is the responsibility of the
Assembier program to ensure that the program pointer is correctly stepped past any actual
parameters before control is handed back to the CREDIT module. The program pointer

is held in register A12. In virtual systems it is not possible to transfer parameters to
assembler subroutines, except when the parameter list is picked up by the assembler
routine before executing the first 1/O instruction.

A number of Assembler routines are available to assist the Assembler programmer in
obtaining parameter values, updating the program pointer and returning to the CREDIT
module. They are I:1EVAQ, LEVAT1, LLEVA3; I:1EVAS, I:1EVA7;1:RT1and T:FDSP.

Routine I:EVAQ is used to obtain the address of a data-item, array data-item
ar formal parameter

Routine ':EVAT is used to obtain the address of a literal parameter or formal
parameter

Routine I:EVA3 is used to obtain the address of a picture string or formal
parameter

Routine I:EVAB is used to obtain the address of a format list parameter or formal
parameter

Routine 1:EVAT is used to obtain the address of a key table parameter or formal
parameter

1.4.14
May 1979

CREDIT Fiu 7L Bife & A

=3 routines are:
o liters! tyoe in the right byte in bits 10 and 11.
string, 2 indicatas binary and 3 indicates decimal.

The return v

Register A3 -

= data or literal end address.

Contains the data item or literal start address.
eon A5 and AQ s the length of the data ttem, literal, picture

The contenes of the registers Ad, A6, A7 and AB are not affected
wi avaitabie for the user. The routines update the program pointer
in the foliown iy

g her

1 for data iterns anG iterals, 2 or 3 {or arrays.

Routine FDSE obtain data set parameters. The return values from
this routine are

A8 srent coatiol block adedress.

A7 vait bl in bit zero and the echo bit in bit one.

L A3, A0 snd A1 are not affected by the routine,
2 program pointer is updated.

ramoters, e, a value, the following sequence of instructions

Registers At
and availabie
To abtain nior
is recommen

The routine 1RT 1 is
LEVAQ LEVAT,
tion, using A14 sy stook

14 oang A LE ust aot be changed in an assembier subroutine.
garu assemibder subroutines are held in the System library
wrn CREDIT programs. They are described in appendix 4.

E£VA7 and T:FDSP are called via the CF instruc-
The routing L.RT 1T, 1s called via the ABL instruction.

oiter

Registers A

Note: A number o+

and may be talied

1.4.5 Artach.Derscn a Jevice/file

When a task wants to hawe exclusive access to a device or file, and locking out all other
tasks from [/Q) ai tnis device/file, the task has to execute an attach device instruction
(DSC1, control cade). A time out value in multiples of 100 msec, must be speci-
fied for gach avtach i he monitor for supervising all attach requests and prevent
{dead) fock situatio ol code X'0OB'). Time out value may be set to zero,
then contrel § 1 v 10 the task which issued the request, with an indication
starus cade whether the device of file is attached or not,

i a data-file to a task. If index files are assigned
thed too. When trying to attach a device,
ariach request is put in a device queue

foooat

which issued the attach instruction,
control code X'OF',

CREDIT REFERENCE Nifs i

AlL/O on a device from a taze whe : G e raction, is passng
by the device qurig ann wiii v
When more than ore devics ., o is e prrie o htiacent task s the user program

should be designed to preveri e

Stuich a situation wi'lt oocnr v R Y S A = =i tor @ac other
to release attachec resourres
oot task BO.

'!D :ssues an /0

Example: Tuvice ¥
Task AL is
request for

3

O POt Lraii

TASK AO
| ;
ATTACH DEV X ATTACH DEV Y
; e I |
|
{
1

()rPQ I

- e

hwtare 1ssuing the /0O
R A time-out value
= device X before

‘n this example dead fock can be ave
request, for device Y, issues an at :
set. If device Y is not avaiiable, task AQ <~
repeating the sequience again

1.4.6 Inter task communicaticr

This facility, if required, t.as to e iy
By means of the ;O instructions RE
transferred from one task to ancther ta
communication file codes must be assigned
(RREAD, RWRITE) or unaddressed sioce i F
which issues the WRITE or RWR/
issues the READ or RREAD instue
two complementary instructions. {
complementary instructions must b2
takes place and the instructions are cou
input and output. This means that it s
regards inter task communic
1) Only input {(READ, RREAD) poseiby ut fite code assigned.

2) Only output (WRITE, RWRITF) noss.niv - oniy cutput file code assigned,
3} Both input and output possibile — Lo id cutput file codes assigned.
The task should only use the 1/ filc cuiie assiane 't during system generation.

ysterm ganeration (SYSGEN),
Alz and RWRITE data can be
cvothe appropriate inter task
mmunication may be in addressed
NVRITE}. The sending task is the one
Y2 receiving task is the one which
2 completed until there are
i one Wi This means that two
L TusKE DETOre any data transfer
rent ik codes must be assigned to
“geni atask in three ways, as

The file codes for input and/or
for 1/0 devices, one data set declarat.v)

arcta

s DSET deciarations as is done
or iniput and nne for output.

o tle codes foi inter task communica-
1tert princigie.

fa

Mew

CREDIT REFERENCE MANUAL

When a task issues an inter task communication instruction, and no compiementary
instruction exists, the issued instruction is put into one of the four inter task communi-
cation gueues, depending on whether the instruction was addressed to anot': - task
(RREAD, RWRITE) or unaddressed (READ, WRITE).

Two queues exist in the system, one for READ and one for WRITE {unaddressed). Only
one of these queues may have one or more entries at any one time, since, as scon as they
both contain an entry, the instructions are matched, communication takes piz: ., and
both instructions are completed.

In the case where a task issues a RREAD or RWRITE (addressed) to another task, and
no complementary request exists, the issued instruction is queued on the addressed
task. When the complementary instruction is issued, the instruction is completed and
the request is removed from the queue.

The queueing principie for all inter task communication queues is on the FIFO (first in,
first out) principle. This means that if a task issues e.g.a READ, it will be queued ur:ti
any task issues a WRITE, or a RWRITE to this task, and then the matching is carried
out and the instruction is completed, in case of a RREAD or RWRITE, naturally the
first queued instruction may not be the matching one, i.e. it may be addressed to another
task than the one which issued the current request. In this case the first request in the
queue which is addressed to the current task is matched, and communication takes
place.

If a READ, WRITE, RREAD or RWRITE instruction is to be supervised by the monitor
in respect of time, a time out value should be set before the instruction is executed.
Timing is set with the DSC1 instruction, with control code X'OB’. Different time out
values in multiples of 100 msec, may be set for each instruction. These values are unigue
to the task which executed the time setting. The data-set-identifier, in the DSC1 instruc-
tion must refer to the corresponding DSET, for which the time must be set.

If no time out supervision is required, the binary data item in the DSC1 instruction,
must be set to —1. If the value in this data item is set to zero, the request is completed
immediately. No queueing is performed.

When the number of characters to be moved in two complementary instructions, is not
equal, the smallest number of characters will be transferred. At completion of the in-
struction, the number of characters transferred will be returned.

1417
May 1979

CREDIT REFERENCE MANUAL

1.4.7 Notation
The following symbols are used in the Instruction Reference Section (1.4.6).

PP program pointer

equal to

not equal to

greater than

greater than or equal to

less than

less than or equal 1o

compare

divide {integer division)

muitiply

add

subtract

{Operand} the contents of operand

_— negate (the bar is written above the condition or value which is negated
or compiemented}.

TS AAVYV L

V4 X

Examples:

{Operand-1) ~ operand-2 The contents operand-1 are stored in
operand-2.

{Operand-1} © (operand-2) The contents of operand-1 are compared
with the contents of operand-2.

{Operand-1) + {Operand-2)— operand-1
The contents of operand-2 are added to the
contents of operand-1 and the result is
stored in operand-1.

1.4.8 Instruction reference

This section describes the syntax and use of each instruction. Intermediate object code

is described for single data-items. For arrays one byte or two bytes must be added for
each index referenced, depending on the addressing mode. When the ADRMQOD option
in the OPTNS directive equals two, data-item, data-set, literal constant, key table, picture
and format references are extended with one byte in the intermediate object code. (For
details about the object code format, when ADRMOD=1 or 2, see Appendix 8). The
possible values of the variabies in instructions are given in Appendix 1. The notation
conventions are described in Section 1.1.5.

1.4.18
May 1979

CREDIT REFERENCE MANUAL

ABORT

Syntax:
Type:
Description:

Condition register:

Condition mask:

Example:

Intermediate
code format:

Abort 1/0 request ABORT

[statement-identifier] . ABORT . data-set-identifier

1/0 instruction

This function will abort a previously set 1/0 request {without wait)
for a device indicated by data-set-identifier, in the same task. .
This request is only applicable to keyboard, typewriter, teller ter_mmal
printer, System Operator Pane! (SOP) and intertask communications.

0 if abort is successful
2 if abort is not successful {e.g. 1/0 is already completed).

0 1 2 3 4 5 6 7
suce | — NOSUCC | — sucC NGSUCC | Uncond-
tional

ABORT DSKBN

Byte 1 0 0 1 1o o o o

Byte 2 external reference

operand-1| 0] o] l data set identifier

Bytes 1 and 2 are filled by the system.

Byte 2 is a reference to an external system routine.
Operand-1 is a reference to a data set.

10/100 refers to the first data set.

1.4.19
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Intermediate
Code:

Activate [ACTV

[statement-identifier! . ACTV L statement-identifier, task-‘dentifier

Scheduling instruction

The task indicated by tasikdentifier is activated and execution is
started at the instruction indicated by statement-identifier.
Task-identifier is a reference to a binary or string data item containing
the task identity. In the case of a string data item, the two first bytes

must contain the sk identity.
Byte 1 001!]0000
Byte 2 external reference

operand-1| statement-identifier

operand-2| task-identitier

Byte 1 and 2 are filled by the system.

Byte 2 is a reference tc an external system routine.

operand-1 is a reference to the statement where execution
has to be started.

operand-2 is a reference to a binary or string data item,

1.4.20
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:
Function:

Description:

Condition
Register:

Condition
mask:

Example:

Intermediate
code format:

Add ADD

[statement-identifier] ADD data-item-identifier-1, | data-item-identifier-2
lite: s’ constant

Arithmetic instructicn
{Operand-1} + (Operand-2) —» Operand-1

Operand-2 is added to Operand-1 and the result is placed in Operand-1.
Operand-2 is unchanged. Both operands must be binary or both
operands must be decimal. A single data item may be used for both
Operand-1 and Operand-2. |n this case the data item is merely added to
itself. The condition register is set according to the

contenits of Operand-1.

= 0 if {Operand-1) =0

= 1if {Operand-1) > 0

= 2if {Operand-1) < 0

= 3 if overflow

o] 1T 2] 3fals]s 7
0| ~n! <glover|. N uncon-
01 70 now| *0| =0 *°| ditionai

ADD FIELD,=W'825" FIELD is declared as BIN
ADD WORK,=D't’ WORK is declared as BCD

Byte 1 oJoJoJoJoJoJ1]L
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte 1 is operation code {X'02" or X’03’)
=0 operan-2 is a reference to a literal constant.
L=1 operand-2 is a reference to a binary or decimal data item.

14.27

e 197!

CREDIT REFERENCE MANUAL

Syntax: [statemant. idox
control value
volume-

daai Tt i

(]

davs set-identifier,
name-identifier,
deintiter] {, velume-

name i ERTEA S
Type: 170 instrustio-
Description: A file cods =terenced by date-set-identifier,

is assignad ¢
rencen by §
be 8 bvtes ins
will be assigred 2
control value is i
accessibla by the
over maximu
the string data item
data-item must ¢
ling blanks.

If an assignment is ..~
in the binary data ite«
The contents ¢l tnis

s in the string-data-item refe-
name, in the da:a item, must
en cantrol-value is 0, the file
sihle by al! tasks, When

as ioval file and is cnly

. The data file may be extended
e name(s) 2re defined in

o by volume-name-"sentifier(s). Each
et tor the volums siame, including trai-

rror code is returned
by data-item identifier.

0 E e st pertormed
-1 Request oot
1 Disk 170 erper
2 NG tree eritey iable
3 No tile dascripior avatiable
4 One or
5 File code ot s
[¢] — Fila nanie ues 50 .en
7 File section missing
8 Fautty disk fors
9 more) Rs exist
Condition =0 it assinnmeny suneraafnl
register: =2 Fassignmenr s unsuccessful
Condition mask: 0 1 IR 5 6 7
suce - | UNSUCClUncondi-
— tional
Example: ASSIGN DFILE 1 ERRCODE, FILEN, VOLNAM1, VOLNAM2
Intermediate
code format:
Byte 1
Byte 2
operand- 1
operand-2

CREDIT REFERENCE MANUAL

Intermediate
code format:
(continued)

Continued

operand-3 data-item-identifier
operand-4 ame-identifier
Byte n “—?ﬁmber of volumes
operand-5 volume-name-identifier
operand-6 volume-name-identifier
operand-7 volume-name-identifier
operand-8 volume-name-identifier

Bytes 1 and 2 are filled by the system.

ASSIGN

Byte 2 contains a reference to an external system routine.

operand-1 is a reference to a data set.

10/100 refers to the first data set.

operand-2 is the control value {zero or one).
operand-3 is a reference to a binary data item.
operand-4 is a reference to a string data item.
Byte n contains a value filled by the translator.
operand 5, 6 are references to string data items.

1323

Mav 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:
Description:

Condition
register:

Example:

Intermediate
code format:

Arrack Format ETTFMT

. . f -Jivt-t ifi

[statement-identifier] i ATTFMT o ormat l tllder1't|f1er
data-iterr-identifier

Format controi /0

The formart list referenced by the format-list-identifier or the

data-item-identifier, is attached to the current task. A previously

attached format list will be detached. Only ore format list may

be current per task. Dats-item-identifier reters to a st-ing data-

item, which item contains characiers forming 1ogether a valid

format list, This instruction is only used, when the format list

contains input fields which are supposed to receive data from

a keyboard.

Unchanged

W ATTFMT o FRMT

Byte 1 o 0 1 1 0 0 oL

Byte 2 external reference

operand-1 format-list-identifier

Bytes 1 and 2 are filled by thz system.

operand-1 is a reference to a format list (L=1} ar
to a string data-item {L=0}.

1.4.24
riay 1979

CREDIT REFERENCE MANUAL

e]
Syntax:

Type:
Description:

Condition register:

Example:

{intermediate code
format:
{tong branch)

Intermediate code
format:
(short branch)

R —

Branch i B

. . uate-i ife . .
[statement-identifier] w B u | {9 ate-identifer, statement-identifier
condition mask,

Branch instruction

The instruction to be executed is indicated by statement-identifier, if
operand-1 matches the contents of the condition register. Else, the
instruction following the branch will be executed. If operand-1 is
omitted an unconditional branch (value 7) is generated.

The translator decides whether a shortbranch or longtranch should
be generated, depending on the branch target.

not changed.

B L INP3
B..2,INP4

Byte1[0 0 1 171 [©cND
Byte 2 index to T:BAT

Byte 1 is the operation code (X'38’ up to X'3F')
CND s the condition mask field
Byte 2 contains an index to a branch address table (T:BAT)

Byte1] 0 1 0 1] 8 CND
Byte 2 displacement

Byte 1 is the operation code {X'50" up to X'5F")
B=0 forward branching
B =1 backward branching

CND is the condition mask field

Byte 2 contains the displacement

1.4.25
faay 197G

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
(long branch)

Intermediate
code format:
(short branch)

Branch on begin/end device

BEEOD
[statement-identifier] L BBEOD i statement-identifier.
Branch instruction.

If the contents of the condition register is three {begir or end of
device), the program will branch to the instruction indicated by
statement-identifier. Otherwise the instruction following the
branch will be exenuted.

This instruction should be used after an 1/0 instruction.

The transiator decides whether a shortbranch or longbranch should
be generated, depending on the branch target.

Unchanged.

BBEOD | I DEVERR

Byte1[0 0 1 1|1 0 1 1|

Byte 2 index to T:BAT _j

Byte 1 is the operation code {X'3B’)
Byte 2 contains an index to a branch address table {T:BAT).

Byte1[0 1 6 1]B 0 1 1

Byte 2 displacement

Byte 1 is the operation code (X, 58, X'53")
B =0 forward branching
B =1 backward branching

Byte 2 contains a displacement.

1.4.26
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
{short branch)

[Bywe?1l0 0 1 1)1 0 0 0

[statement1dentifier] w BE v statement-identifier

Branch on equal

Branch irstruction.

If the contents of the condition register is zero {equal), the program
will branch to the instruction indicated by statement-identifier.
Otherwise the instruction following the branch will be executed.
This instruction should be used after a comparison.

The trans!ator decides whether a short branch or long branch should
be generated, depending on the branch target.

Unchanged.
BE Ll EQUAL

Byte 2 " index to T:BAT

[(Byte1 | 0 1 O

Byte 1 is the operation code X'38°}
Byte 2 contains an index to a branch address table (T:BAT),

1 B 0 0 O

Byte 2) displacement

Byte 1 is the operation code (X'58', X'50")
B=0 forward branching
B =1 backward branching

Byte 2 contains a displacement.

14,27
NMay 1978

CREDIT REFERENCE MANUAL

BEOF

Syntax:
Type:
Description:

Condition register:

Example:

intermediate
code format:
{long branch)

Intermediate
rnde format:
{short branch)

Brooch ai Fod of Fie z
JEN—

[statemert icta - ifier] o BEQF o staterment-identif.er.

Branch instiu oo

~ register is one (end o File}, the
istruction indicated by siatement-

1f the contenis ¢ s a0
program wilt branch to o
identifier.

Otherwise the mstruciicn follow g
This instruction shoule be ysad of
The transiator d
be generates. der

Uncharged
BEOF EMNGOFR!

the hranch wili be exacuted.
an /0 instructicn.

tard o Target.

0 a1

o 1 1 { i {

index o TBAT _’

Byte 1is the operation cods {X'39°)
Byte 2 contains an index to a branch address table (T:BAT)

Byte 1
Byte 2 |

Byte 1 is the operation ¢ C
B =0 forward branching
B =1 backward branching

Byte 2 contains a displacement

1.4.28
Nay 1379

a short branch or fong branch should

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
(long branch)

Intermediate
code format:
(short branch)

Branch on Error

Branch instruction.

{+ the contents of the condition register is two (Error!, the program
wili branch to the instruction indicated by statement-identifier.
Otherwise the instruction following the branch will be - cecuted.
This instruction should be used after an /0 instruction.

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

Unchanged.
BERR LI ERROR1

Byte1| 0 0 1 1]1 0o 1 o

Byte 2 index to T:BAT

Byte 1 is the operation code {(X'3A’)
Byte 2 contains an index to a branch address table (T:BAT)

Bye1] 0 1 0 1]BJo 1 0

Byte 2 displacement

Byte T is the operation code {X'BA’, X'62'}
B8 =0 forward branching
B =1 backward branching

Byte 2 coniains a displacement.

14.29
May 1579

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Example:

fntermediate
code format:
{long branch)

tntermediate
node format:
{short branch)

[se]

[statement-identifier] w BG u statement-identifier.

Branch on greater

Branch instruction.

If the contents of the condition register is one (greater), the program
will branch to the instruction indicated by statement-identifier.
Otherwise the instruction following the branch will be executed.
This instruction should be used after a comparison.

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

Unchanged.
BG LI GREATER

Byte1[0 0 1 1]1 0 0 1

Byte 2 index to T:BAT

Byte 1 is the operation code (X'39°)
Byte 2 contains an index to a branch address table (T:BAT)

Byte1[0 1 o0 1[BJOo 0 1

Byte 2 displacement

Byte 1 is the operation code {X'59', X'51')
B=0 forward branching
B =1 backward branching

Byte 2 contains a displacement.

7.4.30
May 1979

CREDIT REFERENCE MANUAL

Branch on less _

Syntax: [statement-identifier] — BL _statement-identifier.
Type: Branch instruction.
Description: If the contents of the condition register is two {less}, the program

will branch to the instruction indicated by statement-identifier.
Otherwise the instruction foliowing the branch will be executed.
This instruction should be used after a comparision.

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

Condition register: Unchanged.
Example: BL L LESS

Intermediate
code format:
{long branch) Bytel |0 O 1 191 0 1 0

Byte 2 index to T:BAT

Byte 1 is the operation code {X'3A’)
Byte 2 contains an index to a branch address table (T:BAT)

Intermediate
code format:

{short branch) Bytel1] 0 1 0 1 l B , 0 1 0
Byte 2 displacement

Byte 1 is the operation code (X'5A’, X'52')
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement.

1.4.31
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
{long branch}

Intermediate
code format:
{short branch)

Branch on negative

[statement-identifier] ., BN s statement-identifier.
Branch instruction.

If the contents of the condition register is two {negative), the pro-
gram will branch to the instruction indicated by statement-identifier,
Otherwise the instruction following the branch will be executed.
This instruction shouid be used after an arithmetic instruction.

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

Unchanged.

BN LI NEG
Byte1 {0 0 1 1 10 1 O
Byte 2 index to T:BAT

Byte 1 is the operation code (X'3A")
Byte 2 contains an index to a branch address table T:BAT),

o 1 o 1j8l0 1 0

displacement

Byte 1

Byte 2

Byte 1 is the operation code (X'5A", X'52')
B = 0 forward branching
B =1 backward branching

Byte 2 contains a displacement

1.4.32
May 1979

CREDIT REFERENCE [WU AS

1 not equal ! BN !

BNE |
Syntax: [statement-identifier] (1 BNE o statement-identifier.
Type: Branch instruction
Description: It the contents of the condition register is unequal ro zero {not

equal}, the program wiii branch to the instruction indicated by
statement-ident:fier.

This instruction shauld be used after a comparision.

The translator decides whether a short branch or long tranch should
be generated, depending on the branch target.

Condition register: Unchanged.
Example: BNEG L UNED
Intermediate
code format:
{long branch) r : -
!
1
|
!

Byiz 2 index to T:BAT

Bvte 1 is the operation code (X’3C’)
Bvte 2 contains an index to a branch address table (T:BAT).

Intermediate
code format:
(short branch} ;

T
o o] 118{1 6 0

displacement

T
|
i
t
|
i

Ryte 1 is the operation code (X'bC’, X’'64’)
B = 0 forwa: ¢ branching
B = 1 backward branching

Byte 2 containg a displacement.

CREDIT REFERENCE MANUAL

BNEOF

Syntax:
Type:
Description:

Condition register:

Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
(short branch)

Branch on no End of file

[statement-identifier] .y BNEGF statement-identif.er
Branch instruction.

If the contents cf the condition register is unequa! to one (Not End
of file}, the program will branch to the instruction incicated by
statement-identifier

Otherwise the instruction following the branch will be executed.
This instruction should be used after an 1/0 instruction.

The translator decides whether a short branch or long branch should
be generatad depending on the branch target.

Unchanged
BNEOF LI NOTEOF

Byte 1 ¢ 0 1 1 ! 1 i 0 1

Byte 2 index to T:BAT

Byte 1 is the operation code (X'3D’)
Byte 2 contains an index to a branch address table (T:BAT).

Byte 1

Byte 2 displacement

Byte 1 is the operation code (X'5D’, X'55")
B = O forward branching
B = 1 backward branching

Byte 2 contains a displacement.

7.4.24

May 1675

CREGIT REFERENCE (.0 (/.

l BNEKR] Branch on no erro: BNERR
_— S—

Syntax: {statementdentifier] s BNERR L statement-identifier.

Type: Zranch instruction,

Description: tf the contertis of the condition register is unequal to two {No Error),
the progrart v ii branch to the instruction indicated by statement-
identifier.

Otherwise the instruction following the branch will o: executed.
This instruction should be used after an 1/O instructien,

The wranslator decides whether a short branch or long branch should
be generated, depending on the branch target.

Condition register: Unchanged.
Example: BNERRILINOERR

Intermediate
code format:

(long branch} e
Bytel1 | C 0 1 1 t 11 0

“ Bvtz 2 index to T:BAT

Byte 1 is the operation code {X'3E")
Byte 2 contains an index to a branch address table (T:BAT)

Intermediate
code format:
{short branch}

] o
ytel : 0 1 0 11811 1 0

Byte 2 displacement

Byts 1 is the operation code (X'5E’, X'56')
8 = U forward brranching
% = | backward branching

B.te 2 contains & disptacement.

7435
fiy 197G

CREDIT REFERENCE MANUAL

BNG

Branch on not greater

Syntax:
Type:

Description:

Condition register:

Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
{short branch}

[statement-identifier] s BNG . statement-identifier,
Branch instruction.

{f the contents of the condition register is unequal to cne {not
greater), the program will branch to the instruction incicated by
statement-identitier.

Otherwise the instruction following the branch will be executed.
This instruction should be used after a comgparision.

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

15}

Unchanged.
BNGiL_! MOTGRT

Byte? | ©

Byte 2 index to T:BAT

Byte 1 is the operation code (X'3D’)
Byte 2 contains an index to a branch address table (T:BAT).

Bytel | 0 1 0 1iB}1 0 1

Byte 2 displacement

Byte 1 is the operation code (X'5D’, X'55)
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement

14.36
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:
Example:

Intermediate
code format:
(long branch}

Intermediate
code format:
{short brarich)

Branch on not less

[statement-identifier] ; BNL (s statement-identifier.
Branch instruction

If the contents of the condition register is unequal to two (not less),
the program will branch to the instruction indicated by statement-
identifier.

QOtherwise the instruction following the branch will b= 2xecuted.
This instruction should be used after a comparision.

The translator decides whether a short branch or long oranch should
be generated, depending on the branch target.

Unchanged.
BNL L I NOTLESS

Bytel |0 O 1 1{1 1 1 0

index to T:BAT

Byte 2

Byte 1 is the operation code (X'3E’)
Byte 2 contains an index to a branch address table (T:BAT).

o 1 0 1TB

1 1 0

Byte 1

Byte 2 displacement

Byte 1 is the operation code (X'5E’, X'56')
B = 0 torward branching
B = 1 backward branching

Byte 2 contains a displacement,

1.4.37
May 1979

BNL

CREDIT REFERENCE MANUAL

Branch on not negative

Syntax: [statement-identifier] s BNN s statement-identifier,

Type: Branch instruction.

Description: If the contents of the condition register is unequal to two {not nega-
tive), the program will branch to the instruction indicated by statement-
identifier,

Otherwise the instruction following the branch will be executed.
This instruction should be used after an arithmetic instruction,

The translator decides whether a short branch or long branch should
be generated, depending on the branch target.

Condition register: Unchanged.
Example: BNN LI NOTNEG

Intermediate
code format:
{long branch)

Bytel |0 O 1 1 1 1 1 o]

Byte 2 index to T:BAT

Byte 1 is the operation code (X'3E’)
Byte 2 contains an index to a branch address table (T:BA™).

Intermediate
code format:
(short branch}

Byte101018{110

Byte 2 displacement

Byte 1 is the operation code {X'5E’, X'56')
B = 0 forward branching
8 = 1 backward branching

Byte 2 contains a displacement.

1.4.38
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:

Description:

Condition register:

Exarnple:

Intermediate
code farmat:
(iong branch)

Intermediate
code format:
(short branch}

Branch on not OK

l BNOK }

{statement-identifier] 1 BNOK u statement-identifier.
Branch instruction

If the contents of the condition register is unequai 1o zero (not oké),
the program with branch to the instruction indicate: Iy statemen;i-
identifier

QOtherwise the instruction following the branch wili be executed.
This instruction should be used after an /O instrucsi
The transiator decides whether a short branch or long
be generated, depending on the branch target.

sranch should

Unchanged
BNOK 1 s NOTOKE

o 0 1 TT] 1T 0 0

index to T:BAT

Byte 1 is the operation code (X'3C’)
Byte 2 contains an index to a branch address table (T:BAT).

BliOO

displacement

Bytel | 0 1 [V

Byte 2

Byte 1 is the operation code (X'5C, X'54")
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement

P.4.49
Mav 15679

CREDIT REFIRENCE MANUAL

BNP £ra

an not posrtive

1 BNP ; statement-identifier.

Syntax: {statement-identitie
Type: Brarch insteucti o

1N register is unequa!l to one (not
bianch to the instruction incicated by

Description: If the contanis o
positive}, the
statementadeni fer:

Otherwise the insirucucn following the branch will be executed.
This instruction shoucld te used after an arithinetic instruction.

The transtato: d sthier a short branch or long b 'anch should
generatad, fiepei ng o1 anch target.

Condition register: Unchan
Example: BNP L NOT™C

Intermediate
code format:
{long branch}

Byte 2 ndex to T:BAT

Byte 1 is the operation code {X'3D’)
Byte 2 contains an index to 4 branch address table (T:BAT).

Intermediate
code format:
{short branch)

i
Bytel |0 1 O 1}8’1 0 1

Byte 2 displacement

Byte 1 is the operation code (X'5D’, X'55'}
B = O forward branching
B = 1 backward franching

Byte 2 contains a displacement

1.4.40
May 1979

CREDIT REFERENCE MANUAL

Syntax:
Type:

Description:

Condition register:
Example:

Intermediate
code format:
{long branch)

Intermediate
code format:
(short branch)

Branch on not zero I BMZ I

{statement-identifier] u BNZ s statement-identifier.
Branch instruciion.

I the contents of the condition register is unequal to zero (not zero},
the program wili branch to the instruction indicated by statement-
identifier

Otherwise the instruction fotlowing the branch will be :xecuted.
This instruction should be used after an arithmetic instruction.

The translator decides whether a short branch or long trench should
be generated, depending on the branch target.

Unchanged.
BNZ L NONZER

Byte1 (O 0 1 1 1 1 0 0O

Byte 2 index to T:BAT

Byte 1 is the operation code (X'3C’)
Byte 2 contains an index to a branch address tabie (T:BAT).

(Byle] g 1 0 1 B|1 0 O
L.

L_Byte 2 displacement

Byte 1 is the operation code (X'6C), X'64’)
B = O forward branching
B = 1 backward branching

Byte 2 contains a displacement.

1.4.41
May 1979

CREDIT REFERENCE MANUAL

BOFL Zievck on overtiow BOFL

Syntax: [staterment s BIEL L ostatement-identifier.

Type: Branch inst s

Description: tf the contant: - 310N register is three {overtlow), the pro-
gram wiii b Hor indicated by state:nent-identifier.

Otherw 3 the branch will be executed.
This instrue ¢ 2 er an arithmetic inctruction,
ort branich or fong branch should

be generaisd o the braneh target.

Condition register- Uncharige
Example: BOFL: suviRFL

Intermediate
code format:
(long branch)

wares 1o TBAT

Byte 1 1s the operation code (X'38°}
Byte 2 contains an index to a branch address tabie (T:BAT).

Intermediate
code format:

(short branch) r e
Byte 1 0 i ¢ i B|O 1 1
Byte 2 displacement

Byte 115 the operation code (X'58°, X'53°}
B = 0 forward brancking
B ~ 1 backward bran-hing

Byte 2 contains a displace:

1.4.42
May 15-°8

CREDIT REFERENCE MANUAL

Syntax: [statement-identifier] 1 BOK u statement-identifier.
Type: Branch instruction.
Description: If the contents of the condition register is zero (oic&}, the program

wiil branch to the instruction indicated by statemer . identifier.
Otherwise the instruction following the branch wiil be executed.
This instruction should be used after an 1/0 instruction.

The translator decides whether a short branch or lor: “ranch should
be generated, depending on the branch target.

Condition register: Unchanged.
Example: BOK Lt OKE

Intermediate
code format:
(long branch)

Byte 1 0 ¢ 1 1 1 0O 0 O

Byte 2 index to T:BAT

Byte 1 is the operation code (X’38")
Byte 2 contains an index to a branch address table (T:BAT).

Intermediate
code format:

(short branch))
Byte1 {O 1 O 1[5}0 0o 0

Byte 2 displacement

Byte 1 is the operation code (X'58’, X'50’)
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement

1.4.43
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:
Description:

Condition register:

Example:

Intermediate
code format:
(long branch)

Intermediate
code format:
(short branch)

sisnck on positive

[statement-ic ;i BP i statement-identifier.

Branch ingtruction

If the conterzs «of the condition register 1s one {positive}, the program
will branch to ¢ instruction indicated by statement- dentifier.
Otherwise the inst on foliowing the branch wifl be executed.

This instructi be used after an arithmetic inctruction.

The transiatc whsther a short branch or long branch should
be generared i the branch rarget.

Unchanga
BPL 1 POS
i H i
Bytel i &3 0O 1}1001J
H {
Byte 2 1‘ iidex to T:8AT

Byte 1 is the operation code (X'39")
Byte 2 contains an index to a brranch address table (T:BAT).

Bytet | 0 1 0 l|b‘l0 o 1

Byte 2 dispiacement

Byte 1 is the operation code {X'69’, X'61"}
B = C forward branching
B = 1 backward branching

Byte 2 contains a displacement,

1.4.44
May 1379

CREDIT REFERENCE MANUAL

Syntax:
Type:

Description

Condition register:
Example:

Intermediate
code format:
(long branch)

Intermediate
code format:
(short branch)

Branch on zero

[statement-identifier] u BZ 13 statement-identifier.

Branch instruction.

If the contents of the condition register is zero (zero), the program

will branch to the instruction indicated by statemu:i. !lentifier.
Otherwise the instruction following the branch will be executed.

This instruction should be used after an arithmetic instruction.

The transiator decides whether a short branch or long “ranch should be
generated, depending on the branch target.

Unchanged.
BZ i 1 ZERO

Byte 1 0 0 1 1 1 0 0 O

Byte 2 index to T:BAT

Byte 1 is the operation code {X'38'}
Byte 2 contains an index to branch address table {T:BAT).

Bytel /O 1 0 1 B I 0o 0 O

Byte 2 displacement

Byte 1 is the operation code (X'58’, X'50’)
B = 0 forward branching
B = 1 backward branching

Byte 2 contains a displacement.

1.4.45
May 1978

CREDIT REFERENCE MAniUAL

Syntax: [statement-identifier'y Loisubrodtine-identifier [actua.-parameter-list] . . .

Type: Subroutine contrat fngiro

Bescription: Control is given tc a aubroti:
routine-identifier miust br ae

» itten in assemply laniguage. Thus, sub-
ad us an external wientifier (EXT).

Actual parameters wh.
the parameters iistcd i ¢
identifiers. There is ne
passed. Paramat:
Literal constant parameters of

sed to the subroutine, in addition to

iT syntax definition, incluce data set

- s remiber of narameters wh ch can be
ad, using the CON directive,

vope ‘X are not allowed.

The programmer ¢ s correct return from the assembly
routine to the iny : e when parameters are passed to the
subroutine, the p n peinter bas to be updated by the ass2mbly
routine, prior o control being given back to the interpreter.

Intermediate code format:

cjojoltL

b g

Bytel |0[0ft]1
operand-1
i operand-2.,
‘_ ’

Byte 1 is the operation cade { X35
operand-1 is an external reference to ths subroutine.
operand-2 etc. are avaiiable for passing patarmeters.

CREDIT REFERENCE MANUAL

Syntax:

Type:
Function:

Description:

Exampie:

Condition register:

Condition register:

intermediate
code format:

Compare and branch on equal l CBE l

[statement-identifier] s CBE w data-item-identifier-1 { data-item-identifier-2
Liiteral constant

,statement-identifier
Branch instruction.
(Operand-1) ~ {Operand-2}

The contents of operand-1 are compared with the contents of operand-2.
The condition register is set according to the result of this ccraparison.
When the two data items have a different size, the compariscn will be
executed as follows:
a) for string data items the shortest item will be extended (by the
interpreter) with blank characters (X‘20°).
b) for decimal data items the shortest item will be extended (by
the interpreter) with zero digits (X’0’).
If the contents of both operands are equal, the next instruction to
be executed is found at the address specified by statement-identifie
If the contents of both operands are not equal, the instruction fo!
lowing the compare and branch equal (CBE) will be executed.
Statement-identifier may only refer to a statement which is within
the limit of 255 bytes before the compare and branch (incl. 4 oytes
of the compare and branch) or 255 bytes after the compare and
branch on equal.
Operand- 1 and operand-2 must refer to the same type of data item
decimal, binary or string.

CBE INLEN, $MIN,RDERR2
CBE INLEN, CBINO, RDERR2

if both identifiers are references to numeric data items.
=0 if (Operand-1) = (Operand-2)
=1 if {(Operand-1) > (Operand-2)
= 2 if (Operand-1) < (Operand-2}

If both operands are of the type STRING or STRINGI
=0 if {Operand-1) = (Operand-2)

r T
Byte ! | !‘IB]BIO 0o oL
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

i Byten disptacement

7.4.49

May 1979

CREDIT REFERENCE MANUAL

CBE

Continued

Byte 1 is the operation code (X‘10’, X’11", X'20’, X'21')

B = 0 forward branching

B = 1 backward branching

L=1 operand-2 is a reference to a literal constan?.

L=0 operand-2 is a reference 1o a data item.

operand-1 a:4 operand-2 are references to data
items of the type decimal, binary or
string

Byte n contains a displacement.

1.4.50
May 1979

CREDIT REFERENCE MARUAL

Syntax:

Type:
Function:

Description:

Example:

Condition register.

Condition register:

Cornpare and branch on greater | CBG ’

{statemer-identifier] CBG w data-item-identifier—‘.,Ea!ata-item-identifiervz
. iiteral constant

,Sstatement-identifier

Branch nsiruction.
iOpsarand- 1} -+ {Operand-2}

The contents of operand-1 are compared with the contents of operand-2.
The condition register is set according to the resu't of this con parison.
When the two data items have a different size, the comparison+ " be
executed as follows:
a} for string data items the shortest item will be extended (by tre
interpreter) with Blank characters (X'20').
b} for decimal data items the shortest item will be extended (by
the interpreter) with zero digits (X'0’).
It the contents of operand-1 is not greater than the contents of
operant-2, the instruction following the compare and branch on
greater (CBG) will be executed.
Staternent-iden may only refer 10 a statement which is within
ihe iimit of 285 tbytes before the compare and branch {incl. 4 bvtes
of tne compare and branch) or 255 bytes after the compare and
branch on greater
Operand-1 and operand-2 must refer to the same type of data item
decimal, binary or string.

CBG INLEN, $MIN, KDERR3

0BG INLEN, CBINO, RDERRS3

1 both wdentifiers are reterences to numeric data items.
- 1 {Operand-1) = (Operand-2)

= 1,f {OUperand-1} > (Operand-2)

= 24f {i0perand- 1)< {Operand-2)

are of the type STRING or STRINGH
Gperand-2)

M both operong

CREDIT REFERENCE MANUAL

CBG

Intermediate
code format:

Continued

Byte 1 0 0|1-Bialo 0 1l|_
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte n displacement

Byte 1 is the operation code {X’12°, X"13’, X'22', X'23")
B = 0 forward branching
B = 1 backward branching
L=1 operand-2 is a reference to a literal constant,
L=0 operand-2 is a reference to a data item,
operand-1 and operand-2 are references to data

items of the type decimal, binary or
string.

Byte n contains a displacement.

1.4.52
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:
Function:

Descriptior:

Example:

Condition register

Condition register

j branch on | ! CBL i
LOMEare ard oran) /eSS H

'

{staterrent identifier] s CBL ws data-item-identifier-1 f 'ta-item-identifier-2
B ral constant

,statement-identifier
Branch .nstructon,
(Oparand-1) = (Operand-2}

The contents of eperand-1 are compared with the contents of *..erand-2.
The cordition registe: 15 set according to the result of this com nariscn
Whien the twu data items have a different size, the comparison * ! be
axecutsd as follows:
&) for suwing data items the shortest rtem wili be extended (by

the ir ter) with blank characters {X'20°).
b} for dearmal data items the shortest item will be extended (by

the interpreter} with zero digits (X0,
ts of operand-1 is less than the contents of operand-2,
instruction 1o be executed is found at the address specified
vy statement-identifier
5t wperand- 1 is not less than the contents of
operand 2, the instuction foilowing the compare and branch on
l2ss {CBL) will be executed.
Statemant-idantifier may only refer to a statement which is vo; i
the it of 285 yies before the compare and branch on less jincl,
4 bytes of the compare and branch) or 255 bytes after the compare
ana branch.
Operard 1 and opetend-2 must refer to the same type of data item -
deciinal, ainery or string.

CBL INLEN, $MIN, RDERR4
CBL INLEN, CBINO. RDERR4

1 both identifiers are references to numeric data items.

=1t {Opgrand-1) = {Qperand-2}
= 1if {Dperand - 1i 5 (Operand-2)
w2 6 {Operand- V< (Ooerand-2)

the type STRING or STRING!

H peth operands ar

O {Operan 1

CREDIT REFERENCE MANUAL

- Continued

Intermediate

code format:
Bytel | 0 051—818,[0 1 oL
operand-1 “aie-item-identifier-1
operand-2 - ”Ma..uv_t;;ﬁidentiﬁer 2
Byte n displacement 7

Bvte 1 is the gperation code (X114 X"15°, X'24', X'257)

B = 0 forward branching

B = 1 backward branching

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 iz a reference to a data item,

operand-1 and operand-2 are references to data-
itemis of the type decimal, binary or
string

Byte n contains a displacement.

14.54
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:
Function:

Description:

Example:

Condition register:

Condition register

Compare anc hranch on nat equal | CBNE |

{staterment:cer titizr; 1 CBNE s data-item-identitier-1, Idata»item-identifier&
ii-teral constant

,Statement-identifier
Branah sirucbon,
{Qperand-1} = {Cperand-2}

The cortents of operand-1 are compared with the contents of o:. 2rand-2.
he condition register is set according to the result of this comp. “son.
the TWo data items have a different size, the comparison v i

ted as toliows:
foi sring deia 1items the shortest item will be extended (by the
imterpretes) with blank characters (X'20°).
bl for dacimal data items the shortest item will be extended (by
the interprater) with zero digits (X'0).
it the wontents of operand-1 is unequal to the contents of operand-2,
the next instiaction to be executed is found at the address specified
by staternsnt-identitier.
in sib sther caey the instruction following the compare and branch
on eot ggual LSNE) vill be executed.
tifier may only refer to a statement which is wiit in
ies before the compare and branch on not eq ..}
» 0f the compare and branch) or 255 bytes after the
sare and branch.
Gperand-1 and operand-2 must refer to the same type of data iter —
deuimisi, pinary or string,

CBNE PNLEN, $MIN, RDERRS
CBNE INLEN. CBINO, RDERRS

I hath identitien s are references to numeric data itzms.

=" 1Operand-1) = (Operand-2)
T A0 2711} >1Operand-2)
=t Opersna Y <UQperand-2)

Poboeh aperar

P the type STRING or STRINGI
perand-2)

nafin

CREDIT REFERENCE MANUAL

CBNE Continued CBNE

Intermediate
code format:

T
Byte! |0 O'1~B‘8i1 0o o0t
L

operand-1 aate-itei- identifier-1

operand-2 cata-item-identifier 2

taGemMaEnt

Byte n i

Byte 1 is the : (X187, X119, X19°, X'28", X'29")

B =0 farvard branching

B = 1 packviard branching

L=1 operan- 2 is a reference to a fiteral constant.

L=0 operand-2 is a reference to a data item

operand-1 and cperand 2 are references to data-
items of the type decimal, binary or
string.

Byte n contains a displacement.

1.4.56
May 1579

CRED!T REFERENCE MANUAL

Comypare and branch not greater { CBNG |

Syntax: istatement-identifier; s CBNGu data-item-identifi. -1.]data-itemidec vifier-2
literal constart f

A

,statement-identifie:

Type: Brarcn instruction.

Function: {Gperand-1) -» {Operand- 2}

Description: The contents of operand-1 are compared with the contents of operand-2.
The condition register is set accarding to the resit of this cc parison.
When the two data items have a different size, the compariscr 't be

executed as foliows:

a} for string data items the shortest item will be extended {by the
interpreter) with blank characters {X'20°).

b) for decimal data items the shortest itern will be extended {by
the interpreter) with zero digits (X'0).

1t 1w contents of operand- 1 1s not greater than the contents of

cperand-2, the next instruction to be executed is found at the

aduress specitied by statement-identifier.

tn ali other cases, the instruction foilowing the compare and branch

on not greater {(CBNG) will be executed.

bratement identitier may only refer to a statement which is within

e st of 255 bytes before the compare and branch on nc* < eate

finc! 4 bytes of the compare and branch) or 255 bytes after the

coingare and branch

Operand-1 and operand-2 must refer to the same type of data item —

decimal. bingry or string.

Example: CBNG INLEN, $MIN, RDERRS
CBNG INLEN, CBINO, RDERRS
Condition register: f both identitiers are references to numeric data items.
= 0af (Operand-1) = (Operand- 2}
= 1 it {Operand- 1} >(Operaid-2}
- 7 1 {Operand-1) < {Onerand-2)
Condition register: {f both onerands are of the type STRING or STRINGI
Gt {Operard 1 - {Qperand-2)

CREDIT REFERENCE MANUAL

I CBNG Continued

Intermediate
code format:

Byte 1 o O‘1vBiBI1 0 1|L
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte n displacement

Byte 1 is the operation code {(X'1A", X"1B", X'2A’, X'2B"}

B = 0 forward branching

B = 1 backward branching

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 is a reference to a data item.

operand-1 and operand-2 are references to data-
items of the type decimal, binary or
string.

Byte n contains a dispiacement.

1.4.58
n May 1979

CREDIT REFERENCE MANUAL

CBNL

Syntax:

Type:
Function:

Description:

Exampie:

Condition

Condition

register:

remster:

LOINGErS B

[staternertics iiart L CBNL w data-item-identifie

terar sorstant

statemert-identifier
Branch instruction
{Dperand- 1) < {Unerand-2;

rand-1 are compared with the con:ar s of operand-2.
115 set according to the result of taic comparison
erns have a different size, the comp: ~sen will be

shortest item will be extenaed © the

« characters (X'20°).

i ns the shortest item wili ne ¢ andes -~
retery with zero digits {X'0’),

1k ntents of noerand 118 not less than the contenis of o; zrand-2,
the next insruction to be executed is found at the address speci’
ny slatermnentadzantifier

Hoihe coorents of operand-1 is not lesses than the contents of
cperand-2. tre next instruclion to be executed is found at the
address igd oy statement-identifier.

s the instruction following the compare and

B L} will be executed.

$ may oniy refer to a statement which 1s within
A4 bytes before the compare and branch on not less

1 hytes of 1he compare and branch) or 2565 byies after the

spe
in ail other -
bracen o jess
Stetermat e

tha ding o

and -2 must refer to the same type of data iter —

CBNL N, $MIN, RDERRY
CBNL INLEN, CBINO, RDERRY

arg references to numeric data items.

It hotr went
= (o {Dperand 1 2 {Operand-2)
1 i0perand- 1) > {Operandg-2

-
=2

rana-1< {Operancd-Z}

are o ihe type STRING or ST RINGI

g

i Both npes

-Gl

1,{natavirem—iuentis .

CREDIT REFERENCE MANUAL

CBNL Continuved

Intermediate
code format!

Byte 1 0 Oi‘vB 811 1 OEL
operand-1 data-item-identifier-1
operand-2 Gata-itern-identifier-2

Byte n displacement

Byte 1 is the operation code (X'1C’, X"1D’, X'2C’, X'2D’).

B = 0 forward branching

B = 1 backward branching

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 15 a reference to a data item.

operand-1 and operand-2 are references to data-
items of the type decimal, binary cr
string.

Byte n contains a displacement.

1.4.60
May 1979

CBNL

CREDIT REFERENCE MANUAL

CLEAR Clear CLEAR

Syntax: [statement identifier] ICLEAR L] data-item-identifier
Type: Logical instruction.
Function: 0 -+ data-item-identifier

Description: The content of data-item-identifier is set to zero (FALSE}.
Data-item-identifier must refer to a boolean data item. (Length i bit)
The condition register is set according to the previous value of data-
item-identifier.
Condition
register: = 0 if (data-item-identifier} = 0

Condition mask:

ol 1 J2]3lals]|e]7
=0 | - [~[~]#0 | =] -] =

intermediate code format:

Byte 1 0 1 c o0 0 o o0 ©
Operand-1 data-item-identitier

Byte 1 is the operation code {X'40').
Operand-1is a reference to a boolean data item.

1.4.61
May 1979

CREDIT REFERENCE MANUAL

D]
CMP Compare | MP I
Syntax: [statement-identifier! s C5F wa data-itemadentifier-1, [data-item-identifier-2,
literai constant
Type: Arithmetic instructiun
Function: {Operand-1) — {Operand-2)
Description: Operand-1 is comuarad with Operand-2.
The condition register is set accoiding 16 the result of this comparison.
When the two data items have 2 difterent size, the comparison will be
executed as foliows:
a) for string dsta items tne shortest ifem will be extended (by the
interpreter) witn: biank cheracters (X20°).
b) for decimal data items the shortest item will be extended (by
the interpreter! w.th zero digits (X'0).
Both operands must he the same type of data item — decimai, binary or
string.
Condition If both operands are numeric or string data items:
register: =0 if (operand-1} = {operand 2}
=1 if (operand-1) > (operand 2)
=2 if (operand-1)< {operang-2)
Condition
mask: 0 ,_-.1,,_l i 2z 3 4 5 6 7
Op1=0p2 | Opi1>0p2] OpiKQOp2 | — | Op1#0p2 | OpigOp2 | Opi20p2 | uncon-
| ditional
U S B - -
Example: CMP FIELD1, FIELD2, FIELD1T and FIELD?2 are declared as BIN.

Intermediate
code format:

CMP BANKID, NAME BANKID and NAME are declared as STRG.
CMP BANKID, = C'BANK’

— r
Byte 1 6 ¢ 0 @ ‘I 0 1 1 L
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte 1 is the operation code (X'06" or X'07’}

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 is a reference to data-item-identifier-2,
array-identifier-2 or a formal parameter.

14.62
May 1975

CREDIT REFERENCE MANUAL

Syntax: [statement-identifier] (s COPY u data-item-identii. pointer
identifier-1,size-idetifier,data-
item-identifier-2,pointer-identifier-

2
Type: String instruction
Function: {Operand-4} — Operand-1
{Puinter (pointer-
wientifier 2} dentifier-1)
Description: Starting at pointer identifier-2, the content of operand-4 is copied from

feft 10 right toc operand-1 beginning et pointer-identifier-1.

The rumber of decimal digits or bytes to be copied is specified L size-
wentifier,

This COPY is only posstbie between two decimai data items or tw
string data items, Between two decimal data-items is copied on di |
base. In the other case it is copying on byte base.

The tirst characters of operand-1 and operand-4 are counted as ze:a
when setting the pointer.

Condition register: Not significant.
Example: COPY FIELD1T, P1, LNGTH, FIELDZ, P2

{ntermediate
code format:

Byte 1 0 1 1 o(0 0 1 O
operand- 1 data-item-identifier-1
operand-2 pointer-identifier-1
operand-3 size-identifier

operand-4 data-item-identifier-2
operand-5 pointer-identifier-2

Hyvte 1is the operation code {X'62')

operand-1 and operand-4 are references to string 3l data itemis.
data items or decimal data items

operands-Z,3,5 are references to binary data items.

CREDIT REFERENCE MANUA

‘ DELA__J

Syntax:
Type:
Description:

Condition register:
Exampte:

intermediate
code format:

Daiay
istatement-identificr SELAY wdate iterm-dentifier
Scheduling imstruction
Execution running task 1s delayed. The delay t'me is specified

in multipies of ~)0 msec in a binary data item indicat:d by data-
itemdentifier.

Unchanged.
DELAY i DELTIM

PR

Byte ?

Byte 2

aoperand-1 |
L

e oo L

Eamanees S

e

- iteny identitie

Bytes 1 ana 2 are filled by tne systera,
Byte 2 is a refarence 10 an external sysitem routine
operand-1 is a reference 1o s binary data itern

1.4.64
May 1979

CREDIT REFERENCE MANUAL

DETFMT, Detach format l DETFMTI

Syntax: [statement-itenditier] v DETFMT
Type: Format control /0.

Description: The format attached to the current task is detached.

Condition

Register: Unchanged

Intermediate

Code Format: Byte 1 oo 1 170 0 0 O
Byte 2 external reference

Bytes 1 and 2 are filled by the system.

1.4.65
May 1979

CREDIT REFERENCE MANUA.

:

Syntax: [statement -iger:
data : ti
Type: Format o ¢

Description: Depending o oo
on the curren? furm -

control Sign
value

&g lineg
ztarenced
contained

Q Tt N P
DL ST e T .
by nats e
in the b
wgentit

Trmnser
then
starting at Tt
referenced b
Both dats
1 The FK'-inpu
dispiayed o ti
using the F
iten titier
the FKI-input hield s
starts. Data-item wle
item contairing i
displaying i contains zero all
FKIEinput fields wa, tarting at FKl-input
fieid number ¢orten e data «tem referenced by
data-item-iteriie npTs are not erased.
Both data-iterns migy coninn 1 same line-number,

' i e line number,

1 tormat list are

€ appiopriate positions,
wimuerirg seqiience. Data-
I + data-item containing
sich dispiaying

3 a binary data
ber at which

2 Similar to contri value 1. Rut the FiNP input fields are
NP npt fizid numbering.

3 Similar io controrvalve 1ot both FR-input fields
and FINP-input Heids ara dispiaved usiyg the general
field numbering
The prompts are not vr e

4 Similar to control vatue 3, but scieen = not cleared.
The fast line raamber o splayed may also be
indicated by of the type binary.

bt

1.4.66
Moy 1979

CREDIT REFERENCE MANUAL

DISPLAY

Condition register:

Condition mask:

Example:

Intermediate
code format:

r;yte 1 0 O 1 1 0O ¢ 0 L

Continued [.FTISPLAY !
=0ifOK
=2if ERROR
EE 2 3] a5 6 7
oK | - | ERROR | —| OK | — | ERROR | Uncon-
ditional

DISPLAY L1 0, LINE 3, LINE 12

Byte 2 external reference
operand-1 control value
operand-2 data-item-identifier-1
operand-3 data-item-identifier-2

Bytes 1 and 2 are filled by the system.

operand-1 is the control value.

operand-2 and operand-3 are references to binary data items.
L=1 operand-3 is a reference to a literal constant.

L=0 operand-3 is a reference to a data item.

1.4.67
May 1979

CREDIT REFERENCE MANUAL

DIV Divide Clv
Syntax: [statement-identifier] w DIV o data-item-identiﬁer‘1,{data‘item-identifier-Z}
literal constant
Type: Arithmetic instruction
Function: (Operand-1) + {Operand-2) - Operand-1
Description: Operand-1 is divided by operand-2 and the result is storec in

Condition register:

Example:

Intermediate
code format:

operand-1.

Operand-2 is unchanged. Both operands must be decimal or
binary. The remainder is lost. Division by zero resuits in overflow
and operand-1 is set to zero.

=0 if {operand-1) =0
=1 if (operand-1) >0
=2 if {operand-1) <0
= 3 if overflow

DIV WORK,=D'+4'
DIV FIELD, FIELD2

Byte 1 0 0 0 o1 0 1 L

operand-1 data-item-identifier-1

operand-2 data-item-identifier-2

Byte 1 is the operation code {X'0A’ or X'08’).
L=1 operand-2 is a reference to a literal constant
L=0 operand-2 is a reference to data-item

1.4.68
May 1979

CREDIT REFERENCE HMANUAL

Syntax:

Type:

Function:

Description:

Condition
register:

Example:

Intermediate
code format:

Delete DLETE

[statement-identifier] «s DLETE w data-item-identifier,pointer-
identifier,size-identifier

String instruction

delete {operand-1)
(pointer-identifier)
Starting at pointer-identifier, the contents of operand-1 are deletrd
from left to right.
The number of characters to be deleted is specified by size-identif

The remaining characters at the right of the deletion are shifted
left. The number of shift positions corresponds with the content
of size-identifier. Space characters are inserted from the right.

Operand-1 must be a string data item. The first character of
operand-1 is counted as zero when setting the pointer.

Not significant.

DLETE DIELD,P1,L1

Byte 1 o 1 1T 00 1 1.0
operand-1 data-item-identifier-1
operand-2 pointer-identifier

operand-3 size-identifier

Byte 1 is the operation code {X‘66°).
Operand-1 refers to a string data item.
Operands-2,3 refer to binary data items.

1.4.69
May 1979

CREDIT REFERENCE MANU it

DSC1

Syntax:

Type:

Description:

Doguser conerol one DSC1

[statement-identifia: ' s, D50 1w [WW,] dataset-identifier, Jcontrol value
equate-identifier

Jdata-item-identifier

1/0 instruction

This statement is usea 1o cuntol a data set indicated by data-set-
identifier.

The kind of control is ied by operand-3, the vatues of which are
found in the control code table 1 /see below),

icated by operand-4 contains device
n. NW, indicates that the no wait optionis

The binary or decir !
dependent control infaraia
required.

I

Condition =0 if 1/0 successfui {OK)
register: = 1if End of file (EOF}
=2 if Error (ERR}
= 3 if Begin or end of
device (REOD)
Condition
mask: 0 1 2 3 4 5 6 7
OK {EOF | ERR | BEOD | OK | EGF | ERR | Uncom
ditional
Example: DSC1 DSSOPO,OFF ALLAMP
Intermediate
code format:
Byte 1 o 0 1 1t/ 0 O 0 ©
Byte 2 externat reference
operand-1| W data-set-identifier
operand-2 control value
operand-3 data-item-identifier

Bytes 1 and 2 are filled by the system.

Byte 2 contains a reterence to an external system routine.
W is the wait pit.

W=0 no wait

W=1 wait
Operand-1 is a reference to the relevant data set.

10/100 refers to the first data set.

Operand-2 is a hexadecimal inteuer, which corresponds

with the control code.
Operand-3 is a reference 1o a binary or decimal data item.

14,72
May 1979

CREDIT REFERENCE MANUAL

| DSCH i

Cantinued

Contrad Rec - mended
Code value icentifier
00 TR MT Load cassetie/tape LOAD
01,S0P K Turn on indicator ON
! Transfer parameters TRPAR
i Transt, doc. param. (PTS6371)
01 Ly | Furn otf indicator OFF
Do y betstatus SSTAT
i
1
0z Ov P Erase display line ERASE
06 TV oY Position voucher/ PO
! pass book. (Number
| of line steps) Position
Cursor
PTS6271, line number LINNC
[45) oLt Random delete DEL
0B A0 Do Set tirne out value STIMO
SOP.De K Set indicator tlashing FLASH
o]} [RINE 3et currency {data) GCD
op [p1 M| Get corrency (index) GCD
™.y Set printsi parameters SETPAR
o | Attsch device/file ATTACH
! Lwait bit must be set)
{‘;..- S
CF ' Detrach device/file DETACH
I lwait bit must be set}
10 (R ! Delete record and index IDEL
}
11.1719-FF U Raservad for future use
sk

Vay 1372

CREDIT REFERENCE MANUAL

Contii

Device dependent control inforiv:

Control Device Data-frem corteiig Significance
code type
00 TK z without szquence
number on tape,
O with sequance
ane.
00 SOP i.ight ositions corresponding
.01 ~ o bits in the binary
at are turned on/off,
}osather is are not altered.
f T most panel light
oo s with bit 15 in the
l 3 item
00 DI/KI PTS 6241 and 6242, |
01 0 sliel Ly a
! ! [L]!LZ!L3!L4ng:L,e]L.[szf
o 7 8 "9 10 11712 13 147 b Light positions cor-
" responding with the

PTS 6232 and 6234 one bits in the bi-
nary data item are

; :
LT]] fefmfeelu] wmedonoft ot
Lamp L1 on each
device.

T

o7 "gtatiol 1273

PTS 6233
[B] lLBIL7]L6|L5IL4iLSfLZ}L?]}
o7 Te a2t e Mgt

B=1, Bell is sounded

PTS 6331: at the keyboard.

ol | [[[| Jelefu)

"o "7 "8 Tg 041 21314 15 !

PTS6236, PTS6271, PTS6272

[o] BEEEED

0 R EETREVAEERETRET

1.4.724
May 1975

CREDIT REFERE

FDSC1 i Centinued
RO
Control Device Data-item contains: Significance
code type
rd
00 o “ 7 8 15 When issued from normal
task
| & 0| TASK Address |
0 7 8 15 Wher cued from a DC-
[R— task
i | TC-Select | TC-poll addressl
P zudress
[84] ine card reader iamos
) no action o
¢ i famo is turned on (input from BCR)
7 To T Aot valid
FT 1T T Aash lamps Linput from PIN keyboard)
01
on. turn lamp off
f famp flashing, not valid
! i tamp off, no action
[70 | iflamp on, no action
| W lamyp flashing, turn lamp on
. i 3 off, no action
r_‘l 1 on, turn lamp off
p flashing, turn tamp off
i off, no action
01 oo Set status
02 338 Numiber A number of characters as
specified in the binary data. |
) item, are erased from t-
‘ current curser nosi
/ Only characters oi ;
i : same line where tns &
! i is positioner can b ergss
i ; The cursor romee o0y
original posin.er, T¢
: maximum nomber .
t
)
3

CREDIT REFERENCE MANUA!L

DSC1 Continued
Device dependent controi information
Control Device Data-itern confair - t
code type ;
s - e and column
. . ad in the binar
06 DY nary
sucsi home position.
¢4 char per line
char per fine)
cureric version)
: per line
| i 40 characters
: 4 characters
| ol i grased
06 TV number of line steps. ! stz siook by
[T of fine feed
vy ane ling), in the
. oatattem,
08 DL Logical record number. T character is
B FREE” on the
record, 1he logical record
cumber ot which is in
the bury data item.
Deine 5 onty allowed
2N & T hich is
iounder exclusive
[drnces:
Exulusive accass is re-
lea stret function
iNe chr oo performed
1o deiect f the record
| was atready "FREE)
0B 11,10 Number Set dme i muitiples of 100 msec
for intertesk communication,
attech/derzch device/file or data
COAPMLTICation
0B SOP,DI PTS 6241 and 6242
Kl
[o JLi |L2TL3 { L4| LSI 6l i/ | _Oj Light positions cor-
— 1 3 T T T T 1 oor ndi i
7'8 'a "10 11 12 i3 a1 espo»dl_ngwnh_the
one bits in the binary
aata item are lit once
2very second.

1.4.76
May 1975

CREDIT REFERENCE MANUAL

Continued

Device dependent contral information:

Control Device Data-item contains: Significance
code type

PTS 6232 and 6234

Ll T[T [|L4]L3]Lzlu|

7789 10 111213

PTS 6233
I_BL |L8[L7|L6|L5|L4[L3|L2|L1]
J 7'8 V9 1011 1271314 "15"

If B=1, a buzzer is sounded at the keyboard.

0B SOP PTS 6331:

ol T T T T [Jwfefu]

7'8 "9 ' 10 11 1213 14 15"

Lamp L1 is the left
most lamp on each
PTS 6236: device.

f L1TL2|L3|L4|L5{L6]

10011 12113 gt gl

oc DL Current Record Current Record Number of a data file
Number (Data record) is returned in the binary data item.
oD DL Current Record Current Record Number of a index
Number {Index record} file is returned in the binary data
item
oD ™V,
(PTSE371)

With this instruction it is possible to change one or more of the following
parameters:

— Upper/Upper and Lower case character set {L)
— National character variation (NCV}
— Character pitch document/journal {CPD/CPJ)

The first two parameters are the same for both the journal and the document
station, but the character pitch may have different values for the two stations.
All the parameters may be set up in one request issued to only one of the
devices. This instruction is only intended for use where the parameters have
to be changed during the running of the application; if they are fixed, they
should be specified during system generation.

1.4.77
May 1979

CREDIT REFERENCE MANUAL

Dsc1 Continued DsC1

Control Device Data-item contains: Significahce
code type

The data items contains the parameter information, as follows:

0 3 |4 718 11 12 15

L NCV cpJ CPD

where :L is the case indicator;
if zero, no change is required;
if set to eight only upper case characters are required. Any code in
the range /60—/7E is printed as the corresponding capital letter, If
set to nine, bath capitals and lower case are printed; the height of
the capitals is reduced from 2.7 mmto 2.1 mm by using seven dots
instead of nine,

NCV is set within the range 0—A for the national character variations,
as shown in the tablet at the end of this DSC1 description.

CPJ and CPD are the character pitch for the journal and document
stations respectively; if set to zerg, no change is required.

The pitch may be 4, 5 or 6, corresponding with 15 char/inch,

12 char/inch, or 10 char/inch respectively.

{f any of the parameters have an illegal value, none of the parameters will be set,
and the request is completed with CR = 2 (Error).

If the printer is not operable for any reason, the request is completed with

CR = 2 (Error); in this case the parameters are stored and sent to the printer
when power is restored, but in practise they should be sent again, unless an
XSTAT shows that this was the only cause of the CR being set to 2.

o] Number Attach a device or file, with a time
out value in the binary data item.
{Multiples of 100 msec).

Time out zero is aliowed; then
control is immediately given back
to the task which issued the
request. Statuscode indicates
whether the device or file is
attached.

14,78
Septermber 1979

CREDIT REFERENCE MANUAL

DSC1 Continued DSC1

Table of National Character Variations

-Character Codes
NCV Countries Upper case Lower case
/23}/40|/5B|/5C{/5D|/60{/7B{/7C|/7D|/7E
0 | Great Britain, Belgium . -
Netherlands gregl \ I { I }
1 Germany, Luxemburg, " % .
Austria, Switzerland " §|AjOfU a oy ¢ s
2 France, Switzerland, x o . . N N
Belgium, Luxemburg £1a G| 8 © b
3 | Spain, Argentina, - R _
Venzuela gret Ny i a }
4 | laly., £l6| |clelolaloleld
Switzerland
5 | Sweden, o f 5 . - |
Finland #|E|A]l O] A} &) 4 0 a
6 Denmark, . 2 -
Norway (1) £i1elg1 0] A « [
7 | Portugal, x . ~ ~ | -
Brazil £ 1@ Al ¢ 0 3 c| @

8 | Yugoslavia elz| ¢l E1S|seleie]|~
9 | USA, Canada, " . -
Australia el 1 { l }

10 Denmark , o . A
Norway (2} #IE|R| O] Al é]le] 6| a

Note : Use of a lower case character code when Upper Case only has been selected via
the DSC1 instruction will result in the equivalent upper case character being
printed.

1.4.79
September 1979

CREDIT REFERENCE MANUAL

Continued

Contol
code

Device
type

Data-item contains:

Significance

OF

Zero

Detach a device or file.
Time out value must be
zero.

DL

Logical record

The data record and belonging
index records are deleted.

(The deleted data file records
will not be re-used in this
release).

The index file record is only
deleted when data-management
has read the data file record
correctly.

00

TV

Index value

With this instruction the
previously defined parameter
table is transferred to the
printer. The table has been

set up during system generation
or by DSC2 with control code
X'11". The data item must
contain the index value pointing
to the required parameter table.

When the document is positioned,
new parameters cannot be trans-
ferred until the document has
been released. If any of the
parameters have an illegal value
the station is not opened and

the instruction is completed

with bit O set in the status code.
This bit is also set if the station

is already open and the document
has been positioned.

1.4.80
September 1979

CREDIT REFERENCE MANUAL

DSC2

Syntax:

Type:

Description:

Condition
register:

Condition
mask:

Example:

Intermediate
code format:

Data set control two

[statement-identifier] v DSC2 w[.NW,] data-set-identifier,
control value } data-item-identifier-1, data-item-identifier-2,
equate-identifier

size-identifier

1/0 instruction

This statement is used to control a data set referenced by data-set-
identifier, which is currently only the teller terminal printer PTS6371.
The kind of control is specified by the control value, which

currently can only be X'11',

NW indicates that the no wait option is required.
Data-item-identifier-1 refers to a binary or decimal data item containing
control information to be passed to the device.

Data-item-identifier-2 refers to a string data item containing the
buffer information.

Size identifier refers to a binary data item containing the number of
characters to be transferred from the buffer,

= 0if 1/O successful {OK)
= 2if Error (ERR)
= 3 if Begin or end of
device {BEOD)
0 1 2 3 4 15) 6 7
oK ERR|BEOD|OK ERR | uncon
ditional

DSC2 DSTP, SDOC, CONTR, BUFF, SIZE

0 314 7
Byte 1 0 0 1 110 0 0 O
Byte 2 external reference
operand-1 | W L data-set-identifier
operand-2 controf value
operand-3 data-item-identifier-1
operand-4 data-item-identifier-2
operand-5 size-identifier

Bytes 1 and 2 are filled by the system.

Byte 2 contains a reference to an external system routine.
W is the wait bit.

W=0 no wait

W=1 wait

1.4.81
September 1979

CREDIT REFERENCE MANUAL

DsC2

Contro!
code X'11’

Continued DSC2

operand-1 is a reference to the relevant data set

10/100 refers to the first data set.

operand-2 is a hexadecima! integer, which corresponds with
the control code.

operand-3 is a reference to a binary data item

operand-4 is a reference to string data itemn

Significance

This instruction is used to define the print layout and size of a document,
by supplying a set of parameters describing the document. The number of
sets is specified during system generation. The different document para-
meter sets are held in a table in the system, and can be referenced by an
index having a starting value of zero for the first entry.

The first entry in the table is supplied with a set of standard parameters
for A4 unfolded documents, which may be used if required. These are
shown in a table at the end of this instruction description.

These parameters are included during system generation, and this instruc-
tion is only used to recefine a parameter set during application running,
where a correction or change is necessary. .

The number of characters to be transferred must be 14, 18 or 22, depen-
ding on the length of the parameter set to be replaced in the table (see
below).

Data item identifier-1 refers to a binary data item, which must contain
the index vaiue for the required table entry.

Data item identifier-2 refers to a string data item which must contain the
set of parameters to be replaced in the table.

All parameters must be supplied in 1SO-7 code format.

If any of the parameters are missing or have an incorrect value, the
request is completed with CR=2 (Error), and the table in the system is
nat updated.

Parameter table entries :

Parameter Length Range Unit
Type in bytes
DT 1 0-3
TO 1 -9 10s
LS 2 06,10,12,15 1/60"
NL 2 61-98
BL 2 14-99 1/60"
MA 2 01-80 1/60”
MF 1 1-7 1/60”
LM 1 0,1
CM 1 0,1
HP 1 0,1 .

UE 2 15-82 1/5",1/10"
BE 2 00,24-99 1/60"
DW/UL 2 40--97/01-40 1/60"/—
cw 2 00-99 1/60”

1.4.82

September 1979

CREDIT REFERENCE MANUAL

Dsc2

Continued DSC2

If DT=0, parameters UE onwards are not required.
If DT=1, parameters DW onwards are not required.
I1f DT=2 or 3, all parameters are required.

DT:

T0:

LS:

NL:

Document type.

0 = Unfolded sheet document with a minimum size of 50 x 110mm.
If this type of document is used, a simplified method of
positioning is carried out, but this is not as accurate as the
method used for other types. When using documents with a
height of less than 75mm, this is the only type allowed.

1= Unfolded documents in general with a minimum size of
75 x 100mm. This is the normal type used for unfolded
documents.

2 = Vertically folded (passbook).

3 = Horizontally folded (passbook),

Note that it is possibie to print folded documents using

DT =0 or 1, but is this case the positioning is fess accurate, and it is
the responsibility of the application to see that printing is not
performed on the fold. In the case of vertically folded documents,
this means that each complete line must be written with two EDWRT
or WRITE instructions to ensure that the print head is lifted over the
centre fold.

Timeout. .

0 = No timeout for document insert.

1-9 = the timeout required in multiples of 10 seconds. Alf used,
the position document — will complete with bit 10 in the
return code if no document has been inserted within the
specified time.

Line spacing. The distance between two lines, expressed in units

of 1/60” (0.423mm).

6 = 10 lines/inch.

10= 6 lines/inch.

12= b lines/inch.

15 =4 fines/inch.

Number of lines. The number of evenly spaced lines on the docu-

ment. Note that, for horizontally folded documents, the area near

the fold is treated with the CW parameter (see below). The upper
limits of this parameter for different document types and line
spacings are as follows:

Document type

Line spacing 0,1 2%l 3
15 44 | 25 |32

12 55 | 31 |40

10 69 | 37 |48

6 99 | 61 [80

* It is possible to have the same maximum limit on type 2
documents as for type 3, providing the document is thin and
folds easily; this will have to be tested before deciding on the
parameter to be used.

1.4.83
Septerber 1979

CREDIT REFERENCE MANUAL

DSC2

BL:

MA:
MF:

LM:

CM:

HP:

UE:

Continued DSC2

Bottom Line. The distance between the bottom of the document
and the bottom line, expressed in units of 1/60” (0.423mm). This
value must be in the range 14—99 inclusive, which means that the
bottom line may be placed between 6 and 42mm from the bottom
of the document. See diagrams at the end of this description for
clarification.

Margin. The width of the margin expressed in units of 1/10”,

Margin fine. The width of the fine margin expressed in units of
1/607". The sum of MA + MF is the distance between the right-
hand edge of the document and the margin {left or right). The
rightmost position of a right margin is 8mm from the right-hand
edge of the document, and this corresponds to the sum MA + MF

= 1. The leftmost position of a left margin is 206.2mm from the
right-hand edge of the document, and this corresponds to MA = 80,
MF = 7. The left margin must not, however, be placed closer than
3mm to the left-hand edge of the document.

Left margin,

0 = Print with right margin.

1 = Print with left margin.

Critical margin.

0= No critical margin.

1 = Critical margin. This must be set if the margin or any text is
intended to be positioned closer than 6mm from the edges
of the document. In this case, the print speed is reduced
near the edges to prevent the head overrunning the document
edges. Note that for document type 0, it may not be necessary
to set this parameter to one, even if printing close to the edge;
this will have to be tested in each case.

High pressure.

0 = Normal print pressure.

1= High print pressure, primarily intended for printing on
multiple sets of forms.

Upper edge. This is not significant for document type 0.

For document type 1, this is the distance between the bottom of
the document and the true upper edge, expressed in units of 1/5”
{6.08mm). As the limits for this value are 15—63, this means that
a document with a height of 78mm to 316mm can be used. See
also the diagram at the end of this description for further
clarification,

For document type 2, this is the distance between the bottom of
the document and the upper edge of the pages, expressed in units
of 1/10” {2.54mm}. The normal limits for this value are 2582,
but note that the distance between the bottom and upper edge
must not be less than 60mm, and the total height of the document
must not be more than 210mm.

1.4.84
September 1979

CREDIT REFERENCE MANUAL

DSC2 Continued DSC2

For document type 3, this is the distance between the bottom of the pages
of the document and the upper edge of the pages, expressed in units
of 1/10’* {2.54mm). The normal limits for this value are 48—82, but
note that the minimum distance between the bottom and upper
edges is 120mm, and the total height of the document must not
exceed 210mm, Horizontally folded documents with a distance of
less than 120mm from bottom to upper edge will need to be tested
specially, to check that the quality of the print is good enough. The
absolute lower limit for this parameter and this document type is 40.
This parameter is required to ensure that the print head is lifted as
the physical edges of the pages could otherwise jam in the grasp
mechanism.

BE: Bottom edge. This parameter is not significant for document type 0.
For all other document types, this is the distance between the bottom
of the document and the bottom of the pages, expressed in units of
1/60" {0.423 mm)}. See the diagram at the end of this description for
further clarification. The limits of this value are 24—99 or zero, which
means that the bottom of the pages must be placed 10—42 mm from,
or in line with the bottom of the document. This is normally set to zero
for document type 1.

This parameter is required to ensure that the print head is lifted as the
physical edges of the pages could otherwise jam in the grasp mechanism.

DW: Document width. This is only significant for document type 2, and
is the width of the document in units of 1/10” (2.64mm}.

UL: Upper lines. This is only significant for document type 3, and is the
number of lines on the upper portion of a horizontally folded
document.

CW: Centre width. This is not significant for document types 0 and 1.
For document type 2, this is the width across the fold on vertically
folded documents, where the print head must be released as no
printing is permitted, expressed in units 1/60” {0.423mm).

For document type 3, this is the distance from the bottom line on
the upper portion of a horizontally folded document to the first
line on the lower portion of the document, expressed in units of
1/60" (0.423mm).

1.4.85
September 1979

CREDIT REFERENCE MANUAL

DSC2 Continued

Diagram of parameters for document types 0, 1 (Unfolded document)

DSC2

T I, g 777777
5 7
| n’
{ left margin 1/10" + 1/60" Max. 206.2mn '
| 7
Right margin 1/10" + 1/60" Min. 3ma ——— [/]
V]

‘;V\'—‘j om

Bottom
line
1/60m

Zinm

50 - 320mm

Upper edge 1/5"

Bottom edge 1/60"

100 -~ 210 mm

W/[/A = Areas in which printing is not possible

1.4.86
Septernber 1979

CREDIT REFERENCE MANUAL

DSC2

Continued

DsC2

Diagram of parameters for document type 2 {Vertically folded)

FOLD

o dm] ;/ I, 7 V7
W0 000700
IO/ LI A //////////

/) L Left margin 1/10" +/j'24" Max. 206.2mn
% 7 47
g ERight margin 1/10" 4 1/60" Min Bmm————-———%J2§
.
I c nt;enw gt};m;/éo % E / (:l
E 7 E 8|
%—}smm % 3“““—-;—‘? 5
; % 4 3
7 m
78 7Kr
o]
ANk / ik
///W//// AT

ooooo t width 1/10" (100 - 247mm)

m = Areas in which printing is not possible

1.4.87
June 1979

CREDIT REFERENCE MANUAL

DSC2 Continued l DSC2 l

Table of Nationat Character Variations

-Character Codes
NCV Countries Upper case Lower case
/231/401/5B| /5C|/5D} /60| /7B} /7C| /1D |/7E
0 Great Britain, Belgium . -
Netherlands £ @l b I { ! }
1 Germany, Luxemburg, N = - - R . . .
Austria, Switzerland ¥ S|Aajoju a ° u 6
2 | France, Switzerland, N o . (
Belgium, Luxemburg £ 1a & § € u u
3 | Spain, Argentina, < . o -
Venzuela £ @ Nl { n }
4 i ltaly, « N N N . N
Switzeriand £ 9 ¢ E v a °© ¢ !
5 Syvsden, # E Al O] Al s a o a ~
Finland
6 | Denmark, 2 -
Norway (1) Erelxje)a * Pid
7 | Portugal, x ~ ~ 1
Brazil £ @j A} G g a ¢ o
Yugoslavia el 216 &8s ¢lely]|~
USA, Canada, . ~
Australia et \ ! { I }
10 Denmark , a
Norway (2) #lEj&R] 0| Ale|lae| s]|d]| "

Note : Use of a lower case character code when Upper Case only has been selected via
the DSC1 instruction will result in the equivalent upper case character being
printed.

1.4.88
September 1979

CREDIT REFERENCE MANUAL

DSC2

Continued DSC2

Diagram of paremeters for document type 3 {Horizontally folded)

4om |

M/////////////// LLLLLL LY ////

+10mm

7.
7 /////////////////

L L L LS ///77//////

v

'Left margin 1/10" + 1/60" Max. 206.2mn

Inght margin 1/10" + 1/60" Min. 3mm———~——4:)’

[Last line on upper part of document

I

10+10mm

Minimum

///// 7 —Centre wldth 1/60" im/zijmm

%

First line on lower pz_ir_t_ of _document __ 1

[i
Height of text 2.7mm '

]

A
v

on

o

6

A ////// //// /. //////////

\

Y ///7/////

Bottom line 1/
N

/W% L L //ﬂ///////////ﬂ’

Bottom edge 1A60"

(24-42mm)

(60/120 - 210mm)

TMoner edea 1/10%

Document width (100 - 247mm)

Areas in which printing is not possible

1.4.89
June 1979

CREDIT REFERENCE MANUAL

[DSC2 ’

Continued DSsc2

Table of Standard Document Parameters {entry zero in Parameter Table)

Parameter Value Description

Type

DT 1 Unfolded document

TO 0 No timeout; printer witl wait until document is inserted

LS 10 10/60°" between each line on the document

NL 68 Number of lines is 68

BL 17 The distance from the bottom of the document to the bottom of
the characters on the last line (number 68) is 17/60" = 7.2 mm.

MA 2 } The margin is set 2/102 + 2/60"" = 14/60”" = 5.9 mm from the

MF 2 rightmost edge of the document.

LM 0 Print with right margin. The last character on each line is placed
5.9 mm from the rightmost edge of the document

cMm 0 No critical margin; gives faster positioning

HP 0 Normal print pressure; this assumes multipart sets are not being
used.

UE 58 58/5" = 11.6", the height of an A4 document

BE 0 No inner pages on the document {like passhooks)

pw ¥ Not required

ot reguire
cw a

Note : this document uses right margin, This migans that it a smatler document is used, printing
may still take place, starting at a higher line number than 1 {i.e. lower on the page), and
without using some of the lefthand print positions.

Thus a different docurrent may be handlied without the necessity for the user to send
any document parameters; see illustration on next page.

1.4.85.A
September 1979

CREDIT REFERENCE MANUAL

4 DSC2

IHustration of standard document parameters {table entry zero)

Continued

SC2

Margin+Fine

September 1979

2 5.9 mm
pas—
Tt
4L
pe
o
|
A4 DOCUMENT 1
Tt
REREN
: ™
. "
s
17 T
b
Y
Use can be made of this smatler document with no change to :;
the standard document parameters, The top line will then be
- line number 37 and the bottom line number 68, Use of right
- margin means that the last character of each line will be printed]
5.9 mm from the right hand edge of the document.
The maximum number of character per line will depend on the 1
character pitch, 4
It is also possible to print a folded document using these standard IS
parameters. If vertically folded, printing of a complete line must
be carried out by two write requests, in order to lift the print 1
head over the central fold,
Teo
]
Joe
. . . 14t
Last line of print = Line number 68 %
(L Bottom line = 7.2mm \
) € 8 31! —
1.4.89.8

CREDIT REFERENCE MANUAL

Syntax:
Type:
Description:

Condition register:

Duplicate DupPL

[statement-identifier] 1 DUPL u data-item-identifier,
Format control 1/O

The contents of the duplication data-item, as defined by the FKi-
format list declaration, of the current input field is moved to the
string data-item referenced by data-itern-identifier,

A duplication data-item in a FK!-input field, may be of the type
decimal or string.

The DUPL instruction uses the same conversion rules as the
MOVE instruction for conversions from:

string ~—— string
decimal ——> string.

Exception: When moving from string to string type of data item
and the size of the receiving data-item is greater than
the size of the sending data item, the remaining
characters in the receiving data item will be X'00’,
instead of repeating the last character.

=0 Operation successfully performed
=2 No duplication data-item associated with the current input
field. (See FKI).

Condition mask:

0 1 2 3 4 5 6 7
SUCCESS | — | NO — 1+ SUCCESS| DUPL|— | UNCON-
DUPL ITEM DITIONAL
ITEM

Example:

Intermediate
code format:

DUPL « DUPITEM

Byte 1 oo11Toooo

Byte 2 external reference

operand-1 data-item-identifier

Bytes 1 and 2 are filled by the system,
Operand-1 is a reference to a string data item

1.4.90
May 1979

o,

CREDIT REFERENCE MANUAL

DVR

Syntax:

Type:
Function:

Description:

Condition
register :

intermediate
code format:

Divide rounded DVR

[statement-identifier] LsDV R data-item-identifier-1, [data-iten-idantifier-2
literal constant

Arithmetic instruction

(Operand-1} + {Operand-2) -~ Operand-1

Operand-1 is divided by operand-2. The result is augmented by 0.5 and
then rounded down. [t is stored in operand-1, Operand-2 is unchanged.
Both operands must be decimal or binary. Division by zero results in
overflow and cperand-1 is set to zero,

= 0 if {operand-1) = 0
= 1 if (operand—1) >0
= 2 if (operand—1} < 0

= 3 if QOverflow

Byte 1 0 0 0 of1 1 oL
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte 1 is the operation code {X'0C’ or X'0D’}.

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 is a reference to data-item-identifier-2, array-identifier-2
or a formal parameter.

1.4.91
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:
Description:

Dispiay Koyboard fpus

[statement-identifieri & DY K| data-item-identifier-1,
key-table-ident 1, key-tabie idenutier 2, size-idant.fier,
index-identifier, cata-item ident:fie-2

Format control i 3.

Characters are recd irom the input data set as mentionad in the FMTCTL
declaration in the data division, and stered i 3 string data item referenced
by data-item-identifier 1 {Input buffer). The size of this buffer must

be greater than the size as menticned in the "WMAXL" option, of the
current input fietd, to allow the end-ii-item key to be entered in the
buffer toe. Inpur is performed a5 & KiA-.nstraction with the input
characters echoed on the output durs et as mentioned in the

FMTCTL declaration. Onty the first input character is checked if it

is present in the keytabie referenced by key-table-identifier-1. The

first four positions in the keytabie have a predefined significance.

(See below). if this cnaracier s not present in key table-1, the current
input field on the dispiay is filled with periods.

The second and fellowing input characters are read =n i checked with
key-table-2, from which the first four positions alse have a predefined
significance {See below). If an input chigracte: is present in the key-
table, its position number {minus one), as declared in the key table, is
returned in a binary data item referenced by index identifier. After
completion of the transfer a converted key table index value is

returned in this data-item which contents may be zero, a negative value
or a positive value with the following meaning.

zero: Power failure has been present.
negative: A key lock switch has been turned.
positive: An index value ranging from 1 to (n-1) corresponding with

the position number mirus 1 in keytable-1 or keytable-2

is returned; if the transfer was correctly completed.

Note: Index value one corresponds with the second key
code in the key table,
‘n’ is the number of key codes in the key table.
When no-end-of-item key is used to complete the
transfer, the index value wiil be set to an undefined
value outside the range -255 to +255b.

{f an itlegal key code is received or the number as specified in MAXL
is exceeded, a bell signal is sent to the display and input is restarted.
After completion of the transfer a binary data item referenced by size
identifier contains the number ot characters transferred excluding
the end of item key.

14,92
May 1976

CREDIT REFERENCE MANUAL

Centinued IEY k!

When an error occurs before the wransfer is completed, an error code
is returned in the binrary data item referenced by data-item-identifier-
2. This error code may be:

0 — noerror

T — number of characters received is less than the number
specitied in MINI_.

2 — notused

2~ HOerror

4 - requestaborted.

Expectad predefined kav table items in keytable-1 and kaytable-2:

Position number Significance
in keytable.
1 BACKSPACE, When thi. K.y code i -

the cursor is maved one position to th

and a pariod is displayed in the new cursor

pasitior

If the first character position of the current

input field is reached, the same function as

CLEAR2 wili be executed.

CLEART, The current input field is erased on

the screen and its current input data item ic

cleared. Cursor is posittoned at the first
position of the next inout field,

3 CLEAR2. The current wput field is erased
an the screen, and the cursor is positioned at
the first position of the next innut field,

4 EQI General end of item key. Checks
according to the number as mentioned in
MINL is performed

i8]

Transfer ended when:

a) Any of the keys listed in keytable-1 (first position in the inpi+
field) or keytable-2 {second and following positions) except
BACKSPACE, s raceived

by The maximum number of characters as defined by MAXL is
reachad and the cuirent input field has the "NEGI” — fla; ser,

¢l Power faiiure nccurs

May 157

. CREDIT REFERENCE MANUAL

‘bYKI]

Condition register:
Condition mask:

Exampie:

Intermediate
code format:

=0if OK {Error cods

Continusd

identitier-2 is zere

= 2 if Error {Error code in data it

icentitlenZ 5 ot zera)

in data iten reterenced by data item

DYKI

referenced by daca item

|

i 2 3l a4 E 5 6 7
OK | - | ERROR ! ~ |OK | - | ERROR | UNCON-
| DITIONAL

DYKIL4 BUFFER, KTB1T, KT E2, SIZE, INDEX, ERRCODE

Byte 1 o 0 1 i i o ¢ 06 0
Byte 2 exivrniat reference

operang-1 data-iem-identifier -1

operand-2 key tebie identtierd

operand-3 key table identifier 2]
operand-4 size-identifier

operand-5 inciex-identifier

operand-6 data-item-identifier-2

Bytes 1 and 2 are filled by the systermn.
Operand-1 is a reference to a string data item.

Operands-2,

3 are references to key tables.

Operands-4, 5, 6 are references to binary data items.

1.4.94
May 1379

CREDIT REFERENCE MANUAL

Syntax:

Type:
Description:

Edit Input Field EDFLD

[statement-identifier] w EDFLD w data-item-identifier-1,
key table. identifier, size-identifier, index-identifier, data-
item-identifier-2.

Format control I/O

Editing is performed in the string data item referenced by data-item-
identifier-1 (buffer).

The size of this data item must be greater than the number mentioned

in “MAXL" of the current input field. Depending on the contents of the
binary data item referenced by size-identifier, the following operations
are performed.

{size-identifier) = 0 The contents of the data item of the current
input-field is moved to the data item referenced
by data-item identifier-1. If the "REWRT"" flag
is set for the current input field, the contents of
data-item-identifier-1 is displayed on the screen in
its proper position without editing accor<'ng to a
picture definition.

The cursor is placed at the first character - sition
of the field.

(size-identifier} # O The cursor is placed at a character position, the number
of which is contained in the binary data item referenced
by size-identifier, ““1’" corresponds with the first charac-
ter position,
Then characters are read from the input device, declared in the FM7 2L
declaration, into the character positions in the buffer (data-item-identifier-1).
The character positions correspond with the cursor position within the current
input field. If a keycode is received which is present in the first four positions
of key table, referenced by key-table-identifier, the corresponding funcu + is
executed and reading is resumed.

On a illegal keycode, a bell signal is sent to the output device {(FIMTCT'
and reading is resumed.

Expected predefined keytable items in keytable

Position number Significance
in keytable

1 ~— Non destructive space. Cursor is moved
one position to the right. No action if cursor is
at the right-most position of the current input
field, or beyond the last significant character
{i.e. at X'0Q' in the buffer).

2. <—— Non destructive backspace. Cursor is moved
one position to the left. No action if cursor is at
the left-most position of the current input field.

3. INS. Insert character, The characters from the
current cursor position up to the last position in
the field are shifted one step to the right. Any
character shifted beyond the end of the line is
dropped.

1.4.95
May 1979

CREDIT REFERENCE MANUAL

Continuecd EDFLD

Position number Significance

in keytable
4

9 or higher

DEL. Delete character. The character at the
current cursur position is deleted. Characters

16 the right of the current cursor position are
shifted one sten to the left. Cursoar is not
moved.

CLEAR1. Clear input field and input data item.
Cursor is moved to the first posit:on of the
current ingut field. Terminate EDFLD. The
contents of data item referenced by size identifier,
is set tc zero.

CLEAR2. The current input field is erased on
the screen and the cursor Is positioned, at the
first position of the input field. Terminate
EDFLD.

CLEAR3. Clear remaining positions i the field.
The characters from the current cursor position,
up to the last character in the fieid (inclusive)
are cleared. Terminate EDFLD.

EOI. Common end of item. Contents of the
binary data item referenced by index identifier,
is set to three.

Terminate EDFLD.

Editing is terminated when:

al A keycode is received, which is present in position b or higher,
in the keytable.

b) Power failure has occurred.

c) A keylock switch is turned.

d} V/O error oceurs.

After completion of this instruction, a value with following significance
is returned in the binary data item referenced by index identifier:

zero:
negative:
positive:

power failure has occurred.
akeylock switch has been turned.
an index in the range from

1 to {n-4) is returned, corresponding to positions 5 to N

in the keytable {n is the keycode position in the keytable).
Index vatue 3 is returned when the common EQI code,
from position 8 in the keytable, is received.

In the binary data item referenced by size identifier is
returned the effective length of the operation. The
effective length is the number of resulting non-nutl
characters in the buffer (data-item-identifier-1),

A null character has code X'00",

In the binary data-item referenced by data-item identifier-2, is returned a
code with following significance :

1.4.96
May 1978

CREDIT REFERENCE MANUAL

Condition register:

Condition mask:

Example:

Intermediate
object code:

Continued

Contents Significance

EDFLD

0 OK
1 The etfective length is tess than "MINL" {not set when
CLEAR1
2 not used.
3 1/0 error
4 request aborted.
=0if OK

=2 if ERROR (The data item referenced by data-item-identifier-2,

contains the error code).

0 1 2 3 4 5 6 7
oK — | ERROR — |oK | - | ERROR UNCON-
DITONAL

EDFLD LI SPINPUT, SPKTAB3, SPBINWT, SPBINWZ, SPBINWA,

Byte1oo11}oooo

Byte 2 external reference
operand-1 data-item-identifier-1
operand-2 key table identifier
operand-3 size-identifier
operand-4 index-identifier
operand-5 data-item-identifier-2

Bytes 1 and 2 are filled by the system
Operand-1 is a reference to string data item.
Operand-2 is a reference 10 a key table.

Operands-3, 4, 5 are references to binary data items.

1497
Vav 1979

CREDIT REFERENCE MANUAL

EDIT

Syntax: [statement-identifier (S EDITi data-item-identifier-1 {data—item-identifier-Z}

Type:

Nescription:

Condition register:

Example:

fntermediate
code format:

format-list-identifier

String instruction

This instruction uses the format fist 1o convert decimal aind string
data items into an edited string. The data items specified in the
format list are edited according to the specified format and stored
in a string data item indicated by operand-1.

Format-list-identifier is a reference to an edit format list which is
composed of format declarations {FRMT, FCOPY, FMEL etc,)
Instead of a format-list-identitier, operand-2 may be a reference to

a string data-item. This data-item must contain format-list characters
as present in the format-literaipool. {output CREDIT linker). [tem
size must be great enough to contain these characters, The CALL
FMOVE instruction may be used to fili the data-item.

Not significant.
EDIT FIELD, FORMI1

Byte 1 o 1 t oJo 0 oIL

operand-1 data-item-identifier-1

operand-2 format-list-identifier

Byte 1 is the operation code (X'60" or X*'61")
Operand-1 is a reference to a string data item.
L=1 operand-2 is a reference to a format list.
L=0 operand-2 is a reference to a string-data-item.

1.4.98
May 1979

CREDIT REFERENCE MANUAL

EDSUB

Edit Substring

Syntax: {tatement-identifier] LUEDSUBw data-item-identifier-1, pointer-identifier,

Type:
Description:

Condition register:

Example :

Intermediate
code format:

data-item-identifier-2
format-list-identifier

String instruction,

Editing as specified in the formatlist is performed into a subfield of
the string-data-item indicated by operand-1, beginning at pointer-
identifier.

Upon completion, the binary-data-item indicated by pointer identifier
is updated and points to a position immediately after the last position
affected by the editing.

The first character in the string data item is counted as zero when set-
ting the pointer.

[nstead of a format-list-identifier, operand-3 may be a reference to a
string data-item. This data-item must contain format-list characters
as present in the format-literalpool. (output CREDIT linker). Item
size must be great enough to contain these characters, The CALL
FMOVE instruction may be used to fill the data-item.

Unchanged.
EDSUB LI BUF, P1, FRM0OO1

Byte 1 011011101.

operand-1 data-item-identifier-1
operand-2 pointer-identifier
operand-3 format-list-identifier

Byte 1 is the operation code (X'6C’, X'6D’)
operand-1 is a reference to a string-data-item.
operand-2 is a reference 1o a binary-date-item.
L=1 operand-3 is a reference to a format list.

L.=0 operand-3 is a reference to a string data item.

7.4.99
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:
Description:

Viite EDWRT

[statementidentit.e-; . &1 -7 Cen s dava set ic zntifier,

formst!
ldatavi @i

1/0 instructior.
T a-s edited inco a buffer with
Afrer editing, the buffer is

1

The data items in the torma
a format as indicar ¢
output to the gevice indics
Format-list-identifier is 3 -
composed of fo'mu der
Instead of a form
string data-itarm

as present in :
size must be great enciiyl
FMOVE instruction ma,
Data-set-ident:

avraat i

et Het wihieh s

GO EMEL eteld,

2 4. elerence to a

11 st characters
T linker). Item
The CALL

™

be data e

the resevant data set. NW, indicates

e size of
T operation
- WRT is executed

One buffer per suts
the buffer, is defired it
on a data set shou'a be voiny
on that data set.
The first two bytes in tiwe buffer can convan a control character, The
first byte must always be une : 1o zero and the second byte contains
the contro} character. The function of the control character is device
dependent. The control chercnwer mey Fave the following values:
® General Terminal Printer ¢ ine printer

X’'2B' Print the line without ad the paper.

X'30" Advance two lines before ¢ ig.

X'31" Skip te top of form before ori ntmg {only for fine printer)

Other codes: One line feed and carriage return is executed before

printing.

ol

Special characters silowed in the user butfer and rot restricted 1o the
first word in the buffer:
X117 Tabulation character. Tris characior should be followed by
twao 1S0-7 digit characters qiving the tabulation position.
{only tor GTP)
® Teller terminal printer (PTS6222, PTSE223):
Voucher/nassbook printing.
X'2B' Print the line without ad ing the paper,
X'30" Advance two line steps e printing
X31—=X'39" Advance paner 1--3 line steps before printing.
Other codes: One line steix and csrriage return is executed before
printing.

1.4.100
May 1975

CREDIT REFERENCE MANUAL

EDWRT Continued EDWRT

Journal/tally roll printing.

X’30" Advance two line steps before printing. (two steps =
one line feed)

Other codes: One line step is executed before printing.

Special characters allowed in the user buffer:

X'09" The printhead is moved to the rightmost print
position of the voucher. This character should be
present in the last buffer position.

X'0D’ The printhead is moved 1o the rightmost position of
the journal station. This character should be present in
the last buffer position.

Video display or plasma display

X'2B° The text is displayed from current cursor position.

X'30" Cursor is advanced two lines and positioned at the beginning
of the line, before the text is displayed.

X’31" Evase display and position cursor on home position before
the text is dispfayed.

Other codes: Advance cursor one line before the text is displayed.

e Teller terminal printer PTS6371

The control character present in the secand character of the

buffer, as follows:

/2B — printing is carried out from the last position of the
previously printed line on this device. However, if
the character pitch has been set, or if positioning
has been carried out to the same line, since the
previous line was printed, the printing will be from
the tabulation position on the present line.

/30 — the paper is advanced two lines, and the printing
carried out from the tabulation position.

/31 — journal: the paper is advanced three lines and the
printing carried out from the tabulation position.
This will make the previously written data readable
through the window on the journal station.

— document: printing is started from the tabulation
position on line 1.

Any other value in the control code will cause one line feed

before printing from the tabulation position.

The requested length must include the two bytes used for

the control code, but if it is two, only the action specified

by the control code is carried out.

The maximum line fength on the two print stations is

limited to the following, based on normal character width.

Journal Document
10 characters/inch 33 80
12 characters/inch 40
15 characters/inch 50

One expanded character equals two normal characters.

1.4.101
May 1979

CREDIT REFERENCE MANUAL

EDWRT

Continued EDWRT

Special characters allowed in the user buffer and not restricted to the
first word in the buffer :

Characters Valid for All Displays

/AE :
m

/07 :

Displayed as point {/E2)}

Tabulation character. This character should be followed by
two 1S0-7 digits giving the tabulation position.

Bell is sent to the display.

Characters Valid for PTS6344 only

12 :
/13 :

/14

/1C
/1D :
/1E :

/1F

Underline start. Output of characters which fotlow this
character are provided with underline.

Underline stop. Qutput of characters which follow after this
character are not provided with underline. Underline stop
mode will also appear at request end.

Fast output. First character fotlowing /14 will be transmitted
in fast output mode up to requested {ength,

Note that cursor will remain unchanged.

Data to keyboard.

Master clear to keyboard

Low intensity start. Qutput of characters which follow after
this character, are displayed at low intensity,

Low intensity stop. Qutput of characters which follow after
this character are displayed at normal intensity.

Normal intensity mode will 2lso appear at request end.

Characters Valid for PTS6371 printer only

nz
/13
/19

/1A

/1B

Underline start. Output of characters which follow this character
are provided with undertine.

Underline stop, Qutput of underlined characters stops. Underlining
also stops at request end .

: Start/Stop expanded character mode. Characters following the first

occurrence of this character in the buffer are printed as double width
characters, until the next occurrence of this code in the buffer.

Each character in the range /30 — /3C ‘which is preceded by this code
is printed as an OCR—A character. Any other legal character preceded
by this code is printed as a space.

Zach of the characters described below, which is preceded by this
code, is printer as a spacial character. Any other legal code that is
preceded by this code is printed s a space.

Cades /20-/29 are for use when the National Character Variation
currently in use { see DSC1) does not contain the character required.
They are printed as Space, &, , #,0, £, Space, x, -» and ¢ respec-
tively.

Codes /30—/39 are printed as numerics with a greater width than normal,

.and are more the size of alphabetic characters,

Codes /3A—3F are logotypes, defined by the user. The character generator

for these codes is a separate unit which must be in the printer. If it is not,
these characters are printed as spaces.

1.4.102
September 1979

CREDIT REFERENCE MANUAL

EDWRT Continued EDWRT

/AE : Each character in the range /30—/39 which is preceded by this code is printed as
a roomless point numeric,

Any other legal character preceded by this code is printed as a space.

0 if 1/O successful ~ (OK)

Condition register: =
= 1if End of file (EOF)

2 if Error (ERR)
3 if Begin or End of (BEOD}
Device
Condition mask: o 1 2 3 4] 5) 7

OK| EOF | ERR| BEODjOK |EOF | ERR | Uncondi-
tional

Example: EDWRT DSTPTR, FRM0O1

Intermediate
code format:

Byte 1 0 0 1 11000“

Byte 2 external reference
operand-1{ W 1 data-set-identifier
operand-2 format-list-identifier

Bytes 1 and 2 are filled by the system. Byte 2 contains a reference
to an external system routine.

W is the wait bit.

W = 0 no wait

W = 1 wait

Operand-1 is « reference to the relevant data set.

10/100 refers to the first data set.

L = 0 operand-2 is a reference to a string-data-item.

L =1 operand-2 is a reference to a format list.

1.4.103
September 1979

CAREDIT REFERENCE MANUAL

ERASE Erase ERASE

Syntax: [statement-identifier] w1 ERASE u control value,

irrainer e
data-item-identifier-1, ‘c;f;fajlt;gqnx-cg’e:ttmer 2}
stial

Type: Format control 1/O
Description: Depending on control value, one of the following operations, on the
current format list, is performed.
Control Value Significance
0 The fines, ranging from the line number contained

in the binary data item, referenced by data-item-
identifier-1, to the line number contained in the
binary data item referenced by data-item-identifier-2
are erased on the screen, When the second line
number (referenced by data-item-idantifier-2) is
zero, then all lines of the current format list are
erased starting at the line number contained in the
data-item referenced by data-item-identifier-1.

Both data items may contain the same line number.

1 Al input fields (FKI+FINP} of the current format
list with an input field number ranging from the
number contained in the binary data item referenced
by data-item-identifiar-1 up to the number contained
in the binary data-item referenced by data-item-identifier-
2 are erased on the screen.

2 As conirol value 1, but also data-items belonging to the input
field are cleared,

3 As control value 1, but only data-items belonging to the input
field are cleared.

4 As control value 1, but erasing is not performed on input fields
with the “"NCLR" flag set.

5 As control value 2, but erasing is not performed on input fields
(and the corresponding data items) with the "NCLR" flag set.

6 As control value 3, but no resetting on to the input fields
belonging data items is performed, which have the “NCLR" flag
set,

9 As control value 1 Note:

10 As control value 2 These control values are similar

11 As contro! value 3 to the control values 1 up to

including 8, but only

12 As control value 4 FKl-type input fields are

13 As control value 5 taken into account.

14 As control valua 8

The last field number to be erased may also be indicated by a literal constant of
the type binary.

1.4.104
May 1979

CREDIT REFERENCE MANUAL

Continued

Condition register: =0if OK

=2 if ERROR
Condition mask: 0 1 2 3 4 5 6 7
OK | — | ERROR| — | OK | — [ERROR | UNCON-
DITIONAL
Example: ERASE, SPBINW1, =0

Intermediate
object code:

Byte 1 o ¢ 1 1 [g 0 O L
Byte 2 external reference

operand-1 control value

operand-2 data-item-identifier-1
operand-3 data-item-identifier-2

Bytes 1 and 2 are filled by the system.

operand-1 is a control value.

operands-2,3 are references to binary data items.
L=1 operand-3 is a reference to a literal constant.
£=0 operand-3 is a reference to a data item.

1.4.106
May 1979

CREDIT REFERENCE MANUAL

EXIT Exit EXIT

Syntax: [statement-identifier] LIEXIT
Type: Scheduling instruction,

Description: Execution of the task is terminated, but may be restarted by
the activate instruction,

Condition
register: Not significant.

Intermediate
code format:

Bytet|]0 0 1 1{0 0 0 O
Byte 2 external reference

Bytes 1 and 2 are filled by the system.
Byte 2 is a reference to an external system routine.

1.4.106
May 1979

CREDIT REFERENCE MANUAL

GETABX

Syntax:
Type:
Description:

Condition register:

Condition mask:

Example:

Intermediate
object code:

Get Current input field number

Format control 1/O

The number of the current input field is returned in a binary data
itemn referenced by data-item-identifier. When no input field is
current, the content of the binary data item will be zero. The field

type is indicated in the condition register.

= Q The current input field is an FK!-type field
=1 The current input field is an FINP-type field

=2 No input field is current.

GETABX

[statement-identifier] u GETABX u data-item-identifier

Bytes 1 and 2 are filled by the system.

operand-1 is a reference to a binary item.

1.4.107
May 7979

-0 1 2 3 4 5 6 7
FKI- | FINP-| NO — | no no current | UNCON-
type | type | CURRENT FKI | FINP| inpfid. | DITIONAL
INP FLD type { type
GETABX FLDNUM,
Bytel [0 0 1 1 FJ 0 0 ©
Byte 2 external reference
operand- data-item-identifier

CREDIT REFERENCE MANUAL

GETCTL Get control value GETCTL

Syntax: [statement-identifier] U GETCTL w controf value,

data-item-identifier
Type: Format contro} 1/0.

Description: QOne of the values, following the options APPL, MAXL, MINL or
SCHK, from the current input field is transferred to a binary data
item, referenced by data-item-identifier. Options are specified in
the FKi— or FINP— format list declarations. Value zero returned
if the requested option is not defined in the FKI or FINP

description.
contral value significance
0 The "APPL" value is transferred.
1 The "MAXL" value is transferred.
2 The "MINL" value is transferred.
3 The “SCHK"’ value is transferred.
Condition register: Unchanged.
Example: GETCTL Lt 3, CHECK

Intermediate
object code:

Bytel {0 0 1 T1]0 0 0 O

Byte 2 external reference
operand-1 control value
operand-2 data-item-identifier

Bytes 1 and 2 are filled by the system
Operand-1 is the control value
Operand-2 is a reference to a binary data item.

1.4.108
May 1979

CREDIT REFERENCE MANUAL

GETFLD

Syntax:

Type:
Description:

Condition register:

Condition mask:

Example:

Intermediate
code format:

Get input field GETFLD

[statement-identifier] s GETFLD w control value,
data-item-identifier-1, data-item-identifier-2

Format controi 1/O

The input field, of the current format list, which input field sequence
number is contained in the binary data-item referenced by data-item-
identifier-1, becomes current. The field sequence numbering to be
used is specified in control value, which must be a decimal value

0 for FKi-input field sequence numbering.

1 for FINP-input field sequence numbering,

2 for all input field sequence numbering. When the data-item-
identifier-1 refers to a binary data-item with contents zero, the
last input field of the specified type (in control value) will become
current,

if, before the execution of this instruction any empty compulsory

field was found (its corresponding data-item is empty and in the

FKi-field the muster enter flag ME, was set}, then after execution

of this instruction the number of this compulsory field will be

returned in a binary data-item referenced by data-item-identifier-2

and the condition register is set.

On a successful operation this data item contains zero.

= 0 Operation successfully performed, no empty, compulsory field
was found. (Compulsory field is defined in the FKI input field
declaration).

= 2 The addressed input field sequence number was not found within
the current format list. .

= 3 Operation successfully performed but an empty compulsory field
was found.

] 1 2 3 4 5 6 7
OK [— [ERR EMPTY | OK | —] ERR Uncon-
ditional ;

GETFLD O, iNPF1, ERFLD

Bytel| 0 0 1 1] 0 0 0 O
Byte 2 external reference
operand-1 control value
operand-2 data-item-identifier-1
operand-3 data-item-identifier-2

Bytes 1 and 2 are filled by the system.
Operand-1 is the control value 0, 1 or 2
Operands-2, 3 are references to binary data items.

1.4.109
May 1979

CREDIT REFERENCE MANUAL

GETID Get task identifier GETID

Syntax: [statement-identifier] L GETID L data-item-identifier
Type: Scheduling instruction.
Description: The current task identity is transferred to a data-item indicated by

data-item-identifier,
The data-item may be of the type binary or string. n case of a string
data-item only the first two character positions are affected.

Condition register: Unchanged.
Example: GETIO, TASKID

Intermediate
code format:

Byte1] 0 0 1 1]0 0 0 0

Byte 2 external reference

operand-1 data-item-identifier

Bytes 1 and 2 are filled by the system.
Byte 2 is a reference to an external system routine.
Operand-1 is a reference to a binary or string data item

14.110
May 1979

CREDIT REFERENCE MANUAL

GETTIME Get clock GETTIME

Syntax: [statement-identifier] .s GETTIME w2 data-item-identifier
Type: clock control.
Description: The current time of the system clock is returned in a string data

item indicated by data-item-identifier.
The string data item must have a length of at least six characters.

The timeisreturnedas 4 M, M, 5, S

= hour
M = minute
S = second

Condition register: Unchanged.
Example: GETTIME TIME

Intermediate
code format:

Byte1] O 0 1 110 0 0 O

Byte 2 external reference

operand-1 data-item-identifier

Bytes 1 and 2 are filled by the system.
Byte 2 is a reference to an external system routine.
Operand-1 is a reference to a string data item.

1.4.111
May 1979

CREDIT REFERENCE MANUAL

Syntax: [statement-identifier] (; IASSIGN s data-set-identifier,
data-item-identifier, file-name-identifier-1, file-name-
identifier-2, volume-name-identifier

Type: 1/Q instruction

Description : The index file name (8 bytes including trailing blanks}, present in the string-
data-item referenced by file-identifier-1, is assigned to the data file referenced
by data-set-identifier. The file code in the data set, which is already used for
the data file assignment, now determines to which data file this index file will
be assigned. The master index file, which name (8 bytes) is contained in the
string-data-item referenced by file-name-identifier-2, is read into memory.
Volume name identifier refers to a string-data-item {6 characters inclusive
traiting blanks} in which is a reference to the volume on which master index
file and index file are present. Maximum four index files may be assigned to one
data file using different file codes. Index files must be assigned as common files.

Before an index file is assigned, the data file must be assigned. If
an assignment is unsuccessful an error code is returned in the binary
data item referenced by data-item-identifier,

The contents of this data item may be:

0 assignment successful performed
-1 request error
1 Disk 1/O error
2 No free entry in common device table.
3 Not sufficient memory space available for master index or
file descriptor blocks
4 Volume name unknown
5 File already assigned from this task
6 File name unknown
7 File section missing or found twice
8 Faulty disk format
9 More than 4 extents exist
10 No data file assigned.
11 4 index files already assigned
12 Size of disk buffers not sufficient
13 Request busy. Reissue request.

Condition register: = 0 if assignment successful
= 2 if assignment unsuccessful

Condition mas : 0 1 2 3 4 5 8 7
SUCC | - }UNSUCC| — | sucC ~ | UNSUCC | Uncondi-
tional
Example: IASSIGN w DFILE, ERRCODE, INDXFIL, MiXFIL, VOLNAM
1.4.112

May 1979

CREDIT REFERNCE MANUAL

Intermediate
code format:

Continued

Byte10011]0000

Byte 2 external reference

operand-1] 0] 0 ’dataset-identifier

operand-2 data-item-identifier
operand-3 file-name-identifier-1
operand-4 file-name-identifier-2
operand-5 volume name-identifier

Bytes 1 and 2 are filled by the system.

Byte 2 contains a reference to an external system routine.

Operand-1is a reference to a data set.

10/100 refers to the first data set.

Operand-2 is a reference to a binary data item
Operands-3, 4, 5 are references to string data items.

1.4.113
May 1979

CREDIT REFERENCE MANUAL

- !”CIEXCJC, Ura”l:h

Syntax:
Type:
Description:

Condition register:
Example:

Intermediate
code format:
{long branch}

Intermediate
code format:
{short branch)

CariE . . statement-identifier}

nt-identifieri Ly 1B . - 4 A)

[statement-identifieri, index-identifier {,external-ldentlﬁer
Branch instruction.

A branch is made to one of the identifiers in the identifier list according
to the contents of the data item specified by index-ident fier.

The first identifier in the list corresponds with the index value one.

tf the index is zerg, or greater than the number of identifiers in the

list, the instruction foilowing the indexed branch is executed.

Not significant.
1B INDEX, SYS20, SYS4Q

Bytel [0 0 1 1 LO 0 1 0
operand-1 index-identifier

Byte n list length
operand-2 statement-identifier-1
operand-3 statement-identifier-n

Byte 1 is the operation code {X'32'}.

Operand-1 refers to a binary data item.

Byte n is filled by the CREDIT transiator and contains the
number of identifiers present in the address list.

Operands-2,3etc. contain an index to a branch address

table (T:BAT).
Byte1 [0 0O 1 1 LO 1 1 B
operand-1 index-identifier
| Byten list iength
I Byte n+1 displacement-1
Byte n+2 displacement-n

Byte 1 is the operation code (X'36°, X'37').
B=0 forward branching
B =1 bhackward tbranching
Operand-1 refers to a binary data item.
Byte n is filled by the CREDIT translator and contains the
number of identifiers present in the address lits.
Bytes n+1, n+2 contain a displacement.

1.4.114
May 1979

CREDIT REFERENCE M4/

(s]

Syntax:

Type:
Description:

Condition register:

Condition mask:

Example:

Intermediate
abject code:

indexed Insert E\j}]
writier]

[statement- J s NS [NwW,]
caia-set-identitier, data-iter-identifier-1,
data-itermi-igeatitier-2

{70 - nstruction.

The data record, present in the string data-item referenced by
data-item-identifier-1, is written as a new record to the data
fue referenced by date-set-identifier and all associated index
files are updated. Al index files must be assigned (as common
files) when this instruction is executed. The new data record
will be written after the last record, pointed by last record
number pointer (LRN), in the file. The fast record number
peinter is updated. f an index record with the same key already
exists. the new racord is placed before the old one.

In the hinary-tata-item reterenced by data-item-identifier-2

is retursied the number of remaining records in the data file,

if this number is greater than 32.767, 32.767 is returned.
When in the status code bit 10, “End of medium’ is obtained,
one index record is lost, and the index files must be rebuilt

Bit 3 ""End of File’ can be used as a warning for this situation.

=0 if 1/0 successtul {OK)
=1f End of file (EQOF)
=2 if error (ERR)
= 3 if Begin or End of (BEOD)
device
0 1 2 4 5 6 7
OK {EOF | ERR | BEOD |OK |EOF | ERR | Uncondi-
tional

IINS DSDF1, BUF1, FRNUM

Bve:i 10 0 1 1]0 0 0 0
Byte 2 external reference
operand- 1] W [Oidatarsel.identifier

operand-2 data-item-identifier-1

- data-item-identifier-2

ontains i reference 1o an external system routine
WALt D
£ (0 a data set.

1g data item,
z foiary data item.

CREDIT REFERENCE MANUAL

INSRT {nseri E\JSRT

Syntax: [statement-identifier] INSRT data-item-identifier-1, pointer-
identifier-1, size-identifier, data-
rtem-identifier-2, pointer-identifier-2

Type: String instruction,
Function: {Operand-4) l‘ie_'ffﬁ Gperand- 1
{pointer- {pointer-identifier-1)
identifier-2)

Description: Starting at pointer-identifier-2, the contents of operand-4 are inserted
into operand-1 beginning at pointer-identifier-1.
The number of characters to be inserted is given in the data item specified
by size-identifier. This insertion is accomplished by shifting the original
contents of operand-1 to the right starting at pointer-ident:fier-1.

If a non-space or non-zero character is shifted out of operand-1, the
condition register is set to overflow. Each character shifted out is lost.

The first characters of operand-1 and operand-4 are counted as zero
when setting the pointers,

Operand-1 and operand-4 must be string data items.

Condition
register: = 3 if Overfiow
Condition
mask: 0 1 2 3 4 5 <] 7
_ _ _ | over- _ _ _ _
flow
Example: INSRT TEXT1,P1,LNGTH,TEXT2,P2

Intermediate
code format:

Byte1 [0 1 1t 0{0 1 0 O
operand-1 data-item-identifier-1
operand-2 pointer-identifier-1
.c;perand~3 size-identifier
operand-4 data-item-identifier-2
operand-5 pointer-identifier-2

Byte 1 is the operation code (X'64°).
Operands-1,4 are references to string data items.
Operands-2,3,5 are references to binary data items.

1.4.116
May 1979

CREDIT REFERENCE MANUAL

INV Invert INV
Syntax: [statement-identifier] LD INV L data-item-identifier
Type: Logical instruction
Function: (data-item-identifier)> data-item-identifier

Description: The content of data-item-identifier is inverted (replaced by
complement).
Date-item-identifier must refer to a boolean data item (length 1 bit).
The condition register is set according to the previous value of data-
item-identifier.

Condition
register: = 0 if (data-item-identifier) = Q
Condition
mask: 0 112(3 4 |56 7

DI=0 | ~ | — | —=JoI=0] = | =] =

Intermediate
code format:

Byte1 [0 1 0 00 0 1 0
operand-1 data-item-identifier

Byte 1 is the operation code (X'42).
Operand-1 is a reference to a boolean data item.

1.4.7117
May 1979

CREDIT REFERENCE MANUA L

Syntax:

Type:
Description:

Condition register:

Condition mask:

Example:

Intermediate
code format:

Inclexe Heodom Read IREAD

[statement-idar:
data-set-identifio,
size-identifs :

/0 instruction

Adaia recors 2. o] o ine data file indicated by data-set-
identifier and stor 5 4 strag data-item indicated by data-
item-identifier- 1 Thw string-data-item indicated by data-item-
identifier-2 muy ymholic key of the desired record,
The number o~ Ve',ueﬁte’y h\/ ¢ a8 put in the binary data-item-
reference! den: e b on completion of this
instruct!urw W Sl of bytes transferred.

s required,

NEA widicates shat exotucive ss should not be set for this
recuiy.

On a successt i zed record is available for this
task unde: 2wt

Exclusive acress 1s suicraatically released after:

~ awrieor rewr.ie 0 the record.

-~ adelete functicn
Exclusive access may be released explicity by the "Reiease
exclusive access” function
The current record number {CRN) will point to the current data
record and a CRIN wiil point to the current index record.

= 0 if 1/ Osuceasstui {OK)

=1if End of file (EF)

=2 if Error {ERR)

= 3 if Begin or knd ot IBEQD)

device
8] 1 2 3 4 5 6 7
OK |EOF |ERR |BEGDIOK |EOF | ERR | Uncondi-
| tional

IREAD . NEA DEDK:, BUF1, SIZE, KEY

Byte 1 001150000

Byte 2 external reference

operand-1| W]' EAE data-set-identifier

operand-2 date-item-identifier-1
operand-3 size-identifier
operand-4 data-iter-identifier-2

Bytes 1 and 2 are tilled by the system
Byte 2 contains a reference t¢ an external system routine.
W is the wait bit.
EA is the exclusive access bit.
W=0 no wait EA=1 no exclusive access
W=1 wait EA-Q exclusive access
Operand-1 is the reterence to the data set.
10/100 refers to ihe f:rst data set.
Operands-2,4 are references to string data itams,
Operand-3 is a referencs 1o a binary data iter,
14,18
May 1975

CREDIT REFERENCE MANUAL

IRNEXT Indexed Read Next IRNEXT

Syntax: [statement-identifier] u IRNEXT o [.LNW,] [.LNEA,)
data-set-identifier, data-item-identifier-1,
size-identifier

Type: 1/0 instruction

Description: The data-record, with the symbolic key following the previous
symbolic key in the index file, is read when the instruction
executed before was an indexed random read, indexed insert or
indexed read next.

The contents of the data-record will be stored in the string data-
item referenced by data-item-identifier-1. Data-set-identifier
refers to a data-file. The number of requested bytes is put
in the binary data-item referenced by size-identifier, which on
compietion will contain the number of bytes transferred.
.NW indicates that no wait option is required
.NEA indicates that exclusive access should not be set for this
record.

Exclusive access is automatically released after:

— awrite or rewrite of the record

— adelete function.
Exclusive access may be released explicity by the "'Release
exclusive access’’ function. The current record number (CRN)
will point to the current data record and a CRN will point to the
current index record.

Condition register: =0 if 1/0 successful (0K}
= 1if End of file (EOF)
=2 if Error (ERR)
= 3 if Begin or End of (BEOD}
device
Condition mask: 0 1 > 3 2 5 5 7

OK{EOF | ERR| BEOD;OK [EOF | ERR | Unconditional

Example: IRNEXT DSDK1, BUF1, SIZE

1.4.119
May 1979

CREDIT REFERENCE MANUAL

Intermediate
code format:

Continued

Byte 1 0 0 1 ﬂ 0 0 0 O
Byte 2 external reference
operand-1 W—l EAT data-set-identifier
operand-2 data-item-identifier-1
aperand-3 size-identifier

Bytes 1 and 2 are filled by the system

Byte 2 contains a reference to an external system routire
W is the wait bit.

EA is the exclusive access bit.

W=0 no wait EA=1 no exclusive access.

W=1 wait EA=0 exclusive access

Operand-1 is a reference to a data set

10/100 refers to the first data set.

Operand-2 is a reference to a string data item.

Operand-3 is a reference to a binary data item.

14.120
May 1979

CREDIT REFERENCE MANUAL

IRWRITE Indexed Rewrite IRWRITE

Syntax: [statement-identifier] u IRWRITE 1y [.NW,]
data-set-identifier, data-identifier-1,
data-item-identifier-2

Type: 1/Q instruction.

Description: The data-record indicated by its logical record number, which is
present in a binary ot decimal data-item referenced by data-item-
identifier-2, will be overwritten with the contents of the buffer
referenced by data-item-identifier-1, except for the key field.
Data-set-identifier refers to the data file to be processed.

The record must be under exclusive access, which is released

after a successful rewriting of the record. Also ali index files

must be assigned {as common files) when this instruction is executed.
When the key areas in the new data record and the old one, are

not the same, bit 1 (key not found) will be set in the status

code.

.NW indicates that no wait option is required.

Condition register: =0 if 1/O successful (OK)
= 1if End of File {EQF)
=2 if Error (ERR)
= 3 if Begin or End of (BEQD)
device
Condition mask: 0 1 Py 3 2 5 Py 7

Ok | EOF | ERR | BEOD|OK [EOF | ERR | Unconditional

Example: IRWRITE v+« DSDK1, BUF1, RECNR

Intermediate
code format:

Byte10011FOOO
Byte 2 externai reference

operand-1| W I 0 Idatarset»ldemifier

operand-2 data-item-identifier-1

operand-3 data-item-identifier-2

Bytes 1 and 2 are filled by the system

Byte 2 contains a reference to an external system routine
W is the wait bit. -

W=0 no wait

W=1 wait

Operand-1 is a reference to a data set.

10/100 refers to the first data set.

Operand-2 is a reference to a string data item.

Operand-3 is a reference to a binary or decimal data item.

1.4.121
May 1979

CREDIT REFERENCE MANUAL

Syntax: [statement-identifier] LIKI Lo .NW,]J[.NE,] data-set-identifier,
data-item-identifier, key-table-identifier, size-dientifier,
index-identifier

Type: 1/0 instruction,

Description: Alphanumeric characters are read from the keyboard indicated by
data-set-identifier and stored in the string data item indicated hy
operand-4, The task waits, until transfer is completed.

The number of requested characters is given in the data item specified
by size-identifier, which on compietion of input will contain the
number of characters transferred. The data item specified by index
identifier is filled with the position number of the terminating
character in the key tabte. The first character of the key table is
counted as one. Key-table-identifier refers to the relevant key-table.
NW and .NE indicate that the no wait and no echo options are
required.

K1 can also be used to read the SOP switches. In this case the pointer
contains the position number of the pressed switch. The rightmost
switch on the SOP panel is counted as one,

Transfer of alphanumeric characters is ended if:

1) One of the terminating characters listed in the key table is input.

2) A character neither alphanumeric nor listed in the key table is
input.

3) The size of the string data item is reached.

4) Power failure occurs.

5) Requested number of characters is reached.

6) A keylock switch is turned,

Incase 2),3) and 5) above the pointer will contain an undefined value
and the condition register will be setto ERROR.

In case of a power failure the pointer is set to zero and na indication
is given in the condition register.

All character positions not affected by the input are set to X'00".

In case 6) the index value will be negative, thus indicating that a key-
lock switch is turned.

The possible negative values in the index for keyboards

PTS6236, 6271 and 6272 are:

—1: key-lock no.4 turned OFF

—2: key-lock no.3 turned OFF

—3: key-lock no.2 turned OFF

—4: key-lock no.1 turned OFF

—5: key-lock no.4 turned ON

—6: key-lock no.3 turned ON

—7:. key-lock no.2 turned ON

—8: key-lock no.1 turned ON

I all keys are OFF, the keyboard is considered to be inactive.

14.122
May 1979

CREDIT REFERENCE MANUAL

E Continued E

Condition = 0 if /0 successful (OK)
register: =-1-if End of fite {EOFY
= 2if Error (ERR)
= 3 if Begin or end of device (BEOD}
Conditon o] 1 T2 [3 [al5s]s 7
oK | EOF | ERR | BEOD | OK { EOF | ERR | unconds-
tional
Example: Kl DSKB,INBUF KTAB1,INLEN INDEX
Intermediate
code format:
Byte 1 0 0 1 1]0 0 0 O
Byte 2 external reference
operand-1 WLE I data-set-identifier
operand-2 operand-4
operand-3 key-table-identifier
operand-4 size-identifier
operand-5 index-identifier

Bytes 1 and 2 are filled by the system. Byte 2 contains a reference
to an external system routine.

Byte 3 Bit 0 is the wait bit.

W is the wait bit

W=0 no wait

W=1 wait

E is the echo bit

E=0no echo

E=1echo

Operand-1is the reference to the relevant data set.

10/100 refers to the first data set.

Operand-2 is a reference to a string data item.

Operand-3 is a reference to a key table which is assumed

to be literal.
Operands-4,5 are references to binary data items.

1.4.123
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:

Description:

Condition
register:

Example:

Intermediate
code format:

Long branch

equate-identifier, H {statement—identifier}

[statement-identifier] LLILBL Hcondition-mask, external-identifier

Branch instruction.

The next instruction to be executed is indicated by operand-2, when
operand-1 matches the contents of the condition register. Otherwise the
instruction following the long branch instruction will be executed.

If operand-1 is omitted, an unconditional branch (value 7} is generated.

Not changed.

LB SYSOPN
LB 3,5YsCLOS

Bytel | 0 0 1 1l1] cND
Byte 2 Index to T:BAT

Byte 1 is the operation code {X’38' up to X'3F’)
CND s the condition mask field.
Byte 2 contains an index to a branch address table (T:BAT).

1.4.124
May 1979

CREDIT REFERENCE MANUAL

MATCH Matech MATCH

Syntax: [staternent-identifier] «o MATCHuw data-item-identifier-1, pointer-
identifier-1, size-identifier-1,
data-item-identifier-2, pointer-
identifier-2, size-identifier-2

Type: String instruction.
Function: {Operand-4) - {Operand-1)
(pointer- {pointer-
identifier-2) identifier-1)

Description: This instruction searches the specified part of operand-1 in an attempt
to find a match with the specified part of operand-4, The parts of
operand-1 and operand-4 involved are defined by their respective
pointer-identifier and size-identifier, The search commences at the
character in operand-1 indicated by pointer-identifier-1, and continues
for the number of characters specified in size-identifier-1. The
characters in operand-4 to be searched for begin at the position
specified by pointer-identifier-2. The number of characters to be
searched for is specified by size-identifier-2.

{f a match is found, painter-identifier-1 will contain the address
within operand-1 at which the match occurs and the condition
register is set to zero. (Equal),

H no match oceurs, pointer-identifier-1 will have an undefined value.
Operand-1 and operand-4 must be string data items.
The first characters in operand-1 and operand-4 are counted as zero.

Condition
register: = Q if mateh.
Condition | o [1l2[s] 4 5|67
asK:

LEQUAL - - Tuneauac | -T-T-
Example: MATCH TEXT1,P1,L1,TEXT2,P2,1.2

1.4.125
May 1979

CREDIT REFERENCE MANUAL

MATCH

Centinued

Intermediate

code format: /
Byte 1 0 1 o1 0 0 o0
operand-1 data-item-identifier-1
operand-2 pointer-identifier-1
operand-3 size-identifier-1
'operand-4 data-item-identifier-2
operand-5 pointer-identifier-2
operand-6 size-identifier-2

Byte 1 is the operation code (X'68’).
Operands-1,4 refer to string data items.
Operands-2,3,5,6 refer to binary data items.

14,126
May 1979

MATCH

CREDIT REFERENCE MANUAL

MOVE

Syntax:

Type:

Function:

Description:

Condition
register:

Rules:

Move MOVE

[statement-identifier] w MOVE w data-item-identifier-1,fdata-item-identifier-2
literal constant

Arithmetic instruction.
{Operand-2} ~ operand-1

Operand-2 is moved to operand-1. The contents of operand-2 remain
unchanged.

The following mixed transfers are allowed:

Operand-1 is binary and operand-2 is decimal;

Operand-1 is decimal and operand-2 is string;

or

Operand-1 is decimal and operand-2 is binary.

These conversions are done according to the type of the receiving data
itern,

Unchanged.

Operand-2

BIN BCD STRG

Operand-1
BIN 1 3
BCD 4 2 5
STRG 6
BIN-BIN 1. The content of operand-2 is moved to operand-1

STRG-STRG from feft to right. If the content of operand-2 is
shorter than operand-1, the last character of
operand-2 is repeated unti} operand-1 is filled.
|f operand-2 is longer than operand-1, the move
ends when operand-1 is filled.

BCD-BCD 2. The content of operand-2 is moved to operand-1
from right to left. If operand-2 is shorter than
operand-1, the remaining positions of operand-1
are filled by the character X'F’. If operand-2 is
longer than operand-1, the move ends when
operand-1 is filled. The sign is always moved to
the leftmost {i.e. maost significant) position.

1.4.127
May 1979

CREDIT REFERENCE MANUAL

MOVE Continued l MOVE I

BCD-+BIN 3. The content of operand-2 is converted from decimal
to binary and moved to operand-1. If the value of
operand-2 is outside the range — 32768 o 32767,
the result is unpredictable and overflow s indicated.
BIN ~BCD 4. The content of operand-2 is converted from binary
to decimal and moved to operand-1. If uperand-1 is
shorter than is required by the value of aperand-2,
the least significant digits only are moved. The sign
is moved to the leftmost {i.e. most signiticant) position.
STRG—+BCD 5. The content of operand-2 is converted from string to
decimal and moved 10 operand-1 from right to /eft.
Non-numeric 1SO-7 characters in operand-2 are ignored
(i.e. skipped). The sign of operand-1 is set negative if
operand-2 contains a leading '~ sign. .f aperand-2 is
shorter than operand-1, the remaining positions of
operand-1 are filled by the character X'F’.
BCD —+STRG 6. The contents of operand-2 is converted from decimal
to string and moved to operand-1. from Jeft to right.
The BCD space characters, X'F’ will'be supressed. The
sign in the decimal data item will be cunverted and
stored in the first character position of the string data
item referenced by operand-1.
X'B’, plus sign is converted to ‘+’ character
X‘D’, minus sign is converted to '~ character
X'Q’, zero is converted to * * character
If operand-1 is longer than operand-2, the result in the
string data item is padded to the right with null
characters {(X'‘0Q"). {f operand-1 is shorter than
operand-2 only the right most digits are moved.

Examples: MOVE FIELD1,=W'825 FIELD1 is declared as BIN
MOVE. WORK1,INPBUF WORK1 and INPBUF are declared as

BCD

MOVE FIELD1,WORK1
MOVE WORKI1,FIELD?
MOVE WORK1,=C'ABCDEF’

Intermediate

code format: .
|Byte 1 0 0 0 olOo O 0 L
loperand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Byte 1 is the operation code (X'00" or X‘01°).

Operand-1 is a reference to a data item.

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 is a reference to data-item-identifier-2,
array-identifier-2 or a formal parameter,

1.4.128
May 1979

CREDIT REFERENCE MANUAL

MUL

Syntax:

Type:
Function:

Description:

Condition
register:

Example:

Intermediate
code format:

Multiply MUL

[statement-identifier] vu» MUL adata-item-identifier-1) data-item-identifier—Z}
literal constant

Arithmetic instruction.
{Operand-1} x (Operand-2) - operand-1

Operand-1 is multiplied by operand-2 and the result is placed in
operand-1. The contents of operand-2 remain unchanged. A single
data item may be used for both operand-1 and operand-2. In this
case the data item is merely multiplied by itself. Both operands must
be decimal or binary.

=0 if (operand-1} = O

=1 if (operand—1) > 0

= 2 if {operand—1}) < 0O

=3 if overflow

MUL WORKT1,INPBUF Both identifiers are declared as BCD or BIN,
Byte 1 0 0 0 0]1 0 o0 L

operand-1 data-item-identifier-1

operand-2 data-item-identifier-2

Byte 1 is the operation code {X‘08’ or X'09’).

Operand-1 is a reference to a data item.

=1 operand-2 is a reference to a literal constant.

L=0 operand-2 is a reference to data item or a
formal parameter.

1.4.129
May 1979

CREDIT REFERENCE MANUAL

MWAIT Multiple Wait I MWAIT I

Syntax: [statement-identifier] .y MWAIT Ly index-identifier, data-set-identifier-1
[data-set-identifier-2] . ..

Type: 1/0 instruction.

Description: This instruction is used to wzit for the compietion of the first of a
series of events initialized with the nowait option.
After completion of one of the events, execution is continued. The
binary-data-item, referenced by index-identifier, will receive the index
value of the data set in the list, which has just completed its operation.
First data set in the list will be referenced with index value 1.
The contidion register is set according to the status of the last operation
of the relevant data set.

Condition
register: = 0if 1/0 successful {OK)
= 1if End of file {EOF)
= 2if Error (Err}
= 3if Begin or End of device (BEOD)
Condition
mask: 0 1 2 3 4 5 6 7
OK | EOF | ERR | BEOD] OK | EOF | ERR | uncond
Example: MWAIT INDX, DSKB1, DSGTP
Intermediate
Code Format: Byte 1 o 6o t 1 0 0 0 O
Byte 2 external reference
operand-1 index-identifier
byte n tist-length
operand-2 0 | O |data-set-identifier-1
operand-3 0 | 0 [date-set-identifier-2

Byte 1 and 2 are filled by the system.

Byte 2 contains a reference to an external system routine.

Operand-1 is a reference to a binary data item.

byte n is filled by the CREDIT translator and contains the
number of data sets present in the list,

Operands-2,3 etc. are the references to the relevant data sets,

1.4.130
May 1979

CREDIT REFERENCE #AKUAL

o]

Syntax:

Type:

Description:

Numeric keyboard input E

[statement-identifier] LUINKILi [.NW,] [.NE,] data-set-identifier,
data-item-identifier, key-table-identifier, size-identifier
index-identifier

1/0 instruction,

Numeric characters are read from a keyboard indicated by data-set-
identifier and stored in a string data item indicated by operand-4.

The number of requested characters is given in the data item specified
by size-identifier, which on completion of input will contain the
number of characters transferred. The data item specified by index-
identifier, is filled with the position number of the terminating
character in the key table. The first character of the key-table is
counted as one. Key-table-identifier refers to the relevant key table.
NW and,NE indicate that the no wait and no echo options are
required.

Transfer of numeric characters is ended if:

1) One of the terminating characters listed in the key table is input.
2) A character neither numeric nor listed in the key table is input.

3) The size of the string data item is reached.

4} Power failure occurs.

5) Reguested number of characters is reached.

6) A key-lock switch is turned

In case 2), 3} and B) above, the pointer will contain an undefined value
and the condition register is set to ERROR.

In case of power failure the pointer is set to zero and no indication is
given in the condition register,

All character positions not affected by the input are set to X‘00’.

In case 6) the index value will be negative, thus indicating that a key-
fock switch is turned.

The possibie negative vaiues in the index for keyboards
PTS6236, 6271 and 6272 are:

-1 key-fock no.4 turned OFF

—2: key-lock no.3 turned OFF

-3 key-lock no.2 turned OFF

—4: key-lock no.1 turned OFF

—5: kev-iock no.4 turned ON

—6: kev-iock no.3 turned ON

=71 key-tock no.Z turned ON

—8 kevlock no.t turned ON

if ail keys cre OFF, the keyboard is considered to be inactive.

1.4.131
NMay 1979

CREDIT REFERENCE MANUAL

[]

Condition
register:

Condition
mask:

Example:

Intermediate
code format:

Continued
= 0if i/0 successful (OK)
= 1if End of file (EQF)
=2if Error (ERR)
=3 if Begin or End of device BEOD)
0 1 2 3 4 5 6 7
OK | EOF | ERR |BEOD | GK | EOF | ERR | 4N°o™
ditional

NKI DSKBN,INBUF KTAB2,INLEN,INDEX

Byte 1 0

1 1

0

0

0

0

Byte 2

external reference

operand-1 W[E [

data-set-identifier

operand-2 data-item-identifier
operand-3 key-table-identifier
operand-4 size-identifier
operand-5 pointer-identifier

Bytes 1 and 2 are filled by the system.
Byte 2 contains a reference to an external system routine.
W is the wait bit.

W=0 no wait
W=1 wait

E is the echo bit

€=0no echo
E=1 echo

Operand-1 is a reference ta the relevant data set.
10/100 refers to the first data set.
Operand-2 is a reference to a string data item.

Operand-3 is a reference to a key table which

is assumed to be literal,
Operand-4 is a reference to a binary data item.
Operand-5 is a reference to a binary data item.

14,132
May 1979

CREDIT REFERENCE MANUAL

PAUSE Pause ‘ PAUSE

Syntax: [statement-identifier] LIPAUSE
Type: Scheduling instruction.

Description: The execution of the task is inhibited until a restart instruction is
issued by another task.

Condition
register: Not significant.

Intermediate
code format: {Byte1 |0 0O 1 1 o 0 0 o

Byte 2 external reference

Bytes 1 and 2 are filled by the system. Byte 2 is a reference to an
external system routine.

1.4.133
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type
Function:
Description:

Condition
register:

Example:

Intermediate
code format:

Ferform l PERF

statement-identifier «w PERF u subroutine-identifier
[actual-parameter] ...
subroutine control instruction.
PP = subroutine-idertitier,
Control is giver: 10 a subroutine which is written in the CREDIT language.

The subroutine may be in the same module as the perform instruction
or in another CF T meduie.

The return address is saved on the stack. In a virtual memory system
the current segment number, return address and parameter list are
saved on the stack.

A maximum of eight pararmeters can be passed.

When an array element is passed, then the array name and index are
passed each as a parameter. A format-table reference may also be
passed, but not a reference to an element in the format-table.
Literal parameters of the type "X’ are not allowed.

Not significant.

PERFLJSUBT,ARRAY,INDEX
PERFL_1SUB2,DSVDU

Byte 1 100 0O 0 0O 0 O
operand-1 subroutine identifier
| operand-2 parameter
]

Byte 1 contains the operation code {X'80')
Operand-1 is a reference to a subroutine.
Operands-2,3 etc. are references to the parameters.

1.4.134
Mav 1979

CREDIT REFERENCE MANUAL

PERFI

Syntax:
Type:

Description:

Condition
Register:

Intermediate
code format:

Indexed perfarm

[statement-identifier) w PERF | ws index-identifier, subroutine-identifier . . .

Subroutine control instruction.

Control is passed to the subroutine in the subroutine identifier list
according to the contents of the data item specified by index-
identifier.

The return address is saved on the stack. In a virtual memory system
the current segment number, return address and parameter list are
saved on the stack.

The first identifier in the subroutine list has the index value one. |f the
index is zero or greater than the number of identifiers in the subroutine
list, the instruction following the indexed perform is executed.

In a system with MMU, literals, key tables and format lists can only

be passed as parameter, using the PLIST directive. The number of
parameters must be the same for each subroutine mentioned in this
instruction. Literal parameters of the type ‘X’ are not allowed.

Not significant.

Byte 1 0 0o 1t 1]o 0 1 1

operand-1 index-identifier

Byte n list-length

operand-2 subroutine-identifier-1

operand-3 subroutine-identifier-n

S I
Byte 1 is the operation code (X’33’}.]

Operand-1 refers to a binary data item,

Byte n is filled by the CREDIT translator and contains the number
of identifiers present in subroutine identifier list.

Operands-2,3etc. are references to the subroutine.

1.4.135
May 1979

CREDIT REFERENCE MANUAL

PRINT

Syntax: [staternent-idennfiz i _ FroMT
data-item-identiiier i, H;’f‘fj»‘.(e
literal
Type: Format cenuo! 1 O
Description: From the current format st the line number contained in the

binary data item r.1erescad by data-item-identifier-1, up to the
line number o= st in the binary dat m referenced by
data-item-idest | : Ui 10 ihe data set indicated by data
set identifier, number on the output device is
alwaysone. T f the data-item {second line number)
referencect by SRR stifier-2 may be equal or greater
than the fist ! =ontained in the data-item referenced
by data-item r-1
When the second iine number i¢ zerc all the lines from the
current format List are Guiput 1o tne data set from the first line
number up to the iast one. Two spaces, which serve as control
character (1.2 iine feeu and carviage return), are always output as
the last line. "he secend line number may be indicated by a
fiteral of the type bi

1

Condition register: = 0 if 1/0 successtul (OK;

=1if End of file {EQF)

=2 if Error {(ERR)

= 3if Begin or End of device (BEOD)
Condition mask: ol 1 | 2 3 405 6 7

OK |EOF | ERR | BEU! |OK | EOF | ERR | UNCON-
1 DITIONAL

Example: PRINT Lt DSGP, LINE 5, LINE 15

PRINT LJ DSGP, LINE 5, = "0’

Intermediate
code format:

Bytel JO 0 ¢ 1]0 0 0 0

Byte 2 external reference

operand-1; 0 l Oidata—set-«dennﬂer

operand-2 data-item-identifier-1

aperand-3 data-item-identifier-2

Byies T and 2 are filled by the system.

aperand-1 is a reference to the relevant data set.
operands-2,3 are references to binary data items.
L=1 operand 3 is a reference to a literal constant.
L=0 operand-3 is a reference to a data item.

1.4.136
May 1979

CREDIT REFERENCE MENUAL

Syntax: [statement-identifier] READ [.NW,] [.NEA,] data-set-identifier
data-item-identifier, size-identifier

Type: 1/Q instruction

Description: Characters are read from the device indicated by deia-set-identifier
into a string data item indicated by operand-2.
NW indicates that the no wait option is required,
The transfer of characters is ended if:

1) An end-of-record condition is encountered
2} The string size is reached

The number of characters which are transferred, is returned by the
system in the data item specified by size-identifier.

If the data item size is exceeded, error is set in the condition
register.

The disk sequential access method is as follows.
The record to be read depends on the last data management function
called by this task. |f no data management function has been called
by this task for this file (indicated by data set identifier) after the
tile was assigned, the current record number {(CRN) will point to the
first record of the file to be read. The logical record number can be
fetched with GET CURRENCY (DSCH1). If the reading is successful, the
record is set under exclusive access for this task.
.NEA option indicates that exclusive access shoulid not be set for this
record.
When the data-set-identifier refers to a data communication data s:
this instruction will read data from the line. Time out must be set
before this instruction is executed, with the DSC1 instruction and
control value X'0B’. In a DC task time out must be set to zero.

For intertask communication data-set-identifier refers to a data set

in which the input file code is defined. When a READ {unaddressed)

is issued by a task, first a check is performed on the queue of the task
that issues the READ for RWRITE (addressed). |f an addressed write

is in the queue for this task, the instruction is completed. When no
match occurs the WRITE {unaddressed) queue is checked, if not empty
the first one is removed from the queue and the instruction is compieted.
Else the instruction is put into the queue for unaddressed read.

Condition register: = 0 if 1/O successful {OK)

= 1if End of file (EOF}

= 2 if Error (ERR)

= 3 if Begin or End of device{BEOD)
Condition mask: 0 7 2 3 4 5 5 7

OK |EOF | ERR | BEOD |[OK | EOF | ERR | Uncon-

i | l ditional
Example: READ DSKBN, BUF1, SIZE

READ NEA, DSDK1, BUF1, SIZE

7.4.137

May 1976

CREDIT REFERENCE MANUAL

Intermediate
code format:

Continued

Byte 1 0

o 1 1]o o

Byte 2

externat reference

operand-1 WJE data-set-identifier

operand-2

data-item-identifier

operand-3

size-identifier

Bytes 1 and 2 are filled by the system
Byte 2 contains a reference to an external system routine.

W is the wait bit

W=0 no wait
W=1 wait

E is the echo bit

E=1 echo
E=0 no echo

Operand-1 is the reference to the relevant data set

10/100 refers to the first data set.

Operand-2 is a reference to a string data item.
Operand-3 is a reference to a binary data item,

1.4.138
May 1979

| READ }

CREDIT REFERENCE MANUAL

RET

Syntax:
Type:

Description:

Condition
register:

Example:

Intermediate
code format:

Return RET

equate-identifier
[statement-identifier] LURETLJ [decimal-integer

Subroutine control instruction.

Control is passed back to the calling module and execution is
continued at the instruction following the original perform or indexed
perform instruction.

The return address is found on the stack. In a virtual memory system
the proper segment number and return address are found on the stack.

Decimal-integer specifies a displacement {(number of bytes) which has
to be added to the normal return address. This displacement excludes
the length of the parameter list, in bytes, which may have been passed
to the subroutine.

Not significant.

RET
RET 2

Bye1 | 0 0 1 1]0 1 0 0
Byte 2 displacement

Byte 1 is the operation code (X‘34°}.
Byte 2 containsdisplacement.

1.4.139
May 1979

CREDIT REFERENCE MANUAL

RREAD

Syntax:

Type:
Description:

Condition register:

Condition mask:

Example:

Random Read RREAD

[statement-identifier] L RREAD o [LNW,] [[NEA,]
data-set-idenitifier, data-item-identifier-1,
size-identifier, data-item-identifier-2

1/Q instructior,

A record is read from the fiie indicated by data-set-identifier and
stored in a string data item indicated by data-item-identifier-1.
The number of requested characters is given in the data-item
specified by size-identifier, which on completion of input will
contain the number of characters transferred.
The logicai record number is given in a binary or decimal data item
indicated by data-item-identifier-2,
.NW indicates that no wait option is required.
.NEA option indicates that exclusive access should not be set for
this record.
On a successful read, the accessed record is available fcr this task
under exclusive access, (Not accessible by other tasks).
The current record number (CRN) will point to the current data
record,
Exclusive access is automatically released after:

— a write of the record

— a delete function.
The exciusive access may be released explicity by the ""Release
exclusive access”” function,
For intertask communication data-set-identifier refers to a data set in
which the input file code is defined.
Data-item-identifier-2 refers to a binary data item, which contains the
task identifier of the addressed task. |f the addressed task has not issued
a RWRITE {to this task) or WRITE, then this request will be queued on
the addressed task. in the other case the instruction will be completed.

= 0if 1/0 successful (OK)
=1if End of File (EOF)
=2if Error (ERR)
= 3 if Begin or End of (BEOD)
device
6] 1 2 3 4 5 6 7

OK |EOF | ERR | BEOD|OK | EOF | ERR | Unconditional

RREAD DSDK, BUFRC, LENGTH, RECNR

1.4.140
May 1979

CREDIT REFERENCE MANUAL

RREAD Continued RREAD

Intermediate
code format:

Byel |0 0 1 1]0o 0 0 0

Byte 2 external reference
operand-1 | Wl EA l data-set-identifier
operand-2 data-item-identifier-1
operand-3 size-identifier
operand-4 data-item-identifier-2

Bytes 1 and 2 are filled by the system
Byte 2 contains a reference to an external system routine.

W is the wait bit. EA is the exclusive access bit.
W=0 no wait EA=0 exclusive access.
W=1 wait EA=1 no exclusive access.

Operand-1 is the reference to the relevant data set.
10/100 refers to the first data set.

Operand-2 is a reference to a string data item.

Operand-3 is a reference to a binary data item,
Operand-4 is a reference to a binary or decimal data item.

1.4.141
May 1979

CREDIT REFERENCE MANUAL

RSTRT Restart l RSTRT I

Syntax: [statement-identifier] LIRSTRTI task-identifier
Type: Scheduling instruction.

Description: The task in pause mode indicated by task-identifier is restarted.
Task-identifier is a reference to a binary or string data item, In case
of a string data item the first two bytes must contain the task identity.

Condition
register: Not significant.

Intermediate

code format: | Byte 1 0o 0 1 1 0 0 o0 0
Byte 2 external reference
operand-1 task-identifier

Bytes 1 and 2 are filled by the system.
Byte 2 is an external reference to a system routine.
Operand-1 is a reference to a binary or string data item

1.4.142
May 1979

CREDIT REFERENCE MANUAL

RWRITE Random Write RWRITE

Syntax: {statement-identifier] « RWRITE 1 [[NW,}
data-set-identifier, data-item-identifier-1, data-item-identifier-2

Type: 1/0 instruction

Description: The record present in a string data item, indicated by data-item-
identifier-1 is written to the file indicated by data-set-identifier.
Before it is written the status of the record is checked whether it
is "FREE" or "USED".

When “FREE" the status is changed to ““USED’’ and the record is
written,

When the status is "USED" the record will be written only if it is
under Exclusive access for this task.

H it is not under exclusive access the error “record protected’”

will be sent,

The logical record number, for disc file, is in the binary or decimal
data item indicated by data-item-identifier-2. After a random

write, exclusive access is released. Random Write may be used to
write on a display, data-item-identifier-2 refers in this case to a
binary-data-item which contains the cursor position, where writing
start,

For intertask communication, data-set-identifier refers 1o a data set in
which the output file code is defined.

Data-item-identifier-2 refers 1o a binary data item, which contains the
task identifier of the addressed task. If the addressed task has not issued
a RREAD (to this task} or READ then this request will be queued on
the addressed task. In the other case the instruction will be complete *

Condition register: = 0 if 1/0 successfu! {OK}
=1 if End of File (EOF)
=2 if Error (ERR)

= 3 if Begin or End of Device (BEOD)

Condition mask: 0 1 2 3 4 5 [7 1

OK {EOF | ERR | BEOD|OK | EOF | ERR | Unconditional

Example: RWRITE DSDK, BUFRC, RECNR

Intermediate
code format:

[Bye1 J0 0 1 1]0 0 0 o

lVB\,/te 2 extarnal reference

operand-1| W l data-set-identifier

operand-2 data-item-identifier-1

operand-3l - —Eatavitem-identifierQ
1.4.143

May 1976

CREDIT REFERENCE MANUAL

RWRITE

Continued

Bytes 1 and 2 are filled by the system.

Byte 2 is a reference to an external system routine.
W is the wait bit

W=0 no wait

W=1 wait

Operand-1 is the reference to the reievant data set.
10/100 refers to the first data set.

Operand-2 is a reference to a string data item.

Operand-3 is a reference to a binary or decimal data item.

1.4.144
May 1979

RWRITE

CREDIT REFERENCE MANUAL

Syntax:

Type:

Description:

Condition
register:

Example:

Intermediate
code format:

Short branch

F{ equated-identifier,

{statement-identifier] | USBLJ . statement-identifier
|_ condition-mask,

Branch instruction,

The instruction to be executed is indicated by statement-identifier,

if operand-1 matches the contents of the condition register. Otherwise
the instruction following the short branch will be executed. If operand-1
is omitted an unconditional branch {value 7) is generated.

Statement-identifier may only refer to a statement which is within the
limit of 255 bytes before the short branch (inct. 2 bytes of the short
branch}, or 255 bytes after the short branch.

Not changed.

SB INP3
SB 2.INP4

Byte1 [0 1 0 1]B] cnD
Byte 2 displacement

Byte 1 is the operation code {X‘50" up to X'5F’).
B=0 forward branching.

B=1 backward branching.

CND is the condition mask field.

Byte 2 contains the displacement,

1.4.145
AMay 1979

CREDIT REFERENCE MANUAL

SET Set SET
Syntax: [statement-identifier} LiSETt_! data-item-identifier
Type: Logical instruction,
Function: 1 - data-item-identifier

Description: The content of data-item-identifier is set to one. (TRUE)
Data-item-identifier must refer to a boolean data item. (length 1 bit}
The condition register is set according to the previous value of the
content of data-item-identifier.

-Condition
register: = 0 if {data-item-identifier) = 0

Condition 0 1 213 4 slel 7
mask:

DI=0 | — | —| — |DIz0 | — | - -

Intermediate
code format:

Byte1o1oo[ooo1

operand-1j data-item-identifier
Byte 1 is the operation code (X'41').
Operand-1 is a reference to a boolean data item.

1.4.146
May 1979

CREDIT REFERENCE MANUAL

SETCUR Set Cursor SETCUR

Syntax: [statement-identifier] L SETCUR
Type: Format contro! I/0O
Description The cursor will be positioned at the first character position of

the current input field,

Condition register: = 0 if cursor positioned correctly

=2 if /O error
Condition mask: 0 1 2 3 4 5 6 7
OK | — | ERROR | — | OK | — | ERROR | Uncon-
ditional
Example: SETCUR

Inter mediate
code format:

Byte1/0 0 1 1]0 0 0 0O
Byte 2 external reference

Bytes 1 and 2 are filled by the system
Byte 2 is a reference to an external system routine.

1.4.147
May 1979

CREDIT REFERENCE MANUAL

SETTIME Set Clock SETTIME

Synt-ax: [statement-identifierl w1 SETTIME u data-item-identifier
Type: Clock control.
Description: The system clock is set to the time specified in a string data item,

indicated by data-item-identifier.
The string data item must have a length of six characters, in which

is specified H , H, M , M,S .S,

H = hour
M = minute
S = second

The system clock is updated by the real time clock thus giving cor-
rect time of day.

Condition register: Unchanged.
Example: SETTIME, TIME

intermediate
code format:

Byte 1 o 0 1 1 0o 0 0 o
Byte 2 externat reference
operand-1 data-item-identifier

Bytes 1 and 2 are filled by the system.
Byte 2 is a reference to an external system routine.
Operand-1 is a reference to a string data item.

1.4.148
May 1979

CREDIT REFERENCE MANUAL

SUB Subtract sus
Syntax: [statement-identifier] L. SUB Lidata-item-identifier,/data-item-identifier-2
literal constant

Type: Arithmetic instruction.
Function: {Operand-1) — {Operand-2) -~ Operand-1

Description: Operand-2 is subtracted from operand-1 and the result is placed in
operand-1,
Operand-2 is unchanged. Both operands must be binary or both
operands must be decimal. The condition register is
set according to the content of operand-1.

Condition =0 if (operand-1) =0
register: = 1if {operand-1}) > 0
= 2 if (operand-1) < O

= 3 if overflow

Condition 0 1 2 3 4 5 6 7
mask:

_ N over uncondi-
0] »0) <0 flow | *0 | <0 >0 tional

Example: SUB FIELD1,FIELD2 FIELD1 and FIELD2 are declared as BIN.
SUB WORK1,=D'4317" WORKT is declared as BCD.

intermediate
code format:

Byte 1 0 0 0 0|0 1 0| L
operand-1 data-item-identifier-1

operand-2| data-item-identifier-2

Byte 1 is the operation code (X’'04’ or X‘05°).

L=1 operand-2 is a reference to a literal constant.

L=0 operand-2 is a reference to data-item-identifier-2,
array-identifier-2 or a formal parameter.

Operand-1 is reference to a binary or decimal data item.

1.4.149
May 1979

CREDIT REFERENCE MANUAL

SWITCH Switch task on same level ! SWITCH

Syntax: [statement-identifier] s SWITCH
Type: Scheduling instruction.
Description: The running task will be interrupted and queued last in the dis-

patcher queue. Control is given to another task on the same level,
which is the first one in the dispatcher queue.

Condition register: Unchanged.
Example: SWITCH

Intermediate
code format:

Byte1{ 0 0 1 1T0 0 0 0

Byte 2 external reference

Byte 1 contains the operation code (X‘30’)
Byte 2 is a reference to an external system routine.

1.4.150
May 1979

CREDIT REFERENCE MANLIAL

(=]

Syntax:

Type:

Description:

Example:

Condition
register:

Condition
mask:

Intermediate
code format:

Test and branch

equate-identifier

[statement-identifier] LITBLJ {condition-mask

} , data-item-identifier,

statement-identifier
Branch instruction.

The content of data-item-identifier is compared with zero and the
condition register is set according to the result of this comparison. If
operand-1 matches the condition register, the next instruction to be
executed is found at the address specified by statement-identifier.

If operand- 1 does not match the condition register, the instruction
following the test and branch will be executed.

Statement-identifier may only refer to a statement which is within the
limit of 255 bytes before the test and branch (incl. 3 bytes of the test
and branch) or 255 bytes after the test and branch.

Data-item-identifier refers to a boolean data item.

TB FALSE,LKMX1,T7TGO

= 0 if (data-item-identifier) = Q

0 1121]3 4 5167

DI=O| — | —| —|DI#0| ~-| = | —
Byte 1 o 1 o0 ol1 of|B]Cc
operand-1 data-item-identifier

Byte n statement-identifier

Byte 1 is the operation code (X‘48’ up to X'4B’).
B=0 forward branching.

B=1 backward branching.

C=0 condition mask is zero.

C=1 condition mask is four.

Operand-1 is a reference to a boolean data item.
Byte n contains a displacement.

7.4.151
May 1979

CREDIT REFERENCE MANUAL

TBF

Syntax:

Type:
Description:

Example:

Condition register:

Intermediate
code format:

Test and branch on false TBF

[statement-identifier] . TBF o data-item-identifier,
statement-identifier

Branch instruction.

The content of data-item-identifier is compared with zero and the
condition register is set according to the resuit of this comparision.
tf the content of operand-1 is zero, the next instruction to be
executed is found at the address specified by statement-identifier.
If the content of operand-1 is one, the instruction following the
test and branch on false will be executed.

Statement-identifier may only refer to a statement which is within
the limit of 255 bytes before the test and branch on false {incl. 3
bytes of the test and branch on false) or 255 bytes after the test and
branch on false.

Data-item-identifier refers to a boolean data item.

TBF LKMX1, TTGO
=0 if {data-item-identifier) =0

Bytel |0 1 0 0|1 ofsfo

Operand-1 data-item-identifier

Byte n statement-identifier

Byte 1 is the operation code {X'48' or X'4A").
B=0 forward branching
B =1 backward branching
Operand-1 is a reference to a boolean data item.
Byte n contains a displacement.

1.4.152
May 1979

CREDIT REFERENCE MANUAL

TBT

Syntax:

Type:

Description:

Example:

Conditicn register:

Intermediate
code format:

Test and branch on true TBT

[statement-identifier] L, TBT w data-item-identifier,
statement-identifier

Branch instruction.

The contents of data-item-identifier is compared with zero and the
condition register is set according to the result of this comparision.
If the contents of operand-1 is one, the next instruction to be
executed is found at the address specified by statement-identifier.
If the contents of operand-1 is zero, the instruction following the
test and branch on true will be executed.

Statement-identifier may only refer to a statement which is within
the limit of 255 bytes before the test and branch on true {inc!. 3
bytes of the test and branch on true) or 255 bytes after the test
and branch on true.

Data-item-identifier refars to a boolean data item.

TBT LKMX1, TTGO
=0 if (data-item-identifier) = 0

Byte 1 0 1 0 0'1 0]3]1

operand-1 data-item-identifier

Byte n statement-identifier

Byte 1 is the operation code {X‘49’' or X'48').
B=0 forward branching
B=1 backward branching
Operand-1 is a reference to a boolean data item.
Byte n contains a displacement.

1.4.153
May 1979

CREDIT REFERENCE MANUAL

TBWD

Syntax:
Type:
Description:

Condition register:

Condition mask:

intermediate
code format:

Tabulate backward TewD

[statement-identifier] L TEWD
Format control 1/O

Tabulation backward from the current input field.

The current input-field number, according to the FK!-input
field numbering, ic decreased with one and this new input-
field (current input fieid-1), of the current format list is made
current, also when CTAB option was specified for this new
current input field.

= 0 Operation successful.
Cursor is set 10 the first position of the new current input
field
= 1 operation successful
Cursor remains in its old position, because the CTAB flag
is set for this current input field.
= 2 Addressed input field not-found in current format.
Cursor remains irn its old position
= 3 An empty compulsory field was found before this ‘nstruction
was executed
The compulsory field stays current and cursor remains in its
old position

0 1 2 3 4 5 6 7
SUCC | SUCC {NOT EMPTY | SUCC {NO FOUND | UNCON-
CTAB [FOUND | COMP. succ DITIONAL
FIELD CTAB

Bytel |0 0 1 ty0 0 0 O

Byte 2 external reference

Bytes 1 and 2 are filled by the system.
Byte 2 is a reference to an external system routine.

1.4.154
July 1978

CREDIT REFERENCE ivsiv

TDOWN !

Syntax: [staternens uenyier)
Type: Format com ol 1/
Description: Tabulatior *o i 2e2 FXU nput field on the next line.

n the line immediately following the

~ting column nearest to the starting column
! ie'd, becomes current. When the two nearest
columns are found on the nexi hine, the left FKI-input field will
become curre ok t tield is found on the next line,
the foiinw ines zra sexvehed in sequence.

The FKi-iney
current fine. wit

Condition register: = 0 Operati
Cursor
fietd

=1 pperstion
Cursor
ser for this ©
=2 Add

s in s old position, because the CTAB flag is

tinput field.

not found in current format

1307 rermaing in its old nosition.

An empty compulsory field was tound before this instruction
Wae exacuied.

The compuisory field stays current and cursor remains in its

old position.

{Not relevant for THOME).

n
)

Example: X
unez 12 O e @ 40 @
LINE4 12 @ 22 @ 40 @'
FKlinput field number 2, starting in column 20 is current.
TOOWN resuits row in FKI-input field number 5 becoming
Condtion mask: 9 D) 3 2 5 5 7

suee s r EMPTY | SUCC|NO | FOUND | UNCON-
[CTAE{ FOUND | COMP. succ DITIONAL
‘ ; FIELD CTAB

i

Intermediate
code format:

exiariidg reterence

Ayten ©oovi L systernm.

~al svstem routine.

Ryin o S T

CREDIT REFERENCE MANUAL

TEST Test TEST l

Syntax: [statement-identifier] L_ITESTL_| data-item-identifier
Type: Logical instruction,
Function: {data-item-identifier) <- O

Description: The content of data-item-identifier is compared with zero and the
condition register is set according to the result of this comparison.

Data-item-identifier must refer to a boolean data item (length 1 bit).

Condition
register: = 0 if (data-item-identifier) = 0
Condition 0 1 2 3 4 5 6 7
mask: -
Di=0{ — | — | — |DI#¥0 | —~ | -} —

Intermediate
code format:

Byte 1 0 1 0 oJo o 1 1
operand-1 data-item-identifier

Byte 1 is the operation code (X'43’).
Operand-1is a reference to a boolean data item.

1.4.156
May 1979

CREDIT REFERENCE MANUAL

TESTIO Test 1/0 completion TESTIO

Syntax: [statement-identifier] s TESTIO _ data-set-identifier.
Type: 170 instruction.
Description: The data set indicated by data-set-identifier is tested for completion

of the 1/0. (without wait).

0 if 1/0 is completed (OK)
1 if 1/0 is not completed (EOF})

Condition register:

Condition mask:

o |+ 2 Ta]a] s e[7
OK | EOF | — - | OK | EGF uncon-
ditional
Example: TESTIO DSVO
Intermediate object
code format:
Bvtel |0 0 1 1]0 0 0 o
Byte 2 external reference
operand-1] 0] 0 I data-set-identifier

Bytes 1 and 2 are filled by the system.

Byte 2 is a reference ta an external system routine.
Operand-1 is a reference to a data set.

10/100 refers to the first data set.

1.4.157
May 1979

CREDIT REFERENCE MANUAL

TEWD Tabulate forward [TEWD

Syntax: [statement-identifisr] u TFWD
Type: Format contro! i O
Description: Tabulation forward from the current input field.

The current input fieid number, according to the FKJ-input
field numbering, is :1n:reased with one and this new input field
{current field number + 1) of the current format list is mude
current.

Condition register: = 0 Operation successful
Cursor is set to the first position of the new current input
field
= 1 gperation successfui
Cursor remains in its old position, because the CTAB flag is
set for this current input field.
= 2 Addressed input field not found in current format.
Cursor remains in its old position
= 3 An empty compulsory field was found before this instruction
was executed
The compulsory field stays current and cursor rema’ns in its

old position
Condition mask: 0 1 2 3 4 5 5 7
SUCC |SUCC |NOT EMPTY | SUCC |NO FOUND | UNCON-
CTAB|FOUND | COMP. Succ DITIONAL
FIELD CTAB

Intermediate
code format:

Byte? {0 O 1 10 0 0 O

Byte 2 external reference

Bytes 1 and 2 are filled by the system.
Byte 2 is a reference to an external system routine.

1.4.158
July 1978

CREDIT REFERENCE MANUAL

Syntax:

Type:

Description:
Condition register:

Condition mask:

intermediate
code format:

Tabulate Home

[statement-identifier] 1 THOME

Format control 1/0

The first FKl-input field of the current format list is made current.

= 0 Operation successful

Cursor is set of first position of the new current input field.

= 1 Operation successful

Cursor remains in its old position, because the CTAB flag is

set for this current Input field
= 1 Operation successful.

Cursor remains in its old position, because the CTAB flag is

set for this current input field.
= 2 Not relevant
= 3 Not relevant

0 1 2 3 4 5 6 7
SUCC | SUCC |NOT EMPTY | SUCC| NO FOUND | UNCON-
CTAB |FOUND | COMP. Succ DITIONAL
FIELD CTAB

Byte1{0 ¢ 1 1|10 0 0 O

Byte 2 external reference

Bytes 1 and 2 are filled by the system.
Byte 2 is a reference to an external system routine.

1.4.159
July 1978

CREDIT REFERENCE MANUAL

TLDOWN

Syntax:
Type:
Description:

Condition register:

Condition mask:

Intermediate
code format:

Tabulate left down TLDOWN

{statement-identifier] u TLDOWN
Format contro! 1/0

Tabulation to the left-most FK{-input field on the following line.
The first FKI-ing-ut field on the line immediately following the
current one becomss current.

If no FKl-input field is found on that line, the followirg lines are
searched in sequence.

=0 Operation successful.
Cursor is set of first position of the new current input field.
=1 Operation successful.
Cursor remains in its old position, because the CTAB flag is
set for this current input field.
=72 Addressed input field not found in current format.
Cursor remains in its old position
=3 Anempty compulsory field was found before this instruction
was executed.
The compulsory field remains current and the cursor remains
in its old position.
{Not refevant for THOME)

0 1 2 3 4 5 6 7
SUCC {SUCC |NOT EMPTY | SUCC | NO FOUND | UNCON-
CTAB {FOUND | COMP, Succ DITIONAL
FIELD CTAB

Bytel [0 0 1 110 0 0 O

Byte 2 external reference

Bytes 1 and 2 are filled by the system
Byte 2 is a reference to an external system routine,

1.4.160
July 1978

CREDIT REFERENC,

Syntax:
Type:
Description:

Contion register:

Condition mask:

Intermediate
code format:

E MandiJAL

Tabulate left

[statement-identifier] u TLEFT

Format control 1/0

[TLEFT]

Tabulation to the left-most input field on the current line.
The left-most FKl-input field on the same line as the current FKI-
input field, becomes current.

Note: This input field always exists.

= 0 Operation successful
Cursor is set to the first position of the new current input

field

= 1 Operation successful

Cursor remains in its old position, because the CTAB flag is

set for this current input field
= 2 Not relevant
= 3 An empty compuisory field was found before this instruction

was executed.
The compulsory field stays current and cursor remains in its

ald position,
0 1 2 3 4 5 6 7
SUCC |SUCC | NOT EMPTY | SUCC | NO FOUND | UNCON-
CTAB | FOUND | COMP. succe DITIONAL
FIELD CTAB
Bytel |0 0 1 170 0 0 O
Byte 2 external reference

Bytes 1 and 2 are filied by the system.
Byte 2 is a reference to an external system routine.

1.4.167
July 1978

CREDIT REFERENCE MANUAL

|

Syntax:
Type:
Description:

Condition register:

Condition mask:

Intermediate
code format:

Note:

Tabulate right

[statement-identifier] = TRIGHT

Format control 1/0O

mes current.

=0 Operation successful

TRIGHT!

Tabulation to the right-maost input fieid on the current line.

The right-most FKi-input *ieid on the same line as the surrent
FKl-input fieid, b
This input Dieid always exists,

Cursor is set to the first position of the new current input

field

=1 Operation successful
Cursor remains in its old position, because the CTAB flag is

set for this current input fieid

=2 Not relevant
=3 Anempty compulsory field was found before this instruction

was executed.
The compulsory fieid stays current and cursor remains in its

old position
0 1 2 3 4 5 6 7
SUCC| SUCC {NOT EMPTY | SUCC| NO FOUND | UNCON-
CTAB | FOUND | COMP. succ DITIONAL
FIELD CTAB
Byte1 | 0 O 1 1 0o 0 0 0
Byte 2 external reference

Bytes 1 and 2 are fully filled by the system
Byte 2 is a referance to an external system routine.

11182
July 1578

CREDIT REFERENCE MAILUAL

TSTCTL Test control flag TSTCTL

Syntax: [statement-identifier] L TSTCTL w control value
Type: Format controt 1/0O
Description: One of the control fiags, of the current input field is tested and

the condition register is set according to the result.
The control fiags are specified in a FKI-format list declaration.
Control value specifies which flag has to be tested.

Control value Significance
0 Test "ALPHA" flag

1 Test "REWRT" flag
2 Test "ME"’ flag
3 Test "NEO!" flag
4 Test “NCLR" flag
5 Test "CTAB" flag
6 Test "VERIF'’ flag.
Condition register: =0 when a flag is not set.
Condition mask: 0 1 2 3 4 5 6 7
NOT| —| -} — | SET| — | — | UNCONDITIONAL
SET
Example: TSTCTL 2

Intermediate
object code:

Byte 1 o 0 1 130 0O O O

iByte 2 external reference

operand-1 control value

Bytes 1 and 2 are filled by the system
Byte 2 is a reference to an external system routine.
QOperand-1 is the control value.

14,163
May 1979

CREDIT REFERENCE MANUAL

TUP Tabulate Up TUP
Syntax: [statement-identifier] u TUP
Type: Format control /0
Description: Tabulation to the nearest FKl-input field on the preceding line.

The FKl-input fieid on the line immediately preceding the current
line, with a starting column nearest to the starting column of the
current input field, becomes current. When the two nearest
columns are found on the preceding line, the left FKi-input field
will become current. If no FKi-input field is found on the preceding
line, the line preceding that one is searched etc.

Condition register: =0 Operation successful

Cursor is set to the first position of the new current input field.

=1 Operation successful
Cursor remains in its oid position, because the CTA3 fiag is set
for this current input field.

=2 Addressed input fieid not found in current format.
Cursor remains in its oid position,

=3 An empty compulsory field was found before this instruction
was executed, The compuisory tield stays current and cursor
remains in its oid position.
(Not relevant for THOME).

Example: a2 @D 20 @ 30 B 4 @
LINE 2
12 ® 25 ®

LINE 4

FKIi-input field number 6, starting in column 25 is current.
TUP resuits now in FKi-input field number 2 becoming current.

Condition mask: 0 1 2 3 4 5 6 7
SUCC | SUCC | NOT EMPTY | SUCC| NO FOUND | UNCON-
CTAB | FOUND | COMP! succ DITIONAL
FIELD CTAB

Intermediate
code format:

Byte10011i0000
Byte 2 external reference

Bytes 1 and 2 are filled by the system
Byte 2 is a reference to an external system routine.

1.4.164
July 1978

CREDIT REFERENCE MANUIAL

UNUSE Linse l UNUSE I

Syntax: [statereni-identifier] » UNUSE v block-identifier

Type: Storage conirol instruction.

Description: The user workblock or swappable workblock, attached to the current
task will be detached. A swappable workblock is restored on disk.
The condition register is unequal 1o zero if the referenced work-
biock does not exist.

Conditicn
register: = () workblock correctly detached from the task.

= 2 no workblock of this type was attached to the task.

Intermediate

object code:
Byte ! 0 0 1 i 0 0 0 0
Byte 2 external reference
operand-1 UWB/SWB type
Byten Block number

Bytes 1 and 2 are filled by the system.
Operand-1is type of user or swappable workblock.
Byte n is the index to the user or swappable workbiack.

AR T

CREDIT REFERENCE MANUAL

UPDFLD Update Input Field UPDFLD

Syntax: [statement-identifier] UPDFLD w control value,
data-item-identifier

Type: Format controt I/O

Description: The contents of the string data item referenced by data-item-
identifier {buffer}, is moved to the data-item of the current input
field according to the rules as valid for the MOVE-instruction.
Depending on control value the new contents of the data-item is
redisplayed on the screen.

Control value Significance
0 Redisplay oniy if for the current input field
the “"REWRT" flag is set.
1 Redisplay always.
Condition register: =0 if OK
=2 if 1/O error.
Condition mask: 0 1 5 3 4 5 6 7
OK | — | ERROR| — | OK | — | ERROR | UNCON-
DITIONAL
Example: UPDFLD 1, SPINPUT

Intermediate
object code:

Byte 1 o 0 1 1 0O 0 0 0O
Byte 2 external reference
operand-1 control value

operand-2 data-item-identifier

Bytes 1 and 2 are filled by the system

Byte 2 is a reference to an external system routine
Operand-1is the control value

Operand-2 is a reference to a string data item.

1.4.166
May 1979

CREDIT REFERENCE MANUAL

USE

Syntax:
Type:

Description:

Example:

Condition
register:

Intermediate
code format:

Use USE

[statement-identifier] ws USE w block-identifier, data-item-identifier
Storage control instruction.

After the USE instruction, the task may access the user or swappable
work block specified by block-identifier and data-item-identifier, which
must be binary. I the data-item does not specify an existing usz* or
swappable workblock, i.e. it contains a number higher than the highest
numbered user or swappable work block, the condition register will

be set unequal to zero.

A user or swappable workblock is released from the task as a result

of a UNUSE instruction specifying the same user or swappable work
block type.

USE UB1, BLOCKNG

=0 if index value within permitted limits.
=1 if swappable workblock under exclusive access.
=2 if index value out of permitted limits.

Byte 1 g 0 1 1 0 0 0 O
Byte 2 external reference
operand-1 UWB/SWB type

Byte n block number

operand-2 data-item-identifier

Bytes 1 and 2 are filled by the system.

Operand-1 is the type of user or swappable workblock.

Byte n is the index to the user workblock or swappable workblock.
Operand-2 is a reference to a binary data item.

7.4f

May 1975

CREDIT REFERENCE MANUAL

WAIT

Syntax:
Type:

Cescription:

Condition
register:

Condition
mask:

Example:

Intermediate
code format:

Wait [WAIT

[statement-identifier] _JWAI T data-set-identifier
1/0 instruction

If the most recently started operaticn on the data set indicated oy
data-set-identifier is not yet completed, execution of the next
instruction is inhibited. After compietion of the operation, execution

is continued.

If the operation is already completed betore this instruction is executed,
the program continues as normai without taking any action on this
instruction.

=0 if /0 successful {OK)
=1 if End of file (EQF)
=2 if Error (ERR)
= 3 if Begin or End of device (BEOD)
0 1 2 3 4 5 6 7
OK | EOF | ERR | BEOD | OK | EOF | ERR | Uncom
ditional
WAIT DSKBN
Byte 1 0 o 1 1]o o 0 o0
Byte 2 external reference
operand- 1 w data-set-identifier

"Bytes 1 and 2 are filled by the system. Byte 2 contains a reference to

an externai system routine.
W is the wait bit. This has no significance for WAIT,
Operand-1 is a reference to the reievant data set.
10/100 refers to the first data set.

1.4.168
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Type:
Description:

Write

[statemnent-identifier] L WRITE u [.NW,] data-set-identifier,
data-item-identifier [,size-identifier]

(/Q instruction,

The contents of the string data item, indicated by operand-2 is output
to the devices specified by data-set-identifier,

The number of characters to be output can be given in the data item
specified by size-identifier, which on completion of the output wilt
contain the number of characters transferred.'

When the data-set-identifier refers to a data communication data set,
this instruction will send data on the line. Time out must be set before
this instruction is executed, with the DSC1 instruction and control
value X'0B’.

For intertask communication data-set-identifier refers to a data set in
which the output file code is defined. When a WRITE (unaddressed) is
issued by a task, first a check is performed on the queue for RREAD
(addressed).)f an addressed read is in the queue for this task, the
instruction is completed. When no match occurs the READ queue
{addressed) is checked, if not empty the first one is removed from the
queue and the instruction is completed. Else the instruction is put into
the queue for unaddressed write.

NW indicates that no wait is desired.

The first two bytes in the string data item must contain a contro!
character. The first byte must always be unequal to zero and the
second byte must cantain the contro! character {Except for disk).
The function of the control character is device dependent. The
control character may have the following value:

® General Terminal Printer or Line Printer

X'2B': print the line without advancing the paper. _
X'30": advance two lines before printing. g
X'31": skip to top of form before printing. (only for line printer)
Other codes: one line feed is executed before printing.

Special characters allowed in the user buffer and not restricted to
the first word in the buffer:

X'11” Tabulation character. This character should be foliowed by
two 1SO-7 digit characters giving the tabulation position. (Only

for GTP).

Teller Terminal Printer PTS6222, PTS6223

Voucher/passbook printing

X'2B’: print the line without advancing the paper.

X'30": advance two line steps before printing.

X’31'—X"39": advance paper 1-9 line steps before printing.
Other codes: ane line step is executed before printing.
Journal/tally roll printing

X'30°: advance two step lines before printing, (Two steps =

one line feed).

1.4.169
May 1979

CREDIT REFERENCE MANUAL

Write ENRITE l

Other codes: one line step is executed before printing.
Special characters al d in the user buffer:
X'09’: The print hee oved 1o the right most print
position of the vouchs s chieracter should be present in the
last buffer position.
X'0D’: The print head is moved 1o the right most position of the
journal station. This character should be present in the last buffer
position,
Teller Termina! Printer (PT56371)
The control character present in the second character of the
buffer, as follows:
/2B — printing is carried out from the last position of the
previousty printed line on this device. However, if
the character pitch a5 been set, or if positioning
has been carried out to the same line, since the
previous lire was printed, the printing will be from
the tabulation position on the present line,
/30 — the paper is advanced two lines, and the printing
carried out from the tabulation position.
/31 — journal: the paper is advanced three iines and the
printing carried out from the tabulation position. This
will make the previously written data readable through
the window on the journal station.
— document: nrinting is started from the tabulation
position on tine i
Any other value in the control code will cause one line feed before
printing from the tabulation position.
The reguested length must include the twa bytes used for tha
control code, but if it is two, only the action specified by the control
code, is carried out.
The maximum line length on the two print stations is limited to the
following, based on normal character width:

Journal Document
10 characters/inch 33 80
12 characters/inch 40 96
15 characters/inch 50 120

One expanded character equals two normal characters.

® Numeric and Signa! Display
X'30'—X'3F": these codes are sent to the first position (i.e. the
left most program display tube on the indicator unit).
X'40"—X'4F": these codes are sent to the second position.
X'60"—X'6F": these codes are sent to the third position.
X'60'—X'6F": these codes are sent to the fourth position.

270
May 1979

CREDIT REFERENCE MANUAL

Condition register :

Continued

® Disk, sequential access method
Data-item-identifier indicates the string to be written to the
disk file, indicated by the data-set-identifier. The record will be
written, directly after the Last-Record-Number (LRN), which is
administrated by Data Management. The record status (FREE or
USED) is checked by Data Management before the record is
written.

Video display or plasma display

X’'2B": The text is displayed from current cursor position.

X'30": Cursor is advanced two lines and positioned at the beginning
of the line, before the text is displayed,

X’'31': Erase display and position cursor on home position before
the text is displayed.

Other codes: Advance cursor one iine before the text is displayed.
Special characters allowed in the user buffer and not restricted to
the first word in the buffer:

Characters Valid for All Displays

J/AE: Displayed as point (/E2)

/11: Tabulation character. This character should be followed
by two 1SO-7 digits giving the tabulation position.

/07: Bellis sent to the display

Characters Valid for PTS 6344 only

/12: Underline start. Qutput of characters which follow this
character are provided with underline

/13 Underline stop. Output of characters which follow after
this character are not provided with underline. Underline
stop mode will also appear at request end

/14 Fast output. First character following /14 will be
transmitted in fast output mode up to requested fength.
Note that cursor will remain unchanged.

/1C: Data to keyboard.

/1D: Master clear to keyboard.

/1E: Low intensity start. Output of characters which follow
after this character, are displayed at low intensity.

/1F: Low intensity stop. Output of characters which foliow
after this character are displayed at narmal intensity.
Norma! intensity mode will also appear at request end.

See EDWRT for spacizl characters in buffer for PTS6371.

= 0 if I/0 successful (OK)

= 1 if Endof File (EOF}
= 2 if Error (ERR)
= 3 if Begin or End of device (BEOD)

1.4.171
September 1979

CREDIT REFERENCE MANUAL

Continued

Intermediate
code format:

Condition mask: 0 1 2 3 4l s 6 7
OK|EOF | ERR | BEOD|OK | EOF | ERA | Unconditional
Example: WRITE DSTJT, QUTSTR
Byte 1 0 0 1 1 ro 0o 0 o

Byte 2 external reference

operand-1] W f data-set-identifier

Byten list-length
operand-2 data-item-identifier
operand-3 size-identifier

Bytes 1 and 2 are filled by the system,

Byte 2 contains a reference to an external system routine.

W is the wait bit.
W=0 no wait
W=1 wait

Operand-1 is a reference to the relevant data set.

10/100 refers to the first data set.
Byte n is filled by the translator.

Operand-2 contains a reference to a string data item.
Operand-3 contains a reference to a binary data item.

14172
May 1979

CREDIT REFERENCE MANUAL

Syntax :

Type :

Function :

Description:

Condition
register :

Example :

Intermediate
code format :

Extended Copy

[statement-identifier] «s XCOPY w data-item-identifier-1, pointer-
identifier-1, size-identifier, data-
item-identifier-2, pointer-identifier-2

String instruction

(Operand—4) ~ Operand—1

(Pointer- (Pointer-identifier-1}
identifier-2j

Starting at pointer-identifier-2, the content of operand-4 is
copied from left 1o right to operand-1 beginning at pointer-
identifier-1.

The number of bytes tc be copied is specified by size-identifier.
This XCOPY is possiizie between two decima! data items, two
binary data items or two string data items. Also copying between
two data items of different type is allowed, without conversion,
The first characters of operand-1 and operand-4 are counted as
zero when setting the pointer,

unchanged

XCOPY FIELD1,P1,LNGTH,FIELD2,P2
Byts 1 o 1 1 o1 0o 10
operand-1 data-item-identifier-1

operand-2 pointer-identifier-1

operand-3 size-identifier

operand-4 data-item-identifier-2

operand-5 pointer-identifier-2

Byte 1 is the operation code (X'6A")

onerans-1 reicrgnces to string data items
ata items.

arences to binary data items.

4
ar o
operands 2,3 5 a

CREDIT REFERENCE MANUAL

XSTAT

Syntax:

Type:

Description:

Condition
register:

Exampie:

Intermediate
code format:

Extended status transfer call XSTAT

[statement-itentifier] s XSTAT ws data-set-identifier, data-item-identifier

1/0 instruction.

A 18 bit device dependent status code from the data set indicated
by data-set-identifier, is transferred to the binary data item indicated
by operand-2.

Extended status codes are explained in appendix 2.

Unchanged
XSTAT DSCASS,STATUS

Byte 1 0 0 1 1]o 0o 0 o
Byte 2 external reference
operand-1 w data-set-identifier
operand-2 data-item-identifier

Bytes 1 and 2 are filled by the system. Byte 2 contains a reference to
an external system routine.

W is the wait bit. This has no significance for XSTAT.

Operand-1is a reference to the relevant data set.

10/100 refers to the first data set.

Operand-2is a reference to a binary data item.

1.4.174
May 1979

CREDIT REFERENCE MANUAL

1.4.8 Declaration Reference

This section describes the syntax and use of each declaration. The possibie values of
the variables in declarations is given in appendix 1. The notation conventions are
described in section 1.1.5.

1.4.176
May 1979

CREDIT REFERENCE MANUAL

CON Constant CON
actual parameter .actual-parameter
Syntax: [identifier] «y CONy qvalue value
value expression value expression
Type: Parameter declaration.

Description: This declaration specifies parameter(s), which have to be passed to a
subroutine. The CON declaration follows immediately after a PERF,
PERF! or CALL instruction.

Note: It is recommended to use the PLIST declaration instead.

1.4.176
May 1979

CREDIT REFERENCE MANUAL

FBN
FBNN
FBNP
FBNZ
FBP
FBZ

Syntax:

Type:
Description:

Format branch on condition

FBN
FBNN
FBNP
FBNZ
FBP
FBZ

lidentifier] s

Format list declaration

These instructions perform forward branching only.
See specific format branch on condition, reference.

1.4.177
May 1979

FBN
FBNN
FBNP
FBNZ
FBP
FBZ

s data-item-identifier, identifier

CREDIT REFERENCE MANUAL

Format Branch ! FB l

Syntax: identifier us FB « identifier
Type: Format-list-declaration.

Description: Editing continues at the format-list-declaration referenced by identifier,
further down in the same format list. When the identifier refers to the
FMEND declaration, editing is terminated.

1.4.178
- May 1979

CREDIT REFERENCE MANUAL

FBF
FBT

Syntax:

Type:
Description:

FBF
Format Branch on false/true FBT

lidentifier] w {ES-’;}L’ data-item-identifier-1, identifier.

Format-list-declaration

If the value of the boolean data item referred to by data-item-
identifier is TRUE, the FBF will result in continuation of the
editing at the declaration following the FBF. When the contents
of the boolean data-item is FALSE, then editing will be continued
at the format list declaration referred by identifier.

If the boolean data item is TRUE, the FBT will result in con-
tinuation of editing at the format list declaration referred by
identifier, when the boolean data item is FALSE, the next format
list declaration will be executed.

Branching to the FMEND results in termination of editing.

The contents of the data item may not be changed while the format
list concerned is current.

1.4.179
May 1979

CREDIT REFERENCE MANUAL

Format Branch on Negative

Syntax: [identifier] w FBN w data-item-identifier, identifier.
Type: Format-list-declaration.
Description: tf the contents of the binary or decimal data-item, referred by

data-item-identifier, is negative, editing continues at the ‘ormat-
declaration indicated by identifier. (Forward branching only).

If the contents of the binary or decimal data-item is positive or

zero editing continues at the next format-list-declaration

Branching to the FMEND results in termination of editing.

The contents of the data item may not be changed while the format
list concerned is current.

1.4.180
May 1979

CREDIT REFERENCE MANUAL

FBNN

Syntax:
Type:
Description:

Format branch on not negative FBNN

LidentifierJLFBNN udata-item identifier, identifier,
Format-list-declaration.

If the contents of the binary or decimal data-item, referred by
data-item-identifier, is not negative or zero, editing continues
at the format-list declaration indicated by identifier, (Forward
branching only).

I the contents of the binary or decimal data-item is negative
editing continues at the next format list declaration.
Branching to the FMEND results in terminating of editing.

The contents of the data item may not be changed while the format
list concerned is current.

1.4.181
May 1979

CREDIT REFERENCE MANUAL

Format branch on not positive

Syntax: [identifier] « FBNP w data-item-identifier, identifier
Type: Format-list-declaration.
Description: If the contents of the binary or decimal data-item, referred by data-

item-identifier, is not positive or zero, editing continues at the format
list declaration indicated by identifier, (Forward branching only).

If the contents of the binary or decimal data-item is positive, editing
continues at the next format-list-declaration,

Branching to the FMEND results in terminating of editing.

The contents of the data item may not be changed while the format
list concerned is current.

1.4.182
May 1979

CREDIT REFERENCE MANUAL

Format branch on not zero

Syntax: [identifier] u FBNZ u data-item-identifier, identifier
Type: Format-list-declaration,
Description: If the contents of the binary or decimal data item, referred by

data-item-identifier, is not zero editing continues at the format-
list-declaration indicated by identifier. {Forward branching

only).

If the contents of the binary or decimal data item is zero,

editing continues at the next format list declaration. Branching

to the FMEND results in terminating of editing.

The contents of the data item may not be changed while the format
list concerned is current.

1.4.183
May 1979

CREDIT REFERENCE MANUAL

FBP Format Branch on positive

Syntax: [identifier] u FBP u data-item-identifier, identifier.
Type: Format-list-declaration.
Description: If the contents of the binary or decimal data-item referred by

data-item-identifier, is positive editing continues at the “ormat
declaration indicated by identifier, (Forward branching only).

If the contents of the binary or decimal data-item is not

positive or zero editing continues at the next format-list-
declaration.

Branching to the FMEND results in terminating of editing.

The contents of the data item may not be changed while the format
list concerned is current,

1.4.184
May 1979

CREDIT REFERENCE MANUAL

Format branch on zero

Syntax: (identifier] u FBZ u data-item-identifier, identifier.
Type: Format-list-declaration.
Description: 1 the contents of the binary or decimal data-item, referred by

data-item-identifier is zero, editing continues at the format-
list-declaration indicated by identifier. {Forward branching oniy).
if the contents of the binary or decimal data-item is not zero,
editing continues at the next format-list declaration. Branching

to the FMEND results in terminating of editing.

The contents of the data itemmay not be changed while the format
list concerned is current.

1.4.185
May 1979

CREDIT REFERENCE MANUAL

Syntax: {identifier] .y FCOPY data-item-identifier
literal
Type: Format list declaration.
Description: The location, addressed by operand is copied into the output

buffer. The data-item or literal must be of the value type string.
Null characters {X'00") are not copied into the output buffer,

A literal is not allowed when the FCOPY is used in conjunction
with one of the input field declarations FINP or FKJ.

Example: FCOPY L_i= C'BOOK’
FCOPY L= X'3031"
FCOPY L= X'41004243’ Result in buffer X'414243'
FCOPY _i=C’AB’

FCOPY DATAID The contents of the data item
FCOPY DATARR{IND) specified is copied into the
output buffer.

1.4.186
May 1979

CREDIT REFERENCE MANUAL

FCW Format control word FCW

Syntax: {identifier] «s FCW ws]data-item-identifier
literal constant

Type: Format list deciaration

Description: The operand must refer 10 a data-item or literal of the type
binary. If the control word for a particular device must be zero,
then, in an EDWRT instruction, FCW causes end of record,
while in an EDIT instruction the editing is terminated.

Example: FCW BIN1
FCWLJ="0
FCW LI = X"8000"

1.4.187
May 1973

CREDIT REFERENCE MANUAL

l FEOR

Format erc of record FEOiﬂ

Syntax: Lldentitier 3 FEOR
Type: Format tist declaravon
Description: it the format st EDWET or DISPLAY instruction the
edited hutter oo oata-set specified in the instruction. No
, winen the buffer is empty.
condition register will, if there 's more
! :eniain the logical sum of the
fused o2 B R statement causes termination
of the editing.
Example: FRM7
FILLR N2
FTEXT "&LPHANUMERICTEXT
FTAB 16
FTEXT 'STRING
FEOR
FILLR "2
FTEXT ’'REPLACES
FTAB 18
FTEXT ‘TEXT
FMEND
Result on output data set: ALPHANUMERIC STRING
REPLACES TEXT
i
3 16
1.4.188

July 1978

CREDIT REFERENCE MANUAL

FEXIT Format exit FEXIT

Syntax: {identifier] L FEXIT.
Type: Format list declaration.
Description: Editing is terminated

In an Edit and Write (EDWRT) or DISPLAY instruction, the
edited buffer will be written to the output device. No output
request is performed. When the buffer is empty FEXIT has the
same effect as reaching the FMEND.

1.4.189
July 1978

CREDIT REFEFRENCE MANUAL

FHIGH Formas High intensity FHIGH ‘

Syntax: [identifier] vy FHIGH
Type: Format-list-cieclaration.
Description: The characters fellowing FHIGH will be dispiayed with normal

intensity if it was before low intensity.

This declaration is oni vaiid for the video display PTS 6344 and
when the format ‘ist, i ich the declaration FHIGH occurs, is
invoked by the DISPLAY instruction.

FHIGH resuits in the cantrol character X' 1F' being editec into
the buffer

1.4.190
July 1978

CREDIT REFERENCE MANUAL

FILLR

Syntax:

Type:

Description:

Example:

Fill repeat FILLR

(identifier] L FILLR 'value expression ,value expression
string-character /{)decimal-integer
Format list declaration.

String-character is copied an integer number of times (maximum 63}
into the edit buffer.

FILLR * .5

1.4.191
July 1978

CREDIT REFERENCE MANUAL

FINP Format Input

Syntax: [identifier] s FINP w1 column [APPL=value]
Type: Format list declaration.
Description: This declaration defines a general input field on the screen. The

input field starts at the position defined by column, which is a
value expression.

The APPL option defines a controf value which can be transferred
from this field to the program, with the GETCTL instruction.
Value may range from -32,768 to 32 767.

The FINP declaration, should be immediately followed by a
FCOPY or FMEL declaration,

1.4.192
July 1978

CREDIT REFERENCE IMANUAL

FK1 Format Keyboard input FKi1

Syntax: lidentifier] w FKivs column [APPL=valus] [[30HK=1a
[LMAXL=value] [.DUPL=data-iter, ider: lerJ

[,MINL=vatue} {

(,NUM]LALPHAI {,REWRT1 [ME] [[NEQI] [[NCLR]
[,CTAB] [,VERIF}

Type: Format list declaration

Description: This declaration defines an input field on the screen which is to
receive input from a keyboard via the DYK] instruction. The

start of the fieid is defined by column
The deciaration, with its options, mu

which is a valug expression,
ne toliowed by an FCOPY

or FMEL declaration, which contains the input field belonging to

data-item.
Options

MAXL=value

ME

MINL=value

ALPHA

APPL=value

CTAB

DUPL=data item-. 2

NCLR

Significance
Data item must be of the type string or decimal.

Value can be obtained with the GETCTL
instruction and must be in the range 0 to .+,
inclusive. Default value for this option is

zera.

This opticn indicates a compulsory input *:&:a.
It controls the instructions GETFLD, TUP,
TDOWN, TLDOWN, TLEFT, TRIGHT, TBWD,
TFWD. (This ME option can be tested by the
TSTCTL instruction, if requested).

Value can be obtained with the GETCTL
instruction and must be in the range 0 to 63
inclusive.

Default value for this option is zera.

This option controls the DYK! instruction and
allows alpha numeric characters to be entered
for this input field. Defauit is the NUM option.
{This ALPHA option can be tested by the
TSTCTL instruction, if requested).

Value can be obtained with the GETCTL
instruction and must be in the range -32 768 to
32767. Default value for this option is zero. *
Cursor setting is prohibited. This option
controls the tabulation instruction TUP,
TDOWN, TLDOWN, TLEFT, TRIGHT,

TBWD, TFWD and THOME. {This CTAS option
can be testad by the TSTCTL instruction, if
requested).

The contents of the dats drem referrenced by

2im-identifisr ¢ ohitoined with the
L instruction,

Tris opticn controls the ERASE instruction

ing ot input fields,

R option can e tested

: ,\,T._ ,ncmn tion, if regues

14193
didy FH7R

CREDIT REFERENCE MANUAL

E continued

Options Significance

NEO) The maximum number of input characters
(MAXL) is accepted without a termination
key. This option controls the DYKI
instruction. (This NEO! option can be tested
by the TSTCTL instruction, if requested).

NUM This option controls the DYK/ instruction and
atlows numeric characters 10 be entered for this
input field. Either NUM or ALPHA may be
present as option. {This NUM option can be
tested by the TSTCTL instruction, if requested).

REWRT This option controls the UPDFLD instruction
and atlows redisplaying of the contents of the
data item belonging to this input field. (This
REWRT option can be tested by the TSTCTL
instruction, if requested).

SCHK=value Value can be obtained with the GETCTL
instruction.
Value is a value expression and ranges from 1 to
7 inclusive.
Default value for this option is zero.

VERIF This option indicates that the input field is
subject for verification. (t does not control any
format control instruction but is obtained by
the TSTCTL instruction,

*

* Note that the values used in the APPL and SCHK options are defined by the user
for use in the program outside of the format list. Their values and use are therefore
completely application-dependent.

1.4.194
July 1978

CREDIT REFERENCE MANUAL

FLINK Format link | FLINK {

data-item-identifier

Syntax: {identifier] < FLINK L format.list-identifier
Type: Format list declaration
Description: A format list as indicated by format-list-identifier is called as a

sub-format, and editing continues according to this subformat.
Upon the end of the subformat, editing is resumed at the next
format-list-declaration. *

Instead of a format-list-identifier, operand-1 may be a reference
to a string data-item. This data-itern must contain format-list
characters as present in the format-literalpool. {(output CREDIT
linker). ltem size must be great enough to contain these
characters. The CALL FMOVE instruction may be used to fill
the data-item,

Example: FCOPY = C'NEW BALANCE:"
FLINK FRMO12
FTEXT ‘TOTALYS

* Note that the new format list will be edited into the output buffer at the current
position, the first two characters (the control characters} being omitted, |f the
new format list is required to start on a new line, the FLINK declaration should be
preceded by FEOR and FCOPY ({with control characters as relevant). The same is
true for the format-list-declaration following the FLINK; it will be edited into the
output buffer at the current position,

1.4.195
July 1978

CREDIT REFERENCE MANUAL

FLOW Format Low Intensity FLOW

Syntax: [identifier] «s FLOW
Type: Format list declaration.
Description: The characters foilowing FLOW will be displayed with low

intensity. This declaration is only valid for the video display
PTS 6344 and when the format list, in which the declaration
FLOW occurs, is invoked by the DISPLAY instruction.
FLOW results in the control character X"1E’ to be edited into
the buffer.

1.4.196
July 1978

CREDIT REFERENCE MANUAL

FMEL Formar element FMEL

Syntax: [identifier] w FMELws ricture-string, data-item-identifier
Type : Format list deciaration.
Description : The decima! data item indicated by operand-2 is edited according

to picture-string.
Editing is done from right o left,

Picture-string

characters: Character Significance Example
A Skip if space (left— Picture 'AAAS99’
adjust to leading digit) Data item BFF0456
RESULT 0456
B Insert a blank space Picture '99B99’

Data 1tem B06521
RESULT 654 21

E Enter the character Picture ‘99E—-99’
tollowing £ into the Data item BO1912
data item. Any 1SO- RESULT 19-12

7 character may be
entered, except a
singie quote or

backslash

F Insert character follow- Picture 'F*ZZ2Z9V99’
ing F, before the next Data item BO01053
printed digit but after RESULT *10.563

suppression of leading
zeros and spaces. Any
1SO 7 character may be
entered, excepta

single quote or back-

stash
P Skip this position Picture 'P9Y’
Data item B543
RESULT 43
T Skip if space or leading Picture "TTT999'
zero {left adjusted 1o Data item BFFF0456
leading non-zero digit) RESULT 456
\% Insert decimai point Pict.re "99VES”
GOMIEss). Data item BOO122

mal point preceding RESULT 01.23
the eftrmost gigit wili be Picture ™ *Vve'
y asterisks in all Data jtem DFO1
teaciing positions. RESULT ***1

weqic. (space Picture "XXX’
ce and Data itern BF12
ARESULT L1312

;4

Aay

CREDIT REFERENCE MANUAL

FMEL

continued

FMEL

Character Significance Example
Y Enter alphanumeric
if data-item 1s non
empty, eie enter a
space.
z Leading zeroes are Picture '2229y
replaced by spuces Data item BOC123
RESULT 111123
0 Insert zere Picture "2909"
Data item 123
RESULT 1202
9 Print digit {(see X) Picture ‘999"
Data item BF12
RESULT 012
+ Print a + or -- sign 2 Picture '999+°

Print a — sign if the?!
data item is negative.

Otherwise print space.

Replace leading zero
or space by asterisk

Insert roomiess point(1

insert comma”)

Data item D173
RESULT .© —
Picture 'F+22Z’
Dats item DFO1
RESULT wiy —1
Picture 'F+**v9’
Data item DF11
RESULT *-1.1
Picture '999—’
Data item B123
RESULT 123w

Picture "**+*99’
Data itern B0O0123
RESULT **123

Picture ''99,99"
Data item B01234
RESULT 12,34

(1) If leading 2eroes or spaces are being suppressed, any comma
or decimal point {roomless or normal) occurring before the
first non-suppressed digit will also be suppressed.

(2) +and — may be declared as floating, the ‘unction is further
the same.

1.4.198
July 1978

CREDIT REFERENCE MANUAL

FMEL! Format element immediate FMEL!

Syntax: [identitier] o FMELI w picture-string, data-item-identifier
Type: Format fist declaration.

Description: The decimal data item referenced by data-item-identifier is to be edited
according to picture string.
The picture-string is included in the format pool and not in the picture
pool. This is the only difference with the FMEL declaration.

For picture details, see FMEL.

1.4.199
May 1979

CREDIT REFERENCE MANUAL

FMEND Format end

Syntax: LIFMEND{;
Type: Format list declaration.
Description: This declaration indicates the end of a format list.

1.4.200
May 1879

FMEND

CREDIT REFERENCE MAN AAL

FNL

Syntax:
Type:
Description:

Format next line FNL

{identifier] vu FNL

Format list declaration.

When this format list declaration occurs in a format list used by
the EDIT instruction, editing will be terminated.

EDWRT and DISPLAY instructions using a format list in which
a FNL declaration is present, will result in the following actions:

1.

an output request is done for the current contents . f the
buffer, except when the buffer is empty.

A space character js inserted in the first position of the
buffer and one line spacing control character space, is
inserted in the second position. (One line feed).
However, the logicical tabulation position is counted as
one.

The control characters ""low intensity” (X'1E'), is editec '
the third position only, when the video display PTS 634+
and the instruction DISPLAY are used.

1.4.201
Suty 1978

CREDIT REFERENCE MANUAL

FNUL Format No underlining FNUL

Syntax: [identifier] «s FNUL
Type: Format-list-declaration.
Description: The characters following FNUL will be displayed with no under-

lining, if it was before underlining. This declaration is unly valid
for the video display PTS 6344 and when the format list, in which
the declaration FNUL occurs, is invoked by the DISPLAY
instruction.

FNUL results in the control character X'13’ being edited into the
buffer,

1.4.202
July 1978

CREDIT REFERENCE MANUAL

FRMT Format FRMT

Syntax: format:list-identifier LIFRMTLJ

Type: Format list declaration.

Description: This declaration indicates the beginning of a format list.
1.4.203

July 1978

CREDIT REFERENCE MANUAL

- Format start line FSL

Syntax: [identifier] (s FS:.
Type: Farmat list daclaration.
Description: When this format i-5t declaration veeurs in a format list used by

the EDIT instrucuiur, editing will be terminated.

EDWRT and DISFiLLAY nstructions using a format list in which

a FSL deciaration is zi esent, will resuit in the following actions:

1. Anoutputrequest s mada for the current contents of the
buffer, except whan the nutfer 1s empty.

2. A space character is inserted n the first position of the
butfar and one line spacing control cheracter “+7, 1s
inserted in the second position. Haowever, the logical
tabulation position (s counted as one.

3. The control character "“fow intensity’” {X'1E) is edited in
the third position oi:ty, when the video display PTS 6344
and the instruction DiSPLAY are used,

1.4.204
July 1978

CREDIT REFERENCE MANUAL

FTAB Format tabulation FTAB

Syntax: lidentifier] «=+ FTAB w value-expression
Type: Format list declaration
Description: The pointer for the buffer is set to the position specified by the

value-expression. This column may be to the right or to the left
of the current position. The positions in the buffer between the
current pointer and the new pointer are filled with space characters.
Editing proceeds from the new pointer.
The first position in the buffer is counted as one when setting the
pointer.
When calculating the tabulation position, the format-list-declarations
FSL, FNL, FHIGH, FLOW, FUL, FNUL, FtNP, and FKI each
oaccupy one character in the buffer.

Example: SIXT FTAB 16

ONE EQU 1
FIVE FTAB ONE+4

1.4.205
July 1978

CREDIT REFERENCE MANLL- L.

]
FTABLE Form. LFTABLE

Syntax: [formsttacieicen. el o ol format list-identifier, [format-
list-identifier] . ..

Type: Format talia Cefaritiny

Description: A one dimensions iist-identitiers is dec ared, which

ting @ format-li t-reference.
jeclaration may not be
nstructions only the
LaT be passed,

i parameter name for the
v 1w brackets,

formai parameter neme must be
&, everd if no two byte zddressing is
selected, v to elements ‘n 2 one ditnensional
array are also vatid for tx mat vables

A0S

mey be reterer 3
e tormat

Format tis?s re
passed a: 3
name of the

It

ECIAMT FORM2 FORM3

Example: FTB1 FTA

EDWRT DSVDU,FTB1 (INDEX)

PROC SFFTAB ()
PFRMT SFFTARB

1.4.206
May 1979

CREDIT REFERENCE MANUAL

FTEXT Format immediate text FTEXT

Syntex: . . ‘string-character ...’
[identifier] w2 FTEXT X’ hexadecimal-digit ...’

Type: Formal iist declaration

Description: String-character(s} or hexadecimal-digits are copied into the

output buffer. Copying is done on character base.
Not allowed characters are the quote or backslash.

Example: FTEXT ‘NEW BALANCE’
FTEXT X'4E554553'
FTEXT X'30

1.4.207
July 1978

CREDIT REFERENCE MANUAL

- Farmat underlining -

Syntax: [identifier] «u FUL
Type: Format list declaration.
Description: The characters foiiowing FUL will be displayed with underlining,

if it was before niu r.nderlining. This deciaration is only valid for
the video display 6344 and wher the format-list, i which
the declaration FU L ecurs, is invoked by the GISPLA™Y
instruction.

FUL results 10 the controi character X' 12’ being edited intc the
buffer.

1.4.208
July 1978

CREDIT REFERENCE MANUAL

KTAB

Syntax:

Type:

Description:

Example:

Key-table-identifier LUKTABLJ key-value [,key-value]

Key table

Key table declaration.

KTAB

A key value in the key value list is used as a terminating character

{end of record key) in the keyboard input instructions.

1 a value expression is used in key value list, only value type X may

be used.

KTAB1
KTAB2

KTAB KCORR,KMUL,KDIV
KTAB X'0D’,X ‘30" +2

1.4.209
July 1978

CRED!T REFERENCE MANUAL

Parameter fist I PLIST l

Svntax: .2 PLIST s actual-parameter [actual-parameter] . ..
Type: Parameter deciaration.

Description: This declaration specifies par ameter(s), which have to be passed to a
subroutine. The PLIST deciaration follows immediately a PERF|
instruction.

A literal constant of the type ' X' is not allowed as parameter.

1.4.210
May 1979

S Al A

CAgwd ArFE

ipui 1o the #T35 systern via cards, cassette, flexible disk or
the source module is held on disk. All the processors and
s manusal read input from disk and write output to disk.

ne sequence of processes needed to develop and

317 source modules.

atelv by the CREDIT Translator. The Translator
e modules. The instructions in these modules use a
75, Bach module may contain references to:

wapies and pictures in the sarme module and/or in the same

) ’i‘EQr‘uiﬂs, in the same segment and/or in other segments.
dules.

e e oace actictiad by the CREDIT linker,
ing types of reference are satisfied by the Linkage Editor. This processor
1 wduie from the foliowing object modules:
ing CHEDIT linker,
cdules (if referenced).
- Assemble
- CRELD 37,
srogram (i requested).
ecuted directly. Each instruction must be interpreted by
tines within the Interpreter actually perform the
T code. For this reason the Interpreter is built into
~ditor.
ar ¥ required, must aiso be built into the load module.
ive diagnostic task which, if present, is executed in
paraliel wi c:arsm being tested. Via the Debugging Program the
programmaeai can conoeos and control the execution of his program,.
‘»wrw(} i1 Mmemo Ty for execution the work biocks, stacks,
2d for a particular system, are set up. This
10D,
& ihvage editor are all run under the DOS
e By th linkage editor, however, must be run

uﬁk DT«
the CRE

The Deb

When the *09(‘1 e
()a? SENEN

rvinad moduie, control is handed to the
wuration is compigte, control is handed
< carried out using one or more work

» % being used, execution can be controlied

CREDIT REFERENCE MANUAL

Development of a CREDIT Appiication Program

LINE

EDITOR

i

CORRECTIONS

PARAMETERS

g,_l,m
]

! SYSGEN

TOSS

MONITOR
LOAD

Q}saf‘ 7

AODULES
e sem g

LINKAGE
EDITOR

APPLICATION
LOAD
MODULE

SGURCE
STATEMENTS
ON CARDS

CREDIT
INTERPRETER
& CREBUG

! USER
ASSEMEBLER
ROUTINES

CONFIGURA.- C
JION DATA

]

‘b ?

TOSS
MONITOR

APPLICATION
PROGRAM,

$PDISC j

—
MONITOR
APPLICATION
CONFIGURA.
JION DATA

1Pl

INTERPRETER,
CREBUG, - .

SYSLOD
(Overwrites itself)

2.1.2
May 1979

V_y

$PCAS

Note: Dotted lines indicate
method of creating
monitor, abplication
and configuration
data for IPL from
cassette.

CREDIT REFERENCE MANUAL

I any application program errors are detected du ring testing, one or more source
modules will have to be corrected. This may be done via the Line Editor — an
interactive text editor. Each corrected source modufe must then be re-processed
by the CREDIT Translator. The whole program must then be processed by the
CREDIT Linker and Linkage Editor prior to re-testing.

TOSS system software comprises the foilowing components:

— Monitor

— System Loading Program

— CREDIT interpreter

— [CREDIT debugging program]
— [Assembler debugging program}

These software components are not described in a separate manual. Information
concerning TOSS System Software which is needed by CREDIT programmers is
contained in this manual.

The following software components, though part of DOS6800 System Software, are
discussed in this manual:

e CREDIT Translator

e CREDIT Linker

They are discussed in this manual because they are used by CREDIT programmers
only. The remaining DOS 6800System Software components used by CREDIT
programmers, notably the Linkage Editor and Line Editor, are described in the
DOS6800 System Software PRM (M11).

213
May 1979

CREDIT REFERENCE MalvUAL

2.2 CREDIT Translator
2.2.1 Introduction

The CREDIT Translator is a processor which converts CREDIT source

statements into intermediate object code. Source modules are translated separately,
resulting in the production of individual object modules. References between chject
modules and references tc external routines etc., are not resolved by the Transictor.

Readers of Section 2.2 shouid be familiar with the following DOS68G0 System
Software concepts:

e Control Command
Processor

EOQF mark

Source input device
Temporary source file
Temporary object file

These concepts are explained in the DOS6800 System Software PRM (M11}.

2.2.2 Runeing the Translator

Source moduies must be read into the System by issuing the control command RDS
{read source}, RDS will read the source module from the input device {card reader,
cassette or console keyboard) and will create a temporary source file. The module
must be terminated by an :EQF mark. {f the module has been read into the System
previously and kept {control command KPF}, a RDS command will not be necessary.

it is strongly recommended that all temporary object files are scratched (and kept if
necessary) before the Transiator is executed. This will ensure that ti1e output object
modules will not be corrupted by existing files.

The transiator is called into execution by the following control command:
TRAu{ /s } [,NL]
name

where: /S indicates that the input source module is in the temporary source file.
name is the name of a source file in the library of the current user identifier,
11 indicates that the input source module will be found in that file.
NL indicates that no listing of the module is required. Error messages
are always printed.

The interrediate object module created by the Translator is written into the
ternporary object file. If this file already contains object modules, the following action
is taken. I it has not been closed by an EOF mark, the intermediate object module is
written afrer the information already held in the file. if it has been closed by an EOF
mark, a new tempaorary object file is created and the old one is deleted.

2.2.7

May 1979

CREDIT REFERENCE MANLIA L

223 Transiator Listing

2.2.3.1 General

listing in three parts. Part one contains
2 object code and error messages. Parts
wble and the procedure label table, The

During transiation e Transiator goneratos
the CREDIT source statesments, intermed
two and three contain the ddtm Hem rams
fotiowing sections doarribe o :

The listing can be suppressed if the NL ontian is specified on the TRA control
command. ! this case, aniy the erqar massuges wiil be printed,

2.2.3.2 CRED!T rode snd Frror Messages
v

The format of this part is shown in the foliowing example. The example is taken from
the procedure division, The dats division lsting is slightly different. The differences
are noted in the explanaiion which Tolows,

At the left of the listing under the heading LOC is the location counter. This is a four
digit hexadecimal counter which is sieppad by one each time a byte of intern zdiate
object code is gererated, {n the data division a two digit hexadecimal counter called
X (for index) is used.

The next eight items, under the headings OC (operation code} and OPERANDS, comprise
the generated interpretive instructions. Each item is a two digit hexadecimal code. The
significance of these codes is described for each instruction in the Instruction Reference
Section (1.4.8). Object code is not listed in the data division.

The item urder the heading LINE is a four digit decimal line counter,

The remaining items are self-explanatory, They comprise CREDIT source statements.

£rrors in the source module are reported by the Translator. One of the following
messages is printed immediately after the line containing the error:

01 Memory overflow {job aborted)
02 Sequence error

02 Directive missing

04 Syntax error

05 Length truncation (no error accumulation)
06 Multidefined

07 Undefined

08 Unexpected vaiue

09 Undefined type

0A Unexpected type

0B 1llegal constant

0C Lit pool overfiow

0D Label missing

OE llegal value def
OF lilegal const length
10 lllegal const type

11 Too many blocks

12 Too many data items.
13 = Block size overflow

14 Too many datasets

15 Too many parameters
16 Too many start stmts
17 lllegal dimension,

18 Too many values.

19 Out of range.

1A Unspecified parameter.
1B Parameterlist overflow,

222
May 1979

CREDIT REFERENCE MANUAL

In addition to the error message an asterisk is printed to show the position at which
the error occurred.

An error count is maintained by the Translator and is printed after the END directive.

If a fatal error occurs (1/0 error, table overflow, etc), the source input is read until
an EOF mark is encountered and the following message is printed:

FATAL ERROR HAS OCCURRED. NO OBJECT CODE PRODUCED.
The object file is then deleted.

2.2.3.3 Data Item Name Table

The data item name table is listed immediately after the CREDIT code and error
messages. For each data item declared in a work block it contains the following:

NAME This is the data item identifier.

REF This is the index number assigned by the Translator. Index numbers are
printed to the left of the data itern declarations, under the heading ‘I X".

TYPE This is the data item type specified in the data item declaration. The
following mnernonics are printed under the TYPE heading:
BCD (decimal}, BIN (binary), BOL (boolean) and STR (string).
A letter U foliowing one of these mnemonics indicates that the data
item is not referenced in this module.

2.2.3.4 Procedure Label Table

The procedure {abe! table is printed immediately after the data item name table.
For each identifier appearing in the procedure division it contains the following:

NAME This is an identifier specified by the programmer in the procedure
division, or it is the name of a System routine referred to by the
generated object code.

REF This may be an index to a format list, a key table or an external table.
' It may be a value specified in an equate directive. [t may be the
contents of the location counter (if the identifier belongs to an
instruction or PROC directive).

TYPE This indicates the type of identifier. The following mnemonics are used:
ADR Address of an instruction
EQU Equate directive
EXT External label
FOR Format list
KEY Key table
PRO PROC directive
FLB Format label {address of a format item)
FTB Format table

A tetter U following one of these mnemonics indicates that the identifier
is not referred to in this moduie.

223
May 1979

CREDIT REFERENCE MAN AL

8|qe} Ay e 0] 80UaIa1RY = M|
15| 1BULIOJ B 01 90UBIB4AY = 44

31dINVXT DNILSIT apoa uoiielado 1o QHMHNMN _mwnwywm - XX
HOLVTISHYHL 110340 1 |ess1n =11

3)NPOW SIYY U] 3DUBIY = HY
NOILONYLISNI IHL 40
NOILVLNISIHd3Y

NOLLY ST 41N IVNIDIAYXTH
IOV INIT HILNNOD HILNNOD
NGILVANILNGD SININWOD LNIWILVLS 3DHNOS NI NOILVD01
i i 1 A
Mt o ‘ 1 1T 1
0L0Dd0 €S 2GE0 40 46 §100
PAVINEdNYTL HONYS 443d 1GE0 1721 XX 2100
ALl LNIAE1DI8HOY 001040’ LOdNI'GIHSYDD3 8s 0560 S0Zv 09 0z 3000
6VE0
0L0240 8S 8v£0 90 45 D000
I4340 avad M=, B M=EEVINNAVIE J43d LYE0 17973 XX 8000
0L00d0 9v£0
5v50
350715 LNIYd PLOWE4'LrdLSA LHMA3 VrE0 4498 XX 0E 5000
Xi231SY Lhid £00WY 4’ 11d1SA LYMA3T £vE0 33168 XX 0E 0000
01040 ZVEO
. LbE0
" OvED
I1NAOW S0 TYNINEIL AYINI . 6££0
» 8550
" 1£€0
10373 9550
a9 INIWNOD SANVHIA0 00O 1387 ANIT SANVHIAO D0 00T

9000 3IDvd . L4¥090 . SOTO40 LIN3IAI NOISIAIAQ 38NQ3004Hd , 025082 L'€13H HOLVISNVYHL 113340

:r?a
May 1979

CRELIT REFERENCE MANUAL

2.3 CREDIT Memory Management Linker
2.3.1 Introduction

The CREDIT memory management linker is a three pass processor which converts
intermediate object code, produced by the CREDIT translator into object code which
can be processed by the Linkage Editor. The CREDIT linker is capable of linking both
unsegmented and segmented programs.

Intermediate object modules may contain references to:

Labels in the same moduie.

Literal constants, formats, key tables, pictures in the same module.

Labels in other CREDIT modules in the same segment.

Labels in other CREDIT modules in other segments.

Assembler appiication modules.

Assembler Sysiem routines.

The first three types of referenice, when present in the same segment, are satisfied by
the CREDIT linker.

The remaining types of reference must be satisfied by the Linkage Editor.

To build up the segments, different possibilities exist which are the same when using
extended main memory, secondary memory or a combination of both.

Readers should be familiar with the following DOS6800 System Software concepts:

¢ & 6 & & @

e Control command

e User library

e User identifier

e Temporary object file

These concepts are explained in the DOS6800 System Software PRM (M 11).
2.3.2 Buiiding up segments

After translation of the different CREDIT modules a number of intermediate object
modules have been created. All these modules together building up a CREDIT application,
are input to the CREDIT linker (TLK).

The CREDIT tinker kas to know which modules should be contained in the segments.
This is specified by the user by means of the ordering of the modules as input to the
linker. In the TLK command is a parameter [n or mK) defining the maximum segment
size to be used.

However, the NOD command (node) can be used to force an immediate end of a segment
and also to define the segment as main memory resident {(NOD s R} or belonging to the
common ares, segment 00 INOD 1.5 C}. The common area, segment 00, is always present
in main memory and will contain the data division, the interpreter, assembier sub-
routines and /or user routinegs, The size of the common area is variable and not
dependent on the size parameter in the TLK command. Segrment 00 is automatically
created.

Wher the NOD commea
will e disk rosidert, W
resident

5 used without specifying R or C as parameter, the cagment
e NOD command is not used, the segments will be disk

2.3.1
May 1979

CREDIT RETEENOE MANUAL

inte ditfereny wodules as: dare div
axherl the conmon part, segmant 30

aupsd inte segments in the order in
w:11§ are numbered from

Sorin examples showing the use oFf NOD and TLK

a. System with BAK Byrte mam memuory,
INC

D

LAY

EE R W gy 4
NG MOD3
TLK Ul X

b, System with 84K Byie maio maniory wog use S secondary memory, (Disk, flexible
disk}.

e
Sle

INC MDD {3.5Kbytes)

INC MOD2, USER1 {0 7K bytes)

INC MOD3, USER2 {G.5K bytes}

iINC MOD4 {ZKbytes)

INC MOD5 {2Kbytes)

INC MOD8, USERS {1Kbyte)

NG MOD7 (2K bytes)

TLK UMAK

Four segments are created by the linker, and all are disc resident
{Segment zero always resides in main memory)

Segment Contains MG (3.5K)
Segment 2 Contains MGD2, MOD3, MOD4 (3.2K)
Segment 3 Contains MOD5, MODS {3K)

Segment 4 Contains MODY {2K)

By means of altering the sequence of the INC commands, the user can optimize his
program segments. In this example onty 50% of sement 4 is filled.
When e.g. MODb5 must be present i1 segment 0, the following sequence of commands
has to be specified:
Size
NOD C
INC MODb {2K bytes)
NOD
INC MOD1 {3.5Kbytes)
INC MOD2, USER1 {0.7Kbytes)
INC MOD3, USER2 {0.BKbytes)
INC MOD4 (2K bytes)
INC MOD6, USERS3 {1Kbyte)
INC MOD7 {2Kbytes)
TLK UM, 4K

232
May 71879

CREDIT REFERENCE MANUAL

Segment 1 contains: MOD1
Segment 2 contains: MOD2, MOD3, MOD4
Segment 3 contains: MQOD6, MOD?7,.

MODS5 is now included in the common area, segment zero.

When also MOD 1 must be main memory resident, but not in segment O, then the
following command sequence can be used:

NOD C

INC MOD5
NOD R

INC MGD1
NOD

INC MOD2, USER1
INC MOD3, USER?2

INC MOD4
INC MOD&, USER3
INC MOD7

TLK U,M,4K

Size
(2Kbytes)
(2Kbytes

(3.5Kbytes)

{0.7Kbytes)
{0.5Kbytes)
(2K bytes)
{1Kbyte)
{2Kbytes)

Segment 1 contains: MOD 1 {3.5Kbytes)

Segment 2 contains: MOD2,MOD3,MOD4 (3.2Kbytes)

Segment 3 contains: MOD6, MOD7 (3Kbytes)
c. System with extended main memory, up to 256Kbytes.

Size

INC MOD1 {3.5Kbytes)

INC MOD2, USER1 {0.7Kbytes)

INC MOD3, USER2 {0.5Kbytes)

INC MOD4 (2K bytes)

INC MODb (2K bytes)

iINC MOD6, USER3 {1Kbyte)

INC MOD7 (2K bytes)

TLK U,M, 4K

Four segments are created by the linker, and are assumed to be disk resident. Because
an extended main memory is used, all segments will be main memory resident. The
composition of the segments is as mentioned in example b.

The system loader SYSLOD will discover the difference when a system with extended
main memory, secondary memory or a combination of both is used.

d. Systems with extended main memory (up to 256 bytes) and secondary memory.

Examples b) and ¢} may be combined.

233 Running linker

The CREDIT linker reads intermediate object modules from temporary object file and
from the library of the current user identifier. The syntax of the TLK command is:

TLK w [N{SIUH,X] [M] [,ni,mK]

N The system or user /@BJCT files do not need to be scanned.

23.3

May 1979

CREDIT REFERENCE MAM,

U Only the user /BB Fles witl g w
8§ iy the systers AOBIDT e a0 1o vo seannod,

Default vaius Both /GE
oy ,

1eq first, then the system /@BJCT

Tiie again.

DRV
e TrBians
‘3!};‘5,15..;1

X indige s reguirad,

b printeo.

soasiis 6F a iisting of the moduie names and the
o statistics par segment.

M The listing of th
relative stary :

AT S [D
Tl W ANAE IND L vt D D

mi The ragui

3

eTauit value:

2.3.3.1 OREDIT mindules o0 the systars b

When CREDIT modules pave
first a Generate Oblect Dirocinry
before the TLK comimang o
The following listings are produced by the CREDIT memaory management linker per
segment:

— Segment 0 {Common part}
load map
long branch table
call table
perform table can be excluded by riot using
literat pool ‘M in the TLK command.
key table pool
picture poo!
format poaot)

Linker statics tor this segment

— Segment n
loadrnap
long brancn tabie
perform table
literal poo!
picture pool
format pool

can be excluded by not using
M in the TLK command.

Linker statics for this segment

— Tot1al
segment map ’ can be excluded by not using

cross reference I "X’ in the TLK command.

Linker statics for the whole program.

234
May 1979

CREDIT REFERENCE MANUAL

The {oad map includes a list of error reports. Error reports will be listed even if the load
map listing has not been requested.

2.3.3.2 Load Map

The load map indicates the displacement of each module within a segment. It also
contains the linker (TLK) error reports. The format of the load map is shown in the
following example:

o - T e s M W S A Ml o o e A B G e M e G e " - o s T _ ¢

LOC MODULE ERROR COMMENT
00OCE MOD3 TRA 4.1 99~99-99 F1 0111l
00&D MODULY TRA 4.1 99-99-99 F1 0Llll
paeo MODULéS TRA 4.1 99-99-99 F1 0111l
0oBe? MODUL? TRA 4.1 99-99-99 F1 0LlLl
0oca MODULS TRA 4.1 99~99-99 F1 0111l
where: LOC is the displacement of the module within the segment.

MODULE is the module name.

ERROR is the error number followed by a type, number and clear text.

Error type may be:

E — User Error

| — Internal error or input inconsistency
W — Warning, no updating of error counter.
The following error reports may be printed:

ERROR ERROR Additional Text {Significance)
NUMBER TYPE Information

0 | END OF MEMORY
No more work space available
1 E SYMBOL TYPE CONFLICT
LB, CALL or PERF mixed up
2 l XXXX ILLEGAL INPUT

XXXX is a hexadecimal presentation of
1st and 3rd character in cluster. Input
from translator not expected.

3 | XXXX LOAD ADR INCORRECT
XXXX is a hexadecimal presentation of
load address from the ciuster.

4 W DDDD UNREFERENCED LITERAL
DDDD is a decimal presentation of the
number of unreferenced literals.

23.5
May 1979

CREDIT REFERENCE MANUAL

ERROR

NUMBER TYPE

5

10

1

12

13

14

15
16

17

ERROR Additional

Information
DDDD

DDDD

XXXX

DDDD

XXXX

miation of the number

cennot tound in the data

DODD s
of «inu
ex ermna :
MODULE LENGTH
X¥ XX is g hexade 3
difference between reguesied and available

WO space.,

TRANSLATION ERROR

DDDD is a decimal presentation of the number
of transtating errors.

WHONG TRANSLATOR BRELEASE

XXXX isa £ mal representation of the
lowest acceptalie ieval of the CREDIT translator,
in the form RY
RR = Release number

LL = Laevel numuger

ADDRESS TARLE OVERFLOW

C is a character representing the address type L
(Long dranch;, € {Call) or P (Perform).
LITERAL DISPLACEMENT OVERFLOW

C is a character represanting the titeral type

L (Literai}, K {key table}, P {picture), or

F {format)},

TOO MANY LITERALS

C is a character representing the literal type

L (literal}, K {key table), P {picture), or

F {format).

FORMAT LENGTH ERRCR

MULTI DEF ENTRY

Entry name defined in more than one module.
NOD TY¥PH ERRCR

C is a character representing the NOD type.
NQD type not C, D or R,

255

May 1974

CREDIT REFERENCE MANUAL

ERROR ERROR Additional Text (Significance)
NUMBER TYPE fnformation
18 E XXXX MODULE LONGER THAN SEGMENT SIZE
XXXX is a hexadecimal representation of the
module length, increase segment size.

19 | IDENT MISSING

20 E ADDRESSING MODE CONFLICT
One byte or two bytes addressing mode of
literals mixed up.

21 E NOD SEQUENCE ERROR

The NON record “NOD C’’ does not appear in
the beginning of the object input.

2.3.3.3 Call table

This table contains all references to external routines {CALL instruction) which could
not be satisfied by the TLK command. Each time a reference is encountered in the inter-
mediate code, the linkage editor {LKE command], replaces it by an "index value which
points to the called address in the call table. During execution of the application program,
the interpreter refers to the call table for actual destination addresses. The format of the
call table is shown in the following example:

o o e W o " - Y - o ot o Vo M T i T T . - Y . . 02

LocC DATA IX §5YMBOL DEFINED
0002 **xx 0k T:A581

GO0Y *#x=x 02 T:Kl

0006 *%xx 03 T:EDWR

0008 xx» 04 T:DSC1

000A »xxx=» D5 T:NKI

000C *xx» 06 T:RREA

Q00E #*xx 07 T:RWRL

2.3.7

May 1979

CREDIT REFERFNCE MANU/ 44,

where: LOC

vy osEgment zZerc.

DATA segment zero. |t
oretore net

IX _ mExioon indes g XFFRY)

SYMBOL ix:

DEFINED irer . ot oy
2334 ifongh

In order to reduce the amount o - ors s regi vl or a long branen instruction, linker
{TLK)} generates 3 ranie of de : i branchs is encountered
in the intermediate code, s: {i.2. seqiment number
and the address to be brans
The three hyte destination ad
byte “index value” which p
During execution of the app
table for actual destination adc
the following exampie:

ciion is replaced by a one
the iong branch table,
refars 1o the long branch

CREDIT CODE LINKER PRR 4.3 790ull + LB TABLE GEGMENT 01

LOC DATA 11X SYMEOL HEFINED
0170 0l 0OC7A 01 MOLULE
0174 01 005y gz MODULSE
01?8 0L 01iB 03 MOUULS
0L?C 01 009D Oy MODULE
0180 01 0OFa 05 MODULS
0184 D) 0DE3 06 MODULS
0188 01 0OCO a MOnULS
DLAC 0L OLOF 08 Mehulls
where: LOC is the displacement of each table entry within the segment.
DATA is the destination addres of the long branch. The first two digits

specify the seament number and the next four specify the displace-
ment within this segment. Tre difference between the four digit
hexadecimal value, and the relevant module start address shown in
the load map, gives the address of the destination within that module.

Mav 1979

154 i the long branch instructions. it
! ndax s XFFT.
YRGB s u;m it enm‘se. of the first instruction (iccation

= {8 in the module containing the destination of the

brancit
GEFINED s ine rame of the module containing the destination.

CREDIT subroutine which is called (PERF

by an “index value™ which paints to the subroutine
address in the nerform tabie The format of the perform table is shown in the following
example

- € e e s s s e mm i ren e e e e Tae r S e s R e o oun e - e e i Ay an b Y et oo i A i o

® CREDIT COul Lissis FRR <.} 793430 = PERF ORS"? Tr’-‘eBLE SEGHMENT 0%

LoC DRTA X SYMBOL DEFINED
£k%2 0 2037 a Upul, MODL
BL76 XX KxXX o KE3

04198 XX XXX e vbuv

NL?E 0L 0C5E 0 MODULS
0LAZ XX XXXX 3

PO,
-

0xR6 0L TR2A0
0LRA XX XAXX
JLAE XX XXXX
0uB2 DL 0044

OO ed I L a0
o2
Loy
13

R o'l o]
PG LT L B

z
W
Lo
'y

TNt curmher ‘M hn nax* FouA specify the dis-
: f.uss Sf;:gmam. Thg difference between the
: N the relevart module start
325 of the destination

adm ap gmns tha add

CREDIT REFERENCE MANLAL

« ot one (maximum index is X'FF).
.t anby appears when the sub-
cdute as the perform instruction.
B loh containg the subroutine.

ix i5 the index vear

SYMBOL i3then
roUting is n

DEFINED s the nama o

22346 Literal posi

his segment. Each time a Hteral is

by oan vatua™ which goints
reral pou! is showre in the following

Tre irers? o0 containg
encountered in tha
1o the diteral i 8

examie:

Y kW M AW TR i e GG SN Gmh o R eT e L@ G B0 L ARk S Sl G S B e AED e TR o sTh L WA W Tae W AT DM MRS ek e cam ks e KD HeS WD LN e e L 0 e e kS ek Came e e o e

* CRE?}IT u(}vl— ﬁ * LiTCR%L POOL SEGHENT (VS

Ix TYPE LS BaTa

1o OIN pgpa oGoo

3k BIN qops OROY

Le BIN CO0C 0008

13 BIN 00bE DOGS

Iy BIN OOEC Q009

55 BIN goEZ 0G0Lé

kb BIN GOEY 0032

U BIN 00ESs QO%0

13 Bin GOES D042

19 BIN g0Ea 0204

1A BINM COEC Q430

1B BIN OOEE LY4L0

LC 5TR GOFC o7

b STR O0Fy 20z

LE STR aaf3 2030

INg 5TR 0OFSs 2033107
eh 8TR J0F8 UQhul4ple
2l 3TR DOFC Hh4ivZiae
22 S5TR ULEO 4b4L43LE
23 5TR 0LO4% 4R4LYYLE
24 5TR 038 HLULuSLE

where: X is the index value. It staris at 10 or 4100 {maximum index is
XEE or X'4FFF),
TYPE indicates the value type of ths titeral. The following mnemonics
are used:
BIN for vaive typas X and W,
BCE tor value tyne 1
STR for value t\/pt C
LOC is the displacement of each literal within the segment.
DATA is the hexacecimazl repireseniation of the literal.

CREDIT REFERENCE MANUAL

2.3.3.7 Picture pool

The picture pool contains all picture strings used in this segment. Each time a reference
to a picture string is encountered in the intermediate code, it is replaced by an “index
value” which points to the picture string in the pool. The format of the picture pool is
shown in the following example:

e - —— Tt ——— - —————— - —— T e f L o - s o - —

IX TYPE
10 PIC
1L PIC
12 PIC
13 PIC
where: {X
TYPE
LOC
DATA

LoC

01LDL
0104
BLDF
0LEB

DATA

393939
5A5A5AREAEA5AR5A392C37939
3937452D3937452D39393939
S5A5A545A5A5A565A5A392C393928

is the index value. it starts at 10 or 5100 {maximum index

is X‘FF'" or X'5FFF’).

indicates the entry is a picture string (PIC),

is the displacement of each picture string within the segment.
is the hexadecimal representation of the picture string.

2.3.3.8 Keytable pool

The keytable pool contains all keytables used in the application program and is lacated
in segment zero. Each time a reference to a keytable is encountered in the intermediate
code, it is replaced by an “index value” which points to the keytable in the pool. The
format of the keytable pool is shown in the following example:

IX TYPE

10 KEY

LoC

0010

DATA

031E1DLY?

23.11
May 1979

e . -

- _..._.._.4.._..._.._....___."....._.-..._.._._.—.-—..-—-—g—.—.___-.._._.._._..._.

CREDIT REFERENCE MANUAL

where: 1X is the Index va starts at 10 or 6 100 {maximum index
is 3 CF gl
TYPE indicais the ooty kf\:t’ab'e {KEY)
LOC is the dnsplacnment of the keytabie within segment zero.
DATA is the hexadecimal representation of the keytable. First

character in the keytable is the length indicator.
2.3.3.9 Format pool

The format pool contains all format lists used in the segment.

Each time a reference to a format list is encounterad in the intermediate code, it is
replaced by an “index value’ which points to the format list in the pool. The format
of the format pool is shown in the following example:

X TYPE Loc DATA

10 FuT 0LF9 ClLBCO2?
1l FMT QLFD CLLBCO026
12 FHT 0201 CllBCO2S
13 FHT 0205 C1181322
24 FnT 0209 CLLCC30F4L5554Y484F S24954592E2E2ECEREIATERNC3DT 4541544534
15 FnT 0225 CLLC9420C3192A2ASYSZYLYESIYLHISHNIYF YEZOH3YLYES3H54CHCHEHHCACAESCILCABEA
14 Fny 02YE CLLCAB2AEBCLLCC3LFUSHEHYROUF 46204441592C53Y4552564543558094%F 53435F HE544F
EACLLCABZA
1? FnY 0280 CLLCC30FS452Y4L4E534L4354Y49Y4F YERECERE3ALORLOEROC3054%%155953AL220EACLLCCT
YF 5220434F Y4453RC02ATEEDCIODYF 46464 T 434 5204EHF 3A3L3E35E8CLLCC3059E9 44D Y5
524553533ACO24EACLLICITEY34954593AC0278920C30B5LY3434F 554E552D4EYF 3ACOET
YE543ALL229020C30CHENS5720424L4CYL4EY3453R1123
where: I X is the index value. It starts at 10 or 7100 {maximum index
is X'FF' or X'7FFF’).
TYPE indicates that the entry is a format list (FMT) or format table
FTB). The layout of FMT entries is explained below.
LOC is the displacement of each format list in the pool within the
segment.
DATA is the hexadecimal representation of the format list or format
table.

Each word in an FMT entry has the foilowing layout:
bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P A
T ———]

T2 0

Depending on the T1 and T2 bit, fields P and A or 0 and A have the following
meaning:

T1=0; P field contains an index to a picture string (FMEL).
A field refers to decimal-data-item

23.12
May 1979

4= m

{ES5545UYEBCLICAB2A

LCC30EYF 5045524154
3AC0258620C3074L44
€8CLLCC3074LUDUFES

CREDIT REFERENCE MANUAL

T1=1; Ofield contains a six-bit value, indicating how many times the character
in the A-field has to be copied. (FILLR).

Ti1=1,T2=1;
Contents O-field
00/01

03

04
08

09
0A
0B

10

11

12

14

15

16

18
1A

1B

1C
1D
1F
20
21

28
29

Significance

A-field contains a reference to a string-data-item or literal
(FCOPY).

A-field and following bytes contain 1SO-7 chararters
(FTEXT).

A-field contains a tabulation value. (FTAB).

Character X' 1F’ edited into the buffer. A-field not used
(FHIGH).

Character X"1E’ edited into the buffer. A-field not used
(FLOW).

Character X'12’ edited into the buffer. A-field not used
(FUL).

Character X' 13’ edited into the buffer. A-field not used
(FNUL).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment. (FBZ).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment. {FBP).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment (FBN).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment (FBNZ).

A-field contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment (FBNP).

A-fieid contains a reference to a binary or decimal-data-
item. The byte following the A-field contains a displace-
ment (FBNN)

A-field contains a displacement (FB).

A-field contains a reference to a boolean-data-item. The
byte following the A-field contains a displacement (FBF).
A-field contains a reference to a boolean-data-item. The
byte following the A-field contains a displacement (FBT).
A-field contains a reference to a binary-data-item, {FCW).
A-field contains a reference to a literal (FCW).

A-field contains a reference to a subformat list (FLINK).
A-field not used (FSL).

A-field not used (FNL).

A-field not used (FEOR).

A-field not used (FEXIT).

23.13
May 1979

CREDIT REFERENCE MANUAL

2C
2E

2F

30

A-field contains the tabulation position (FINP),

A-field contains the tabulation position, the following

byte contains the right halfword of the application (APPL)

control field {FINP).

A-field contains the tabulation position, the following 2

bytes contain in sequence:

a) left halfword of the application (APPL) control field

b) right halfword of the application {APPL) control field
(FINP).

A-field contains the tabulation position. The three following

bytes constitute the standard input control field (FKI).

Layout standard control field (FKI).

Loftf2]

ME

ALPHA

32

33

38

3A

\J
MINL

AE 71o]1]2]slals]s6]7
Ly v
NEOI MAXL REWRT NOT
USED
NCLR
SCHK
v
CTAB
v
VERIF

A-field contains the tabulation position. The following
byte contains the right halfword of the application {APPL)
control field.

The next three bytes are the standard control field bytes
(see also 30) (FKI).

A-field contains the tabulation position. The following

bytes contain in sequence:

a) left halfword of the application (APPL) control field

b} right halfword of the application (APPL) control field

c), d) and e) are the standard contro! field bytes (see also 30)
(FKI).

A-field contains the tabulation position. The following

bytes contain in sequence :

a) duplication data-item (DUPL) reference.

b), ¢) and d) are the standard control field bytes (see also
30) (FK).

A-field contains the tabulation position. The following

bytes contain in sequence:

a) right halfword of the application (APPL) control field

b) duplication data-item (DUPL) reference

¢), d) and e) are the standard control field bytes (see also 30)
(FK1Y,

23.14 -
May 1979

CREDIT REFERENCE MANUAL

3B A-field contains the tabulation position the following
bytes contain in sequence:
a) left halfword of the application (APPL) control field
b) right halfword of the application (APPL) control field
¢} duplication data-item (DUPL) reference
d}, e} and f} are the standard control field bytes (see also 30)
(FKH).

2.3.3.10 Linker statistics per segment

The format of the linker statistics listing per segment, is shown in the following
exarnple. The contents of the listing are self-explanatory.

» CREDIT COCE UINWER PRR 4.1 790410 » LINKER STATISTICS SEGMENT 0O

ALL VALUES DETIMAL

LB ThBLE: J BYTES. 0 ENTRIES

CALL TABLE: 14 BYTES, ? ENTRIES

PERFORM TABLE: 0 BYTES. 0 ENTRIES

LITERAL DESCRIFTOR TABLE: 0 BYTES. 0 ENTRIES

PICTURE DESCRIPTOR TABLE: 0 BYTES, 0 ENTRIES

KEYTABLE DESCRIPTOR TABLE: 4 BYTES, 1 ENTRIES

FORMAT DESCRIPTOR TABLE: J BYTES, 0 ENTRIES
LITERAL POOL SI1ZE: 0 BYTES
PICTURE POOL SIZE: 0 BYTES
KEYTABLE PQOL SIZE: 4 BYTES
FORMAT POOL SIZE: B BYTES
INTERPRETABLE COQDE SIZE: 0 BYTES
PROGRAM LENGTH: 40 BYTES

NUMBER OF ERRORS 9]

2.3.3.11 Segment map

This map gives a listing of the number of segments, the number of modules contained in
a segment and the number of bytes per segment. The format of the segment map is shown
in the fellowing exampie:

CREDIT CODE LINKER PRR 4.1 790410 = SEGMENT MAP

SEGEMENT NUMBEHR 0 F
NUMBER TYPE LENGTH USAGE MODULES ERRORS
0a C ya D O
0L D LY 7L % Y]
where: NUMBER is the segment number.

TYPE indicates:
C= common part (segment zaro)

M = main memory resident
w= disk resident

2.3.15
May 1979

CREDIT REFERENCE MANUAL

LENGTH

USAGE

MODULES
ERRORS

2.3.3.12 Address cross reference listing

number of bytes contained in this segment {program length).

a filling percentage of the segment, related to the size option in
the TLK command.

number of modules contained in the segment.

number of errors per segment.

This listing provides a cross reference between statement/subroutine identifiers in the

procedure division and the modules/segments in which they are referenced. The format

of the address cross reference listing is shown in the following example:

S5YMBOL

DISC
GO
6TPL
6TP2
cTP3
KB
NBa2
T:ASS1
T:DSCL

TIEDWR

TYPE VALUE

02
S 01
01
01
01
02
0l

(g} [aXsla-da-]

[s21
a2
02
o2

VUV TVTOOOO

0090
000K
0030
gaué
0gu4c
000E
pos2

0037
Q060
00B?9
0oca

where: SYMBOL

TYPE

VALUE

SEG-DEFINED REFERENCES

02-MODULS DL-MAIN (L)

0L-MAIN 02-MODULS (1) gz2-mMobuL? (1) 02-MoDULS (1)

0l-M0D2 B1-MAiN (1)

0L-M002 01-MAIN (1)

0i-Mod2

02-M003 01-MAIN (1)

BL-MODULS 0L-MAIN (1)
0L-MAIN (1)
0L-MODULS (8) 02-mMoD3 (4) 02-MODULY (3)
02-1M0DUL? (1)
01-M001 (1) 01-mMoD2 (3 DL-MODULS (4)
02-ModuULY (1) 02-MODULS 1)) g2-mModuL? ()
0L-MARIN () 01-MODULS (3} 02-1003 (2)

8L-MODULS (2)
0L-MODULS (1)
02-MODULSE (1)

01-M0DY 01-MAIN (1
02-MODULY 0L-MAIN ()
g2-MopuL? 0L-MAIN (11
gz-nobuLa 01-MAIN (1)

is the statement/subroutine identifier in the procedure division.
indicates type of instruction in which “symbol”’ is used.

C = CALL

P = Perform

B = Branch

S = Start point.

displacement of “‘symbol’’ in the referenced segment. The first
two digits specify the segment number and the next four specify
the displacement within this segment.

i

I

2.3.16
May 1979

02-ModULS (1)

02-M0D3 (1)
02-MoDULS (1)

CREDIT REFERENCE MANUA L

SEG-DEFINED segment number and module name which contains “symbol”’.

REFERENCES are the seyment numbers and module names, containing
references to “symbol’’, The number of references in each
module appears in brackets after the module name.

2.3.3.13 Linker stausiics total

The format of the linker statistics total is shown in the following example. The contents
of the listing are self-explanatory.

ALL VALUES DECIMAL

INTERPRETABLE CODE BIZE: 547 BYTES
PROGRAM LENGTH: 1568 BYTES

AVAILABLE WORKSPACE: 723874 BYTES
USED WORKSPACE: 2934 BYTES, 2 %
UNUSBED WORKSPACE: 20940 BYTES
MAX WORKSPACE PER MODULE: 37?0 BYTES
NUMBER OF ERRORS 0

PROG ELAPSED TIME: OOH-02M-015-520MS-

2317
May 1979

CREDIT REFERENCE MANUAL

3 TOSS SYSTEM START
3.1 General

System start procedure is the initialisation of a PTS Terminal computer for running an
application program.

System start procedure comprises the following steps:

— Load the TOSS Monitor inta memory

— Load the application into memory

— Read the configuration file and set up the required tables and buffers

— Pass cantrol to the application or to CREBUG if this was included

The TOSS Monitor for a particular Terminal System must have been generated by the
DOS utility SYSGEN. This results in a Monitor load module on disk.

Translater, CRED!T linker and linkage editor create an application load module on
disk.

Generation of & configuration file is described in section 3.4.6 and 3.4.7,

These modules can then be copied to one or more cassettes by the DOS cataiogued
procedure SPCAS, or to TOSS formatted disk or flexible disk by $PDISC.

The use of SYSGEN, CGNGEN, $PCAS and $PDISC is described in the DOS6800
System Software PRM M11.

3.1.1 Syster joad program SYSLOD

To make the most economical use of core storage, a dynamic configuration procedure
is included in the system software. This procedure SYSLOD is a software module which
is linked to the TOSS Monitor.

After loading of the Monitor by the initial program loader, control is passed to SYSLOD.
SYSLOD then loads the application load module from disk, cassette or flexible disk.
After that SYSLOD reads the configuration file, and performs monitor and application
configuration.

SYSLOD then passes control to the application or to CREBUG.

Configuration by SYSLOD must always take place, it is not possible to 1oad an already
configurated Monitor.

3.1.2 Monitor configuration

Monitor configuration is the process whereby the general Monitor created by SYSGEN

is adapted to the specific hardware environment.

Monitor tables and buffers are built and the Monitor is supplied with pointers to the
tables. In the case of PTS 6813 with MMU, the MMU tables are set up and an extra
number of 1/O buffers is reserved. Buffers for Data Communication and data management
are also generated during system configuration.

If segmented application, the segment and page tables controlling the segments and pages
in run time, are generated.

311
May 1979

CREDIT REFERENCE MANUAL

3.1.3 Application configuration

After the monitor configuration process, SYSLOD starts the application configuration.
Terminal control areas, terminal work biocks, user work blocks, swappable work blocks,
terminal stacks and data-set buffers are generated. In case of a system with MMU, the
MMU tables are extended with references to the data division and the application.

After application configuration, SYSLOD starts the system by queueing all tasks in the
dispatcher queue and gives control to the interpreter.

3.1.2
May 1979

CREDIT REFERENCE MANUAL

3.2 Loading procedures .

Monitor, application load moduie and configuration file can be loaded from cassette,
disk or flexible disk.

Application and configuration data shou!d reside on the same device type. If loading
from disk, Monitor and application load module should be on the same volume,
Loading is controlled from the SOP or from the fuil panel and SOP if present.

ok w0 e Evon
a o Q o < o o [(=} a [+] o
T e e T RD e W] b
CASSETTE 1 CASSETTE 2 System
Liow cuowr Rp) Wit ewow cuewr o | sa sk tesT Operator’s
? % 2 ¢ ¢ ¢ ¢ ¢ ¢ @ Panel

G G 920 9 0 0 00 000 Q

2 00 99 399D PR PP PO ¢ P 9P
Full Panel

3.2.1 SOP lamps
During loading, the following SOP lamps indicate:

— SOP lamp 1 an application is loaded by SYSLOD
— SOP famp 2 input error

— SOP lamp 3 memory overflow

— SOP lamp 4 format error

— SOP lamp & terminal ident error

— SOP lamp 6 user-or swappable work block error
-~ SOP lamp 7 MMU table overflow

— SOP lamp 8 illegal page size

3.2.2 Program loading from cassette

Monitor, application and configuration data can be loaded from the same or from
different cassettes.

The procedure for loading from cassette is:

- Ensure that power is switched on at the Terminal computer and at each peripheral
device.

— Ensure that the real time clock is on.

— Place Monitor cassette in a cassette drive.

— Press SOP switch IPL
or where a fuil panel, press RST, MC, IPL in that order.

— Press SOP switch 1 for the left-hand cassette drive
or SOP switch 2 for the right-hand cassette drive.

— Wait for loading indicator SOP lamp 1 to turn off.
If the next module to be loaded is not on the same cassette, this cassette
is now unlfoaded. Place the next cassette in a cassette drive and press the
corresponding SOP switch.

3.2.1
May 1878

CREDIT REFERENCE MANUAL

— Turn key to Lock position.
— When loading is completed the application or CREBUG will be started.

3.2.3 Program loading from disk

Monitor and application must be loaded from the same volume.
The configuration file may be on the same or on a different disk or on flexibie disk.
. The procedure for loading from disk is:

— Ensure that power is switched on at the Terminai computer and at each
peripherat device.

— Ensure that the real tiroe ¢lock is on.

— Place the Monitor disk on & disk drive, press the START button and wait for
the READY lamp to light up.

1 loading from the fixed disk, a disk cartridge must still be mounted.

— Press SOP switch IPL
or where a full panel, press RST, MC, IPL on the full panel.

— Press SOP switch 3 for ioading from fixed disk,
or SOP switch 4 for loading from cartridge disk.

— If there is more than one application program on the disk, all SOP lamps will
light up. Select the application to be loaded by pressing the corresponding SOP
switch. Monitor and application are now loaded.

I during system generation (SYSGEN) was specified that there is only ane
application program on the disk, Monitor and application are now loaded
automatically.

— H the configuration file is on the same volume as the Monitor and the application,
SYSLOD automatically reads in the configuration data.

~— If the configuration file is not on the same volume as the Monitor and the
application, the eight leftmost SOP lamps will light up. Press the SOP switch
corresponding to the device from which the configuration file must be read:

SOP switch 3 fixed disk
SOP switch 4 cartridge disk
SOP switch 5 flexible disk 0 multiplex channel
SOP switch 6 flexible disk T multiplex channel
SOP switch 7 flexible disk 0 programmed channel
SOP switch 8 flexible disk 1 programmed channel
— Turn key to Lock position.
— When loading is completed the application or CREBUG will be started.

3.2.4 Program loading from flexible disk

Monitor and application must be loaded from the same volume.

The configuration file may be on the same volume or on a fixed or cartridge disk,

The procedure for loading from flexible disk is:

— Ensure that power is switched on at the Terminal computer and at each peripheral
device.

~ Ensure that the real time clock is on.

— Place the flexible disk in disk drive 0 or 1 and wait for the READY
tamp to light up.

322
May 1979

CREDIT REFERENCE MANUAL

— Press SOP switch IPL
or where a full panel, press RST, MC, IPL on the full panel in that order.
— Select the flexible disk drive from which is to be loaded by pressing the
corresponding SOP switch:

SOP switch 5 fiexible disk 0 multiplex channel
SOP switch 6 flexible disk 1 multiplex channel
SOP switch 7 flexible disk O programmed channe!
SOP switch 8 flexible disk 1 programmed channe!

— [f there is more than one application load module on the flexible disk, all the SOP
lamps will light up. Select the application to be loaded by pressing the corresponding
SOP switch. Monitor and application are now loaded.
if during system generation was specified that there is only one application
an the flexible disk, Monitor and application are loaded automatically.

— If the configuration file is not on the same volume as the Monitor and the
application, the eight leftmost SOP lamps will light up. Press the SOP switch
corresponding to the device from which the configuration file must be read:

SOP switch 3 fixed disk
SOP switch 4 cartridge disk
SOP switch 5 flexible disk 0 multiplex channel
SOP switch 6 flexible disk 1 multiplex channel
SOP switch 7 flexible disk O programmed channel
SOP switch 8 fiexible disk 1 programmed channe!
— Turn key to Lock position.
— When loading is completed the application or CREBUG will be started.

323
May 1979

CREDIT REFERENCE MANUAL

3.3 Program file layout

3.3.1 Program file on cassette

A cassette with the TOSS Monitor load mc-iule, the application load module and the
configuration file is created with the DOS utility $PCAS. Application data may
optionally be put behind these modules on the same cassette.

Layout of the program cassette:

LTMLPL MONITOR SYSLODITMP\PPLICATIONlTMlCONG!F FILE]TMrAPPL DATA|TMTM |

The different modules may also be on ditferent cassettes. The loading program SYSLOD
checks after every module if there is a double tape mark {TM).

In that case the cassette is unioaded and loading continues when the next cassette has
been mounted and the corresponding SOP switch is pressed.

I1f no double tape mark is found after a module, loading continues from the same
cassette.

Application data is not read by SYSLOD but has to be read by the application itself.

3.3.2 Program file on disk

A disk or flexible disk containing the TOSS Monitor load module, the application load
module and the configuration file is created with the DOS utility $PDISC.

The disk or flexible disk must be TOSS formatted. The load modules should be on an
L file, configuration data and, optional, application data on an § file.

The configuration file need not be on the same volume as Monitor and application,

331
May 1979

CREDIT REFERENCE MANUAL

3.4 Configuration file
SYSLOD performs configuration at Joad time, according to configuration data for the
specific environment. These data are read from a configuration file which was first

created under DOS.
The configuration file can be copied to cassette by $PCAS or to an S file on a TOSS

formatted disk by $PDISC.
The configuration file should be on the same medium type as the application.
Requirements for the configuration file on disk:

— record length 9 and blocking factor 40 must be specified during CRF.
— File name should answer the format:

$xxxx:nn
where: x = alfanumeric character
nn = 2 numerics representing the SOP switch number of the application
{01 to 10).

The configuration file can also be created as an UF file on disk by standard DOS utilities
and then moved to the load medium by $PCAS or $PDISC.

3.4.1 Configuration file layout:

task def 1 } block
task def 2

task def n

common device
definition

UWB type 1

UWB type 2

UWB type n

SWB type 1

SWB type n

3.4.1
May 1979

CREDIT REFERENCE MANUAL

3.4.2 Task definition block layout

Task definition block should have the following format:

DESCRIPTION FORMAT REMARKS EXAMPLE
Block type T; Task block T;
Number of tasks nn; 06;
Task ID start
value TiD=xn; TID=F3;
Terminal class TCL=xn; TCL=F3;
Task level LEV=nn; LEV=60;
Number of nn; Q0 if no terminal device 03;
terminai classes
device classes
Terminal TCD=Tnn; TDC=T01;
device class
Line connection LC=nn|L|; number of channel unit, LC=12L;
R local or remote
TDC=Tnn, repeat TDC and LC for TDC=T02;
each term. dev. LC=02R;
LC=nnjL}; class in the task
R TDC=TO03;
L.C=061L,;
Number of nn; 00 if no special device 02;
special device classes
classes
Special device /SDC=Snn; repeat SDC for each SDC=S801;
class B special dev. class in
o’ the task SDC=S02;

numeric

x = alphabetic character

34.2
May 1978

CREDIT REFERENCE MANUAL

3.4.3 Common device definition block layout

DESCRIPTION ! FORMAT REMARKS EXAMPLE
Block type C; Common block C;
Number of
terminai device nn; 00 if no terminal 02;
ciasses device classes
Terminal device TDC=Tnn; TDC=T02;
class
Line connection LC=nn L; number of channel unit, LC=03L;
3 locat or remote
TLC=Tnn; TODC=TO03;
LC=nn L; repeat TDC and LC LC=02R;
R for each term, dev. class.
Number of
special device nn; 00 if no special device classes 03;
classes
Spec:al device
class SCL=8nn; repeat SCL for each special SCL=504;
dev. class SCL=S05;
SCL=506;
3.4.4 User work biack rype definition biock layout
DESCRIPTION FORMAT REMARKS EXAMPLE
Block type U; tUser work block uU;
Number of nnn; 003;
UWB types
Name of UWR XXX uB1;
Number of binoks nnn; Number of blocks of 003;
this type
Rapeat name and uct;
i number for each 005;
; UWB tvpe uD1;
; 002;
24.3

May 1979

CREDIT REFERENCE MANUAL

3.4.5 Swappable work black ty i e

DESCRIPTION FORMAT ¢
e

Block type S:
Number of C
SWB types !
Name of SWB xx,
Number of i,
blocks RRTaE

SRS S

nn; number of tasks, in tha curs forin < a olass,

TID=xn; task identifier
Within every task Jef

next task has the specifiad vaiue aild
The CREDIT debugger must have » T

EXAMPLE

S;
002;

SB1;
003;

SC1;

004,

itior oiack the first task bas the specified 1D, the
d by one and so on.

TCL=xn; Terminatl class to match. reiates to U« (ask identifier defined in the TERM
statement in the data division. When 71D and TCL have different names, the

monitor task tables and agplication t

task identifiers according to :he T
value in the TERM state
value in TiD.

LEV=nn; priority level of the task is ds
priority level 60, only the CRE
level 55.

nn; number of terminat device zi
device classes are defineo a1 s
contained in these termiral dev
local terminals (CHLT) or zhanne:

TDC=Tnn;the terminal device class name as
be specified.

arminal control areas are configured with
art vaiue, TCL indicates that the current
be used, when different from the start

ed. &oplication tasks run normally on
: runs on a higher priority,

seqt wvithin this terminai class, Terminal
eration time (SYSGEN). Devices
are connected to a channel unit
aie terminals {CHRT).

d 1 system generation time, must

LC=nn L; line connection, iocal {L} or remate 1} to which the devices mentioned in

the previous terminal cevice ciass i

are also added by one ir 7 each: new

Tnn) are connected. Line connections
within this terminal class.

nn; number of speciai device ciasses used within this terminal class. Special

device classes are defined at s
These devices are not connected
unit remote (CHRT],

generation time (SYSGEN).
to a channel unit local (CHLT) or channel

SDC-Snn; special device class name as defired at system generation time (SYSGEN),

must be specified.

C; is the start of the common device definition block.

. no; number of terminal device classes used common by all terminal classes,
. TDC=Tnn; the terminal device class name as defiried at system generation time, must be

specified.

. LC=nn L; fine connection, local {L} or remote { R}, to which the devices mentioned ir_\
the previous terminal device class (TOC=Tnn) are connected. Line connections
are also added by one for each new task within this terminal class.

344,

May i579

CREDIT REFERENCE MANUAL

nn; number of special device classes containing devices to be used as common
device. (For all tasks in the application.}
SCL-Snn; the special device class name as defined at system generation time (SYSGEN)

must be specified.

U; is the start of the user work block definition block.

nnn; number of different user work block types.

XXX, name of the user work block, corresponding to the one defined in the data
division.

nnn; number of copies wanted, of the previously defined user work block.

S; is the start of the swappable work block definition.

nnn; number of different swappable work blocks types.

XxX; name of the swappable work block, corresponding to the one defined in
the data division.

nnn; number of copies wanted, of the previous defined swappable work block.

The line connections are also added by one for each new task within a group. The
terminal device class ID and the special device class 1D are specified by SYSGEN.

3.46 Generating a configuration file on cassette
The procedure for generating a configuration file on cassette without using $PCAS is
shown in the following example:
First insert a cassette in one of the cassette drives, then key in the following
sequence:
(i) ASG /E1,TY10
(i} RDA /OA
i) T,
02;
TID=BQ;
TCL=B0;
LEV=60;
02;
TDC=TO01;
LC=1L;
TDC=T02;
LC=4L;
01;

(iv) C;

v U

viy §;

{vii} :EOF

(viii) REW /03
(ix) WEF /03
{x} PCH /DA
{xi) WEF /03
{xii) ULD /03

34.5
May 1979

CREDIT REFERENCE MANUAL

Explanation:

(i)
(i)

(iii)

{iv)
v}
{vi)
{vii)
{viii)
{ix)

(x)

{xi)
{xii)

34.7

Assign file code E1 (source input) to console typewriter,

Read data from the source input device (typewriter) and transfer to temporary
disk file /OA.

Key in data for the task definition block. (May be repeated for other terminal
classes.)

Key in data for the common device definition block.

Key in data for the user work block type definition block.

Key in data for the swappable work block type definition block.

End of the read data command.

Rewind the cassette (unit number 1}.

Write a tape mark on the cassette.

Write the contents of the temporary disk file /OA to the cassette (inclusive

a tape mark}.

Write a second tape mark on the cassette.

. Unload the cassette.

Generation of a configuration file on a DOS disk

The procedure for generating a configuration file on a DOS disk is shown in the
following example. With the catalogued procedure $PCAS the configuration file can
be copied to cassette,

(i)
{ii)
(iii)

{iv}

W)

{vi}

{vii}
{viii)

(ix)

ASG /E1,TYI10
RDA /20

T
02;

TID=BQ;
TCL=BO;
LEV=60;

02;

TDC=TO01;
LC=1L;
TDC=TQ2;
LC=4L;

o1;

SDC=501;

C,

00;

02;

SCL=502;
SCL=03;

u;

002;

UBI;

004;

uc;

005;

S;

001;

SB1;

005;

:EQF

KPF /20,CONFIG
$PCAS C=CONFIG

Explanation:

(i}
i)

Assign fite code E1 {cource input) to console typewriter.
Read data from the source input device (typewriter) and transfer to temporary
disk file /20.

3.4.6
May 1979

CREDIT REFERENCE MANUAL

{iii) Key in data for the tagk definition block.
(May be repeated for other terminal classes.)

{iv) Key in data for the common device definition block.

(v) Key in data for the user work block type definition block.

{vi} Key in data for the swappable work block type definition block.
{vii) End of the read data command. .
{vili) Keep the file as library file.

(ix} With SPCAS the configuration data can be written to cassette

{For details see PRM DOS6800.)

3.4.7 Errors during system run time
For indicating the type of error, causing a program halt, the following SOP lamps are lit

before the execution of the program is stopped.
SOP lamps are numbered from 1—11, number 1 being the left-most lamp.

SOP lamps lit Significance
71 8)19110]11
X X No currency buffer available
X X {tlegal interrupt
X | x | x Stack overflow
x X [nstruction not accepted

SST, OTR or INR not accepted
due to hardware error

x X | x No blocks available
x | x X tnvalid instruction {trap)
X X X X Requested LKM processor missing
X X Data management (SYSGEN) error
34.7

May 1978

CREDIT REFERENCE MANUAL

4 CREDIT DEBUGGING PROGRAM

4.3 Introduction

The CREDIT debugging program (CREBUG) is an interactive diagnostic task which runs
under the control of the TOSS Monitor, on systems with and without memory manage-
ment, 1t runs in parallel with a CREDIT application program being tested.

CREBUG may be used to control the execution of the application program in the
following ways:

e Traps may be inserted.

e Verification may be started and stopped.

o The application program may be started or stopped.

e Variables may be examined and modified.

e Trace may be turned on or off,

In addition, CREBUG may be used to:

e Perform calculations (e.g. on addresses).

¢ Dump Memory.

Readers of Section 4 should be familiar with the following DOS6800 System

Software concepts:

e Linkage editor

e Control command

e User library

» TOSS system operation

These concepts are explained in the DOS6800 System Software PRM {M11).

4.1.1
May 1979

CREDIT REFERENCE MANUAL

4.2 Running CREBUG

CREBUG is automatically built into the application load module by the Linkage Editos.
If CREBUG is not required {e.g. for production versions of the application program} it
must be explicitly excluded, This procedure is described below.
CREBUG has a task identity of TB and runs at priority tevel 55, specified in the
configuration file for system loading (SYSLOD). The CREDIT interpreter calls
CREBUG immediately before executing each instruction in the application program.
The application program status is then checked. If certain conditions specified by the
programmer are met, either the program is stopped or specified memory locations are
printed.
The programmer communicates with CREBUG via one of the following device configur-
ations:

General printer PTS6321, together with alphanumeric keyboard PTS6234 or 6331.

Console typewriter PTS6862.

Visual display unit PTS6344,

The chosen device configuration must be assigned TOSS file code /21 for input and
/31 for output. File code /16 must be assigned to a (line) printer, when tracing is used.
This is done during TOSS system generation.

The memory size of the application program is increased when CREBUG is included.
For this reason it is advisable to explicitly exclude CREBUG when linkage editing the
production version of the program. The following command sequence is recommended:

USERID : X
S:INCL_J/OBJCT,INT:PROD
S:KPF/O
SCR
S:INCIL_/OBJCT,Y
KPF/O
MOV LIMAIN,/S,USER
S:KPF /S,MAIN
S:TRA MAIN,NL
S:TLKLIMIX
S:LKEL UM
S:KPFL_I/L,MOD NAM
where: X is an empty user library and Y is the user library containing the CREDIT
Linker object modules.
MAIN is the module containing the data-division.

4.2.1
May 1979

CREDIT REFERENCE MANUAL

4.3 CREBUG Input

4.3.1 General

Various single character commands may be keyed-in by the programmer to control the
testing process. These commands are:

Set trap

Proceed from trap

Loop through trap
Remove trap

Start or stop verification
Go

Halt

Open data item

Open boolean data item
Open Relocation Register
Open Task Controt Area/Condition Register
Open memory word
Open byte

Turn trace on or off
Calculate

Dump memory

K. Lock segment

KU Uniock segment

4.3.2 CREBUG Modes

CREBUG operates in one of two modes known as T mode and U mode. In T mode
CREBUG is running and the application program is stopped. In U maode both CREBUG
and the application program are running. T mode is selected whenever the application
program stops.

Ehxs>~>snpe-—ITO0<<rvH

A stop occurs when:

® ahalt (H) command is keyed-in, or

® atrap is encountered in the application program, or
® averification halt condition is detected.

U mode is selected when one of the following commands is keyed-in:

e proceed from trap (P)

e loop through trap (L)

® go (G}

Commands other than H, P, L and G will not result in a change of mode. The current
mode is indicated by the letter T or U printed at the left of each line of output.
Immediately after System start CREBUG is in T mode.

4.3.3 Current Task Identitier/Current Segment number

In certain commands a task identifier/segment number may be specified. If no task
identifier or segment number is specified in these commands, the ‘current’ task
identifier/segment rumber is assumed. This is the identifier of the task or segment
number which was executed when the program halted last.

4.3.1
May 1879

CREDIT REFERENCE MANJA.

4.3.4 Relocation register

CREBUG maintains 16 relocatior r
memory management is used. The

commands as indices when referris
of relocation registers may be exar
following description iilustrates

3
@
2
piy
o
<
s
ol
T
S
o
=,
o]
=
QO
@
[=]
s
o™
o
=1

ations in the segments. The contents
dified using the Q command. The

<o rejocation registers are normaily used.
The start address of the module. ¢ sted, and its segment numaer are
loaded intc a relocation register, Comu hen refer to locations within th's module
by quoiing the address relative "0 the siart 5% the moduale, listed by the transiator

't number. Loading relocation register
1sent in segment 1, is done as

follows:
4Q/0000 11E.1

A trap in this moduie and segment is set 72, 4T,

For non segmented program ir memory a'ways segrment number zero must be
specified.

When starting an application, refocatinn register [contains the start address ¢f the
program code {P:PiL}, but this register is not used when setting traps. Program code is
found by using the segment number and for rnon segmented applications, segment zero
is specified. Register F contains minus eight {X'F FF8’) which can be used 1o bias
addresses from the linkage editor map.

4.3.4 Addressing
The following commands contain references to memory addresses:
[N]

GPTY
MW,/

Either relative or absolute addresses may he used in these commands.
If an absolute address is used it may be written in either of the following ways:

hexadecimal-number [index])
$decimal-number{index]

The absolute address of a memory word is its displacement from word zero of memory.
If the address refers to the start of an array, an index value must be given to specify the
word within the array {counting the first word as one).

if relative address is used it may be written in the above manner. But if the relative
address refers to a word in a procedure division, it must be modified by the appropriate
segment number as follows:

hexadecimal-number [index] .segmentnumber

$decimal-number [index] .segmentnumber

The relative address of a memory word is its displacement from word zero of the
CRED!T module of which it forms a part. Relative addresses are shown in a CREDIT
module under the heading LOC {Location counter).

Commands | and J may only refer to addresses in the data division.
Commands G,P,T and Y may only refer 1o addresses in the procedure division.
Commands M,V, W and / may refer to addresses in either division,

4.3.2,
May 1979

CREDIT REFERENCE MANUAL

in order to differentiate between the index and the location counter generated by the
CREDIT translator, addresses referring to the data division must be prefixed by a #
character (e.g. #18W).

Indirect addressing may be used in the following open variable commands:

Open data item (i)

Open task control area/condition register {S)

Open memory word (W)

If an address is indirect it must be prefixed by an asterisk {e.g. * 1T0W). In case the
address will point to a memory word which contains the address of the variable to be
opened. If the resulting address is odd the next (lower) even address witl be used.

4.3.6 Command syntax

Commands are keyed-in immediately after the T or U prompt. The prompt is printed
at the left of each fine by CREBUG.
Commands have the following syntax:
{argl;] [arg2] [:{tid\pha}] [.segnr] com
com is one of the single character commands listed above.
tid is the task identifier of the task to which the command applies. Task identifiers
are defined during system loading time (SYSLOD).
segnr is the segment number.
pha is a physical memory area. The current user is default. {Only with MMU systems.)
pha may be defined as :S, : X, :Y or :Z. Each value assigns a specific physical
memory area.
:S System area, 0—-64Kb
:X Extended area 64Kb—128Kb
1Y Extended area 128Kb~-192Kb
:Z Extended area 192Kb~—-256Kb

Arg1 and arg2 are defined as follows:

argl 1 =[term
terms

arg2 = argl
= [{:}] address[index} [,relocation-register]

»*

term

terms ;I = term{ + }term

index :: = (hexadecimé!»integer [,hexadecimal-integer])
$decimal-integer $decimal-integer
address . =[hexadecimal-integer
$decimal-integer
relocation-register :: = 01112|131415161718I9{AIBICIDIEIF
The following words, used in the above syntax definition, have the same meaning as that
given in Appendix 1.
decimal-integer
hexadecimal-digit
hexadecimal-integer

4.33
May 1979

CREDIT REFERENCE MANUAL

4.4 CREBUG Output

4.4.1 Program Stop Message

Whenever the application program stops CREBUG prints the following message:

¢ pp=loc,rel.segnr:tid

The significance of these fields is as follows:

c This code indicates why the program stopped. It may have the following
values:
S — System start is complete and the application program may be started.
T — A trap has been encountered.
H — An H (halt) command has been keyed in.
V — A verification halt condition has been detected.
E — The application program is in error.

pp This is the value of the program pointer. It points to the interpretive instruction
which will be obeyed when the program is restarted.

loc This is the location counter value for the instruction pointed to by the pp. It
is the value found under the heading "LOC” for this instruction in the CREDIT
module listing. This value, when added to the contents of the relevant relocation
register, gives the value of the program pointer. If no relocation register is found
for the current segment "“loc,rel” will be replaced by the word “SPACE"".

rel This is the relevant relocation register. Wher added to “LOC" it gives the value
of the pp.

segnr The segment number in which the program is halted. for non segmented
programs, segment number zero is printed.

tid This is the task identifier. it is the identifier of the application task which is
currently executed.

4.4.2 Command Responses

The response to commands 1, J, Q, S, W, / and = is printed immediately after the

command on the same line. For example, open retocation register (Q):

1Q/0000 0006.2

In this example, the programmer keys in the underlined characters and CREBUG

prints the others.

The response to the other commands, appears on the line after the command. For

example, dump memory (M):

0004.0M

208C 0153 1081 3002 831C 0053 2181 4910 4000

1f an undefined command is keyed-in, CREBUG responds with a question mark and

no action is taken.

If an illegal command is keyed-in, CREBUG responds with “NO!"". An example of an
illegal command is a go (G) command issued while the application program is actually
running.

2.4.1
May 1979

TEINDE MANUAL

4,42 Curtay Pristout

if the output fro CREBUG command is unexpectedly {ong (e.g. a large memory
durmp} it can B¢ curiailed by depressing any SOP switch or by switching the terminal
computer power off and on.

CREBUG uses e code /14 for SOP input, which can be included at system generation
time,

sres

weing messages may be output, when the CREDIT debugger detects an

RFELOW

ARITHMETIC OVERFLOW
STACK DVERFLOW
INDEX OVERFLOW
ILLINGEX TYPE

! E OVERFLOW
LLOCATION ERR AT INITIALIZATION

ILLEGAL INSTRUCTION ADDRESS

ILLEGAL FORMAT CODE

NO FIX BUFFER ALLOCATED

FIXBUFFER NOT ALLOWED

HLLEGAL CONTROL CODE

TLLEGAL INDEX VALUE

FORMAT CONDITIONS CHANGED

ILLEGAL PARAMETER

LENGTH ERAROR

DATASET BUSY

HLLEGAL DATASET REFERENCE

DISK ERROR NO REENTER POINT

4.4.5 Tras Commands

v order to examing the state of a program at a certain stage in the execution, the
] Tav ansert traps. A trap is an address specified to CREBUG at which the
L stonned A stop message {described above) is printed by CREBUG and the
rowaits 1o 3 further command from the programmer.

nowhien the trap is set is not executed until the program is re-started.
iz to loon a number of times through a certain trap before the

Aranenam of T4 Gapy at 5 time may be set.

4.4.2
May 1979

CREDIT REFERENCE MANUAL

4,48 (Open variable commands
These commands are:

— Open data item (t)

~ Open boolean data item {4}

— Open relocation register Q)

— Open task control arca/condition register [2)
— Open memory word (W)

— Open byte (/)

An open and modify command a5 the toliowing form:

..... /xxxxlarg?(: tidiphal] [.segnri com

xxXxX is the contents which will he rertaced optiorally by argl,

The function of these commands is to print the contents of the specified variable, and
if requested, modify those contents. This is done in the following manner:

— the programmer specifies the variable and keys it one of the above commands, This
is done according to the norma command syntax rules,

—~ CREBUG responds by printing the contents of the variable {/xxxx}.
The variable is now “open”, i.e. it can be modified.

~ If necessary the programmer can now key-in a new value for the variable. If the
variable is not to be modified, the programmer simply keys in an LF or CR character
and the variable is “'closed”.

Where possible the above dialogue is al} printed on a single line, for example:
EQ/0000 2042.2 €B

In this example the programmer keys in the underlined characters and CREBUG prints
the others.

“E" indicates that relocation register E is to be opened {(command Q). CREBUG responds
by printing out /" followed by the contents of relocation register E “0000°". The
programmer then keys in the new value "'2942" followed by the segment number and a
carriage return character. The CR indicates that the variable is to be closed.

If a line feed character {LF) had been keyed-in instead of CR in the above example, it
would indicate that the current variable is to be closed and that the variable at the next
{higher) address is to be opened.

If an @ character has been keyed-in, it would indicate that the current variable is to be
closed and used as the address of the next variable to be opened (i.e. indirect addressing).
This variable will be automatically opened. The @ character is meaningful only in
commands I, S and W.

Any other non-hexadecimal character in this position would result in the current variable
being closed without modification and without opening the next variable.

if the programmer does not wish to madify the contents of the opened variable, it can
be closed without modification by simply keying-in a CR or LF character immediately
after the current variable contents.

The possible values of the terminating character are summarised as follows:

e CR — close current variable

e LF — close current variable and open next variable

e @ ~ close current variable and open indirectly addressed variable,

443
May 1979

CREDIT REFERENCE MANUAL

4.4.7 Command reference

4.4.4
May 1979

CREDIT REFERENCE MANUAL

Syntax: (i) arg2 [.segnr] G
il G
Description: A go command enabtes the programmer to start an application program
which has stopped.
(i} Start the program at address “arg2".
Current segment is default.
(i) Start the program at the address pointed to by the
program pointer.

Example: 0005G start at lacation 5 in segment 0
0007.3G start at location 7 in segment 3
0004,2.4G start at location 4 modified with relocation register 2,
in segment 4,

445
May 1979

CREDIT REFERENCE MANUAL

Syntax: (i) :tdH
i) H

Description: {i) Halt the task specified by “tid".

{ii} Halt the program (may be any task}.

Example: :BOH halt for task “"BQ"’
H halt program

446
May 1979

CREDIT REFERENCE MANUAL

E Open data Item E

Syntax: arg2 [:tid] !

Description: This command can be used with binary, decimal or string data items. If
the item is binary it will be opened. If it is decimal or string, it will be
printed but not opened. The current “tid” is default. To open string-or
decimal data items, the “{X" value from the listing, must be preceded
by a # sign, and followed by “W".

Example: 37(3}1/0005 Open element 3 of the array, referenced in the listing by 37.
501/0002 Open binary data item referenced by 50, for current task.
#31W/2020 Open string data item referenced by 31
#42W/B137 Open decimal data item referenced by 42
501:B01/0521 Open binary data item referenced by 50, for task BO.

44.7
May 1979

CREDIT REFERENCE MANUAL

- Open boolean data item

Syntax: arg2 [:tid] J

Description: This command is used to open a boolean data item. The current “‘tid”
is default. .

Example: 104/ Open boolean data item referenced by 10 for the current task.

104:B0J Open boolean data item referenced by 10 for task BO.

448
May 1979

CREDIT REFERENCE MANUAL

Lock segment

Syntax: arg2 KL

Description: The segment specified in arg2 becomes main memory resident. it
stays resident until an unlock segment (KU) command is executed.
The command KL can be used before making a patch in a segment.

Example: 2KL Segment 2 becomes main memory resident.

4.4.9
May 1979

CREDIT REFERENCE MANUAL

Unlock segment E

Syntax: arg2KU

Description: The segment with the number specified in arg2 will no longer be main
memory resident.

Example: 2KU Segment 2 released from main memory.

44.10
May 1979

CREDIT REFERENCE MANUAL

Loop through trap

Syntax: (i) arg2L
(i) L
Description: {i} Loop “arg2"” times through the current trap.

(i) Loop once through the current trap.
Note: This command can only be given when the application
program is stopped at a trap.

Example: 5L loop 5 times through current trap
L loop once through current trap

44,11
May 1979

CREDIT REFERENCE MANUAL

[v]

Syntax:

Description:

Examples:

Durmp memory E .

(i} argt;arg2 [:{ tidipha}] [.segnr] M

(i) arg2 [:{ tid(pha}] {.segnr] M

(i} ™

The contents of selected memory words can be printed. When one or

more lines have been printed CR {carriage return) or LF (linefeed} may

be given. If CR is keyed-in the command is terminated. If LF is keyed-in

the next eight memory words will be printed.

(i} Dump memory words from address "‘arg1"’ to address “arg2"
inclusive, Current "'tid" is default.

{ii) Dump eight memory words from address ‘‘arg2”’. Current “tid”’
is default.

(iii) Dump eight memory words from the address of the last word
dumped.

0004, 0018 M Dump memory words 4 to 18 of the user area of the current task
0004; 0018:BOM Dump memory words 4 to 18 of the user area of task BO
0004.5; 0018.5M Dump memory words 4 to 18 of segment 5

0004; 0018::3M Dump memary words 4 to 18 in the System area,

44.12
May 1979

CREDIT REFERENCE MANUAL

E Proceed from trap E

Syntax: (i} arg?; arg2 [:tid] [.segnr] P
(ii} arg2 (:tid] [.segnr] P
{iii} P

Description: (i) Set a new trap at address “arg1” and set the loop counter to ““arg2”’,
Remove current trap and proceed with program execution.
Current segment is default.
(i) Set atrap at address “‘arg2” and set the loop counter to zero.
Remove current trap and proceed with program execution.
Current segment is default.

(iii} Remove the current trap and proceed with program execution.

Note: This command can only be given when the application program
is stopped at a trap.

4.4.13
May 1979

CREDIT REFERENCE MANUA!

(o]

Syntax:

Description:

Example:

Open relocation register E

(i) arg2Q

il Q

{i) Open relocation register ““arg2”’. Only the last four bits are
significant. 16 relocation registers are available, numbered from
hexadecimal ‘0’ to 'F".

(ii) Print ali relocation registers.

5Q/0000 (L} 3D.0 Relocation register 5 is loaded with the start

address of MOD2 (3D, from the load map), modified
with the start address of segment O.

44,14
May 1979

CREDIT REFERENCE MANUAL

=]

Syntax:

Description:

(i) arg2R

(i) R

This command is used to trace the execution sequence of some specific
instructions or all. The trace mode is defined in arg2 and can be:

0 - switch trace off

1 — trace branch instructions

2 — trace all instructions

3 ~— trace arithmetic instructions.

(i} Set trace mode to “arg2’’. This affects all tasks.
(if) Stop tracing.

4.4.15
May 1979

CREDIT REFERS

AN AL

)

Syntax:

Description: mmana Can be usid To open & word in the task control area
{TCA} or to open a condition register,
The nt iid” s default.

ses of the items in the TCA are shown below.

Format Control Block (33 words)
Data set Control Blocks.

10 words per data set. The layout
corresponds to an ECB.

—14 | CSE Current Segment End.

—-12 CSB"“'——W { Current Segment Base.

—10 1 C&N Current Segment Number.

-8 T:DAD Poirniter 1o task descriptor table.

-6 CIA Current Instruction Address.

-4 T Task identifier.

-2 STKE Stack end pointer.

0 Pa Auxiliary Stack pointer

+2 Stack Base pointer

+4 .« Descriptor table address.

B L Work block address.

imall within the TCA is opened.

wetonging to task identifier “tid”

Cxerninie:

-4 of TCA of task AQ.
wpen conditon reqister of current task
Cpen cond:lion register of task AQ.

CREDIT REFERENCE MANUAL

Syntax: (i) argl; arg2 [:tid] [.segnr] T
(ii) arg2 [:tid] [.segnr] T

Description: (i) Seta trap at address “‘arg1" and set the loop counter to “‘arg2”.
(ii) Set a trap at address “‘arg2’’ and set the loop counter to zero.
Note: If a “tid"” is specified the trap affects only that task. If no

“tid" is specified, the trap affects all tasks. Current segment
is default,

4.4.17
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Description:

verify

(i) = 92 [tid] V xx
(i) argl oop V
(i v

The verify command instructs CREBUG to continuously monitor the
contents of a specific memory word, referenced by arg1, during program
axecution. When the memory word assumes a specific relationship (equal
to, greater etc.) to a given value, in arg2, the program is stopped.
A stop message is printed by CREBUG and the system waits for further
commarnd from the programmer. Verification is only permitted on com-
piete 16 bit memory words.
(i XX specifies the relationship to be tested for, and can have
the following values:
£C meaning: (argl) = arg2
ieaning: largl) > arg2
meaning: {argl} < arg2
h meaning: (argl) # arg2
NG meaning: (argl) > arg2
NL meaning: {argl) < arg2
Stop program when the contents of “arg1”” and the value in “‘arg2"’
meets the specified relationship in XX,
Current ' tid” is default.
(i) Stop verification at “‘arg2”,
{iiij Stop all verifications.

44 18
Alay 1979

CREDIT REFERENCE MANUAL

Syntax: (i) arg2 [:{tid | pha}] [.segnr] w
(i) w

Description: (i) Open memory word at address “arg2”
(ii)

- Current ""tid" is default.
Reopen the memory word specified in

the preceding W command,

4.4.19
May 1979

CREDIT REFERENCE MANUAL

Remove trap

Syntax: (i} arg2Y
i} Y

Description: (i) Remove the trap at address “‘arg2”’.
(i) Remove all traps.

4.4.20
May 1979

CREDIT REFERENCE MANUAL

Syntax: () arg? [:tid] [.segnr] /
(i) /
Description: {i) Open byte at address “arg2’".
Current segment is default.
(i} Re-open the byte specified in the preceding / command.

4.4.21
May 1979

CREDIT REFERENCE MANUAL

Syntax: arg2=

Description: This command is used to calculate (add/subtract} with hexadecimal
values,

Example: 34 + 1F

= 53
=
i L% calculated result.

arg2 command

4.4.22
May 1979

CREDIT REFERENCE MANUAL

APPENDIX A : CREDIT SYNTAX DEFINITION

This appendix defines the various syntactic items used in the foregoing instruction,
directive and declaration syntax definitions. The symbols used below are explained

in Section 1.1. data-item-identifier

literal constant

array-identifier {,index-identifier-1]
,index-identifier-2]
format-list-identifier

formal parameter
key-table-identifier
data-set-identifier

actual-parameter :: = {

alphanumeric-character :: = letter
P h decimal-digit

array-identifier :; = identifier

BCDI
array-type :: = { BINI

STRG!
bit :: ={ ? }
block-identifier :: = identifier

condition mask :: = 0{1{2{3|4|5|6]7

contrat-value :: = value lvalue expression
identifier
data-item-identifier :: = larray-identifier(index-identifier-1

[,index-identifier-2])
formal-parameter

length [[value-type] ['value]]
length [‘value’]

data-item-specification :: = B ,
value-type [“value’]

‘value’
BCD
. . _] BIN
data-item-type :: = BOOL
STRG
data-set-identifier :: = identifier
decimal-digit :: = 0]1]2]|3]4|5|6]7]8]9
decimal-integer :: = decimal-digit . . .
decimal-number :: = [{i }] decimal-integer
device-type :: = CRIDCIDIIDLIDNIDYIGPIINIOIKAIKIIKNILPIMTISI ISOITKITJI
TR TVITWI
dimension :: = decimal-integer
entry-identifier :; = identifier

A0.7
May 1979

CREDIT REFERENCE MANUAL

equate-identifier ; . = identifier
external-identifier :: = identifier
file-code = hexadecimal-digit hexdecimal-digit

identifier
file-name-identifier :: = |array-identifier{index-identifier-1
[,index-identifier-2])
{formal-parameter J
N

;.’dentsfier () [,identifier]
formal-parameter -~ { idertifier {,} {,identifier,identifier]

| identifier
L$identiﬁer

format-list-identifier :: = identifier

format-table-identifier : : = identifier

hexadecimal-digits :: =0 1[213[4[5(6{7|8/91A(B(CID{E|F
hexadecimal-integer :: = hexadecimal-digit . . . 1

Hentifier :: = letter [alphanumeric-character] ... 1
index-identifier :: = identifier 8
key-table-identifier :: = identifier
Keyalue - = Lot |
label :: = identifier
length :: = decimal-integer
letter :: = AIBICIDIEIFIGIHINJKILIMIN|OIPIQIRISITIUIVIWIX|Y|Z
literaf constant :: = [value-type] ‘value’
module-name :: = identifier
picture-character 11 = A[BIEIF{PITIVIX|ZI019)+]—1=].1,
picture-string :: = ‘picture-character . , ./

)) - identifier]
pointer-identifier :: = [array-identifier(index-identifier-1)

[index-identifier-2])

format-parameter

identifier

size-identifier 1= larray-identifier{index-identifier-1
{index-identifier-2])

formal-parameter

statement-identifier :: = identifier

string :: = string-character . . .

string-character :: = ISO-7-character
subroutine-identifier :: = identifier

task-identifier :: = letter decimal-digit | letter letter

A.0.2
May 1979

CREDIT REFERENCE MANUAL

decimal-number
hexadecimal-integer
string
decimal-integer

value :: =

decimal-integer + decimal-integer
value-expression * = value-type ‘value’ - value-type ‘value’
equate-identifier equate identifier
value-type » = C| Dl wi x
identifier
volume-identifier :: = | array-identifier{index-identifier-1

[index-identifier-2])

formal-parameter

A.0.3
May 1979

]

CREDIT REFERENCE MANUAL

APPENDIX B : EXTENDED STATUS CODES

This appendix expiains the various status codes which may be returned to the application
by the XSTAT instruction.

The general form of the extended status word is shown below. Some bits have a standard
meaning.

Format of the status word:

T N N N N O A O

12 3 4 5 6 7 8 9 10 1 12 13 14 15

bitnr.

Bit Meaning

0 Illegal request

1-2 Not used/device dependent
3 End of file

4—-8 | Not used/device dependent
9 Timeout/Hardware error £
10 Device dependent

11 Iitegal order sequence

12 Incorrect length
13 Data fault (Parity/CRC/LRC/code)
14 Throughput error

15 Device not operable

Further information concerning standard bits and details of non standard bits are given
for each device (driver) on the following pages.

8.0.1
May 1979

CREDIT 7S50 0 (ANLIA,

The tabie bolrey stices which driver belongs t which peripheral device.

[T

Drivers

|]

DRCRC(1
DRTCOH
DRTW(1
HILC multipoint DRDCC7
e inn DRDC15
Soint DRDC17__
200 synchionous DRDC?Z__‘
rariver DRDCE1
friver DRDCE82
DRDUCT
DRFICHT
DRGPO1
DRICO1

DRKBO1
DRKBQ3

DRLPO1
DRMTO01
DRDIOT
DRSOP1
niral printer DRTP0OZ, 3
Tsm:x 8Py DRDYO0?

|

|
|

|

. weyuowd famps

Video anr o

£.0.2
May 1979

CREDIT REFERENCE MANUAL

DRCR01 Card reader DRCRO1

This status code is valid for a PTS6885 card reader.
The following bits may be set by this driver:

Bit Meaning
0 lllegal request
3 End-of-File detected
Input hopper empty
10 or
Output stacker full
12 Incorrect length
13 Data fauit
14 Throughput error
15 Not operable
Bit 12

Bit 13
Bit 14

Bit 15

is set if the requested number of characters is greater than 80, or if there is
more information on the card than has been specified by the requested number
of characters.

is set if a character is read, which cannot be converted.

is set if the card reader offers a new character, before the previous one has
been taken care of by the driver.

card reader not operable (e.g. power off).

B.0.3
May 1979

CREDIT REFERENCE MANUAL

DRDC07 Data communication HDLC multipoint data link DRDcCo7

The following bits may be set by this driver:

e
3
@
£
2 =
© 3
a. o
- 1}
& E
R} e
¢ T 8 g
Bit Meaning X T = @
0 Iliegal request x I'x | x |x
2 Status change X
9 Timeout/Poll timeout X | x
10 Carrier off x | x
14 Throughput error X | x
15 Modem not operabie X | x| x
8.04

May 1979

CREDIT REFERENCE MANUAL

DRDC15

The following bits may be set by this driver:

DSC multipoint data communication

e
2
[t}
£
g 5
£ 2 °
- @
& & E
T 8 2 w k
. . 3 = £ B B
Bit Meaning r 2 - » 0
0 {llegal request X} x x x I x
2 Status change X
5 Calling indicator x
9 Time out x | x
10 Carrier off X
13 Code check error x | x
14 Throughput error X X
15 Not operable X
B.0.5

May 1979

DRDC15|

CREDIT REFERENCE MANUAL

DRDC17 DSC point-to-point data communication IDRDC‘! 7l

The following bits may be set by this driver:

@
£
@] —
—_— =
= 8§ £ E
T 8 _ & € §
© = (=3 c
. . @ T > Q s 2 b
Bit Meaning c B x 4 O 0O o
4 WACK count out X
7 ETB received X
8 End of Transmission x | x| x
9 Time out* X | X | x
10 RVI received X
1 See below™ X X
12 Incorrect length x
14 Throughput error X
15 Not operable X { x| x [x {x

The reasons for these bits being set varies according to the instruction that was issued,
as follows:

Bit9 — Read
No message block has been received within the specified time.
— Write
This bit is set at unsuccessful D1B or when there has been no acknowledgement
on a message block following several ENQ's
— RVI
No response has been received to WACK within a specified time.
Bit 11 — Write
ENQ received: this bit is set at BID collision or when the driver is in receive
mode,
— RV!
Sequence error: set when the driver is in write mode or a block containing
ETX has already been received.
— Accept call
Modem already connected.

B.0.6
May 1979

CREDIT REFERENCE MANUAL

DRDC22

The following bits may be set by this driver:

Uniscope 100—200 synchronous
data communication

4
3
£
g 5
< g 9
g § E
- 82 ¢ v -
. . g = q -
Bit Meaning g = £ & &
0 Iilegal request X X X X X
2 Status change x | x
5 Bell message received x | x
9 Time out/Poll Time out x | x
10 Carrier off x | x
14 Throughput error X X
15 Modem not operable X X
B.O7

May 1979

DRDC22

CREDIT REFERENCE MANUAL

DRDI0Y Signal displays and lamps on keyboards DRDI01

This status code is valid for signal dispfays PTS6241 and 6242, lamps on the keyboards
PTS6232, 6233, 6234, 6236, 6271 and 6272 and the lamp functions of the badge card
reader PTS6261.

The following bits may be set by this driver:

Bit Meaning

0 Illegal request

13 Code check error
15 Not operable X

*x1Set Lamps On
x|Set Lamps Off
x | Flash Lamps

x
x

B8.0.8
May 1979

CREDIT REFERENCE MANUAL

DRDY01 Video and plasma displays DRDYO1|®

This status code is valid for video display PTS6344, or the plasma displays PTS6351 or
PTS6386 or the alphanumeric display £ TS6385.

All alphanumeric characters within the range /20—/5F are sent from the buffer to the .
display, codes /60—/7F are reduced by /20, giving /40—/5F.

The following bits may be set by this driver:

E [
® 2 £
- =)
3} =1
2 &8 9 3
B . & = b o
Bit Meaning - 2 & u
0 {ilegal request X x | x {x
13 Code check error x | x
14 Throughput error
15 Not operable x b x| x{x
8.0.9

May 1979

CREDIT REFERENCE MANUAL

DRGPO1

All alphanumeric characters in the range /20—/8F, in the user buffer, are sent to the

printer. Codes /60—/7F are reduced by /20, giving /40~/5F.

General printer

The following bits may be set by this driver:

®
=3
s
Bit Meaning =
0 lilegal request x | x
13 Cade check error
14 Throughput error
15 Not operable x | x
B.0.10

May 1979

lDRGPO1l

CREDIT REFERENCE MANUAL

Inter task communication DRICO®

The following bits may be set by this driver:

T 8 «
8 = 3
r = O
I @
. &8¢
® £ < c ':
i . @ i © < ©
Bit Meaning r T xr o v
0 itiegal request x| x
9 Time out X
12 Incorrect iength X X X X

)

37!

May 1979

CREDIT REFERENCE MANUAL

DRKB01 Keyboard DRKBO1

This status code is valid for the keyboards PTS6231, 6232, 6233, 6234, 6331 and 6342 and
the PTS6261 badge card reader with PIN keyboard.

The following bits may be set by this driver;

&

ha

=3

@

g £

. Y 4

Bit Meaning x ©»

0 Hlegal request x | x
9 Time out X
12 Incorrect length X
13 Undefined key X
14 Throughput error X

Bit 14 is set if circular input buffer overflow occurs.
Bit 12 is set if overflow in the user buffer occurs,

8.0.12
May 1979

CREDIT REFERENCE MANUAL

DRKBO3

This status code is valid for the keyboards PTS6236, 6271 and 6272 and for the
PTS6261 badge card reader with PIN keyboard.

The following bits may be set by this driver:

Keyboard

]

b=

=3

@

g e

@ X

Bit Meaning c »n

0 Illegal request x | x
9 Time out X
12 Incorrect length x
13 Undefined key X
14 Throughput error X

Bit 12 is set if the user buffer overflow occurs.

Bit 14 is set if circular input buffer overflow occurs.

B.0.13
May 18979

DRKBO03 |’

CREDIT REFERENCE MANUAL

DRLPO1 Line printer DRLPO1

This status code is valid for the line printer PTS6881.
The following bits may be set by this driver:

@

2

a

g 2
Bit Meaning k=
0 tHegal request x {x
15 Not operable X

B.0.14

May 1979

SRENCT AN

CREDIT

‘DRMTO”;%
—

This status code i5 ot fr 2

IDRMTO‘!”

" imenetic tape recorders PTS6872 or 6164

QOie S e - vy Thid e o

The followvi

- ©
g 2
- & 5 5
: ENE I
B 2 o —
) : 5 &8 8 £ §
Bit izane a o B ¢ -2 DO «
0 %) i x b} ox |x x| x|
z : ; X x X
3 ; - X X Ix
i H
4 l X ;0N X X X
+
5 i ' X « x X
6 Write pros Lo X x 3 X X X X
9 Harcware < box x x X X X X X X
) .
10 ECT X x X X x | x X
1 Seque X
12 fncorrect len 1 X
i
13 Data error i X b X x | x X
14 Throughnu —f X X
15 Not operable | ox X X X X X X X X X

S two secon
cnter s foune

POt Il ranTens v

Bit 4 isset if data . .-
Bit 11 is set if the hirix
Bit 12 is set if the -

CREDIT REFERENCE MANUAL

DRSOPO1 System Operators Panel DRSOP01

Only bit zero of the extended status code is used, and this bit is set if any error is
detected.

B.0.16
May 1979

CREDIT REFERENCE MANUAL

DRTCO1 Cassette DRTCO1}

The following bits may be set by this driver:

-
e
O
=
2 g
2 i T g =
2 5 2 2 g x £ 5 % 2
. . w 3 T = & 9 2 z & =
Bit Meaning L2 f s 5§82 & 55
0 Iilegal request X X X X X X X X X
1 Leader X x px px x| x X
2 BOT missing X X
3 Tape mark X X x
4 BOT/EOT hole x | x| xjx X
6 Write protected X X X X X X X X X X
7 B Side x I x x| x| x1tx|Pxjx|xix
9 Rewind time out X X
11 Sequence error X I x | xix | x X [x x| x [x
12 Incorrect length X
13 CRC error x x| x
14 Throughput error x | x | x
15 Not operable x | x X X X x | x x | x X

RO 17
May 1875

CREDIT REFERENCE MANUAL

DRTPQ2

This status code is valid for teller terminal printers PTS6221, 6222 or 6223.
The following bits may be set by this driver:

Teller Terminal Printer

DRTP02

58 5
« £
S = ©
3 = 1
1% © o
g T £ e 0z
& s 3 ¢ . %
- & = - 02 @ &
. 8 £ 8 5 5 & @
Bit Meaning - 2 o O a O
¢} illegal request x | x | x | x| x x [x
8 Recovery on request
End of journal tape
10 or x [x| x| x|x X
Voucher out
13 Code check error X
15 Not operable x | x x P x [x| x| x
B.0.18

May 1979

CREDIT REFERENCE MANUAL

Teifer Terminal Printer

This status code is valid for teller terminal printer PTS6371.
The following bits may be set by this driver:

»
4
Il
id W
g E
- g g
& 4 il =
e - E S g
£ c s a o
3 & 5 = E
S E o § 2
w o 5 o 53
3 [3 5 £ Q
& = o < 3 O
c B
‘;; o [a] = 8 @
g B g o o 8
- 8 =
)) 8 £ 8 32 & g B
Bit Meaning - 2 a2 o & & &
0 lliegal request x [x| x {x|x
10 End of journal/documentout | x | x
13 Code check error X
15 Not operable X X X X X X
B.0.13

May 1879

CREDIT REFERENCE MANUAL

DRTWO1 Console Typewriter DRTWO1

This status code is valid for typewriter PTS6862. Aiphanumeric characters in the range
/20—/5F are sent from the user buffer to the printer. Codes /60—/7F are reduced by
/20 giving /40—/5F.

The following bits may be set by this driver:

3 2
S =T
Bit Meaning c =
0 1legal request x | x
9 Time out X
12 Incarrect fength X
13 Code check error X I x
14 Throughput error
B.0.20

May 1979

SRR

This status code = cror fi

fiexible aisks.

)

e held on #TSB875 or 6876 disudrives and

.
P
T 2
==
s
g <
g o g
¢ E g 8
k3 {
- s 55z
52 5 4 B Ee L, 28T
25 Sf2rvSg8E
T T ¥ o g T © =
552 e g 2 g 28 = e
E=0=8 25 &858
= el] £k
SEEL3¥BET S
ST OL X X X X X oD
c e g0 3O @ O L
38 &8 J 28X =8 o
Bit Meaning oo .s === 0D
0 Request error ® x 1w <wix|xixixlIxix x]
1 Key no found i Podvix]x X
2 Record protected x |x Pt x |x|Ixix|x
3 End of Fiie X[XX x| X Ix % |x
4 No Data % X X XX X
5
6 Next key same X x |x|x
7 Retries performed X 31X Xx{x{xi«|x{x}xix
8 New Volume loaded X ix X iR PRI I XX (x[x
9
10 End of medi X X | X |x X {xxpxix
11
12 Incorrect iength x X X X
13
14 Disk 1/Q arror x 1x Xixixix{xixtxIx|x
15 Disk not operable X ix XX IxX]xixIxixixix

Detailed informatic
more explanation.

¥er AcCcEss met.

are mengoned which need some

CREDIT REFERENCE MANUAL

TIODM

GENERAL
Bit0

Bit 1

Bit 2

Bit3

Bit4
Bit5
Bit 6
Bit 7
Bit 8
Bit9

Bit 10

Bit 11
Bit 12

Bit 13
Bit 14

Bit 15

Continued TIODM

Request error

Set for request errors such as illegal order, unknown file code etc.
Key not found

Set if the symbolic key required for indexed random instructions
was not found in the index file.

Record protected

Set if the accessed record is under "‘exclusive access’’ at the time
of the read request, or the record is not under "exclusive access’
and the record status indicates "USED" at the time of a write
request.

End of file

Set if the accessed record has a logical record number greater than
the “’last record number” (LRN} in the VTOC,

In case of random read/write, the instruction is not aborted.

No data
Set if the record status character indicates ''free’” at a read-request.
Not used

Next key same

Set if the symbolic key in the next used index record is the same
as in the current index record.

Retries performed

The driver has retried an /0 action that was in error.

New volume loaded

Set at the first request after a new volume has been loaded.

Not used

End of medium
Set if the requested record is outside the physical space reserved
for the file at creation time.

Not used

Incorrect length

Set it the requested length is less than the record length at read
request.

Not used

Disk 1/0O error

Set for hardware errors, e.g. seek error, CRC-error, throughput
error,

Disk not operable

B.0.22
May 1979

CREDIT REFERENCE MANUAL

ATTACH ATTACH}
DETACH DETACH

The following bits may be set by this driver:

Attach
Detach

Bit Meaning

4] Illegal request
9 Device not available

x
x

B.0.23
May 1979

CREDIT REFERENCE MANUAL

APPENDIX C : CONTROL WORD INFORMATION

This information can be obtained with the CALL GETCW standard assembler
subroutine.

Data management

The control word holds the iogical record number.
Itstarts with 1 andisa 16 bit integer number.

Magnetic tape/Cassette

Adfter completion of a read, the word contains the number of retries performed,

System Operator Panel

After a read the number of the activated switch is returned in this word. The switches are
numbered from the right starting at 1.
It continues with 2, 3, 4, 5 etc.

Displays

The current cursoi cosition is returned in the control word, which has the following lay-out :

!‘0....7 8... 15

|—

Une number | column number

Data Communication

The remaining time until time out is returned in the control word.

c.o.1
May 1979

CREDIT REFERENCE MANUAL

APPENDIX D : STANDARD ASSEMBLER SUBROUTINES

A number of Standard Assembler subroutines are held in the system library and may be
called from CREDIT programs.

D.0.1
May 1979

CREDIT REFERENCE MANUAL

EMPTY Empty Test EMPTY

Syntax: {statement-identifier] u CALL v EMPTYT, data-item-identifier

Description: The data-item-referenced by data-item-identifier is tested for an
empty value, Data item types binary, decimal and string are
allowed,

The following values are considered as empty:
a) Binary-data-item, zero (0)

b) Decimal-data-item, all spaces (X'F’}

¢} String-data-item, all null characters (X'00")

Condition register: =0 notempty
#0 empty
Example: CALL EMPTYT, DEC2

Intermediate
code format:

Byte t o 0 1 110 0 0 O

Byte 2 external reference

operand-1 data-item-identifier

Bytes 1 and 2 are filled by the system
Byte 2 contains a reference to an external system routine.
Operand-1is a reference to a binary, decimal or string data item.

D.0.2
May 1979

CREDIT REFERENCE MANUAL

GETCW Get control word GETCW

Syntax : [statement-identifier] L CALL GETCW, data-set-identifier,
data-item-identifier

Description : The control word of a data set indicated by data-set-identifier
is stored in a binary data item indicated by data-item-identifier,

Condition register : unchanged
Example : CALL GETCW, DSDK, CONTRW

Intermediate code format :

Byte 1 o 0 1 1}J0 0 0 0O
Byte 2 external reference
operand-1 data-set-identifier
operand-2 data-item-identifier

Byte 1 contains the operation code (X'30)

Byte 2is a reference to an external system routine
Operand-1 is a reference to a data set

Operand-2 is a reference to a binary data item

D.G.3
May 1979

CREDIT REFERENCE MANUAL

Syntax:

Description:

Condition register:

Example:

Intermediate
object code:

Format Move FMOVE

[statement-identifier] CALL FMOVE.
data-item-identifier, format-list-identifier

The format-list referenced by format-list-identifier is copied into
the string-data-item referenced by data-item-identifier. Hf the
string-data-item is longer than the format list, remaining bytes
are filled with the EXIT format-list-item.

Unchanged.

CALL FMOVE, STR1, FORM5

Byte 1 0o o i 1[0 c 0 o
Byte 2 external reference
operand-1 data-item-identifier
operand-2 format-list-identifier

Bytes 1 and 2 are filled by the system
operand-1 is a reference to a data set.
operand-2 is a reference to a format list.

D.04
May 1979

CREDIT REFERENCE MANUAL

ICLEAR Clear data item ICLEAR

Syntax: [statement-identifier] u CALL u ICLEAR,
data-item-identifier

Description: The data item: referenced by data-item-identifier will be cleared.
Data-item types binary, decimal or string are allowed.
Clearing of a data item will result in:
al Binary-data-item is set to zero.
b) Decimal-data-item is set to ail spaces (X'F’)
¢} String-data-item is set to nul! characters {X'00')

Condition register: Unchanged
Example: CALL ICLEAR, DECS

Intermediate
code format:

Byte 1 6 6 1 1 0 0 0 O

Byte 2 external reference

operand-1 data-itern-identifier

Bytes 1 and 2 are filled by the system
Byte 2 contains a reference to an external system routine,

Operand-1 is a reference to a binary, decimal or string data item.

0.05
May 1972

CREDIT REFERENCE MANUAL

Mask function -

Syntax : [statement-identifier] L_: CALL MASK, data-item-identifier-1,
data-item-identifier-2.

Description : From the two binary data items, indicated by data-item-
identifier-1 and data-item-identifier-2, the logical product is
taken and compared to zero. The result is stored in th= condi-
tion register. This function is useful after a XSTAT instruction
to examine the device dependent status.

The contents of the binary data items are not changed.

Condition register : X .

9 0 ifresultis zero

=1 if result is positive
2

if result is negative

Condition mask :

0 1 2 3 4 5 6 7
=0}>0 | <0 — #0] <0 | >0 {Uncondi-
tional
Example : CALL MASK,MK1, STATUS

{ntermediate code format :

Byte 1 0 0 1 110 0o 0 o
Byte 2 external reference
operand-1 data-item-identifier-1
Loperand-2 data-item-identifier-2

Byte 1 contains the operation code (X'30)
Byte 2 s a reference to an external

system routine
Operands-1,2 are references to binary data items

D.0.6
May 1979

CREDIT REFERENCE MANUAL

TYPET

Syntax:

Description:

Condition register:

Example:

[ntermediate
code format:

Type Test

[statement-identifier] CALL TYPET,
data-item-identifier-1, data-item-identifier-2

Data-item-type of the data-item referenced by data-item-identifier-2
is tested and type is returned in the binary data-item referenced by

data-item-identifier-1.
Following values are returned:

a) 1 for binary-data-item
b) 2 for decimal-data-item
¢} 3 for string-data-item.

Unchanged.
CALL TYPET, BIN1, BIN2

Byte1 |0 0 1 1[0 o

0o 0
Byte 2 external reference
operand-1 data-item-identifier-1
operand-2 data-item-identifier-2

Bytes 1 and 2 are filled by the system

Byte 2 contains a reference to a system routine
Operand-1 is a reference to a binary data item
Operand-2 is a reference to a binary, decimal or string data item.

D.0.7
May 1979

CREDIT REFERFENCE MANUAL

APPENDIX E : CHARACTER SET ISO-CODE
(recommendation R646)

¥ 060 001 | 010 ! 011 100 § 101 110 111
byb:b:i| bubibaby ol oy |2 (3|4]56ls |7
Character/function declaration NUL|DLE| SP 0 P
150 ! 0000 | O T T = T2 P
Hex. | Mne- [Declaration : SOH | DCtl 1
) 1 ! ;
monic, I 0001 - S 1 (A 0_ d q
0.0 |NUL | Null . ‘ :
0.1 |SOH | Start of Heading : STX |DC2|
0.2 |STX | Start of Text 0010 2 [t 2 BIR bi¢!
0.3 ETX | End of Text . 4 “
0.4 | EOT | End of Transmission | e 4
0.5 |[ENQ | ENQUIRY 0011 | 3 3. C ! Sicis |
0.6 | ACK | Acknowledge [—
0.7 |BEL | Bell : :
0.8 |BS Backspace ‘ 0100 | 4 4 D T d t |
0.9 | HT Horizontal Tab [e |
0.AjLF Line Feed ; ! :
0.8|VT | Vertical Tab S jorot s o h E U : e u
0.C|FF From Feed L ‘
0.D|CR Carriage Return ACKISYN | &
0.E'S0 | shiftOut o omale AT 6 F ! V i flv ‘
0.F Sl Shift In i Py 'ET - + : 4
i LIETB] * ; \
1.0 DLE | Data Link Escape Pbott g ; _—
1.0 1DCT | X-On Reader ‘ = | 7‘G;‘N\9 w
1.2 DC2 : X-On Puncher 23S [CAN 1 I
1.3 DC3 | X-Off Reader 1000 | 8 (8 Hi X i h' x
1.4 DC4 | X Off Punch | X | |
1.5 | NAK Negative Acknowledge HT | EM|) ! Co.)
1.6, SYN * Synchronous Id'e 1001 .9 [; 9 | Y) \,
1.7 {ETB | End of Transmission Block L
1.8 1 CAN | Cancel : LF isug ! - C
1.9 EM End of Medium i 1010 L A T ¢ Z yi
1.A: SUB ' Substitute N 7ﬁ,ww‘
1.B. ESC - Escape ' vT iEsc ! - {
1.C: FS File Separatar 1011 8 ; o
1.Di GS . Group Separator S L
1.E RS Record Separator ' FEIFS o, |
1. F us Unit Separeator 1100 C «‘_ o :
oo R S Y] ;
2. 0 SP Space ; ‘ CR | Gsl~ ”
7.F DEL DeletesRub Gut Lo R
There are 12 positions avaiiabie for national -
usage marked with 1110

Per /0 device, the rharacter set may vary e

£
May 197G

CREDIT REFERENCE MANUAL

APPENDIX F : SCREEN MANAGEMENT

This appendix gives a description of screen management as it may be called by an application
for simplifying display handling. The module is written in CREDIT and supplied on the
system disk, with module name SCREEN.

F Introduction

This module can handle different types of applications which are used for e.g. data entry,
inquiry, register updating, transactions etc. It uses a display, print device and keyboard for
communication.

Entering the module is done with a Perform instruction followed by the procedure nar:¢.
When control is passed to the module it will display the required screen layout as defi~ 4 in
a format list, which is prepared outside the package. Also input fields and corresponding
data items are fully described in this format list,

Tabulation functions, error messages, checks on input fields (APPL, MAXL etc.), function
keys to terminate input, editing mode allowing cursor positioning, deletion or inser2ian of
a character in a current input field and hardcopy facilities are all included in the mcdule.
When the transaction is terminated or e.g. a CANCEL key is pressed control will be given
to the application.

Data items, k eytables, datasets, error messages, format lists {for screen layout} and routines
which are executed on a APPL,CTAB or SCHK option in the current input field, are defined
outside the module, using standard names.

The VERIF option is not yet inciuded in the module but the user has the possibility to ¢ nge
the module because all is written in the CREDIT language.

Only input fields of the type FKI are handled. FINP-fields have to be programmed outside
the package. When the ENTER-key {end of transaction} is pressed, screen management
will check if compulsary fields are filled. If not, the cursor will be positioned in such a
field and data must be entered before the transaction can be completed.

It is advised to read also chapter 1.4.3.1 in this manual, which also describes the buffes
handling.

F11
May 1979

CREDIT REFERENCE MANUAL

Error messages

Format lisis
data sets.
REQUIRED
INPUT
FOR MODULE
| e —;
! CONTROL FRCM MODULE
PERF SPCLRA | ENTER] SCREEN TO APPLICATION
PERF SPCLRS MODULE 1 MANAGEMENT |
Ll
PERF SPCLRN MODULE !
PERF SPERR
PERF SPERR2 L___>,l Power off
CANCEL 1
{ CANCEL 2
1 ENTER

I Key 2 19 pressed

COMMUNICATION
MODULE-APPLICATION

APP(.routines

SCHK - routines
1-7)

CTAB - routine.

1
)
|
1
I
|
)
|
| t
| |
{ 1
| |
I I
| |
! |
1

|
: i
l |
I — l
' !
! |
1
| 1
1 |
I !
! !
! 1
[1
i 1
] |
L.

F.1.2
May 1979

CREDIT REFEF

F.2 »
Before the moduie . ; ag ihe screen jayoul and giving the options
of input fields, musr o0) ' uit Format instruction (ATTFMT) has to
be executed. Wt . T - e prompt*s must be dispin 7ec a boolean
data item SPPRUAH Tic g 52 zere and prompts will not be dis—
played.
Entering the moc.: s - o FIRICEIE 7 ihe following perform instructions:
SPCLRA: When ... o e w70 s et then following actions are performed

On i [Tt T)

R 5 Loy

- :t eurrent FKI-field., f hereisno

" e current,
-~ ahie SPKTAB1, following characters

-~ Gispiay error message

— S i1t APPL, CTAB or SCHK option v s

- ™ DIHIHY Ldld s Iem

- that @ data item contents is changed!

Teaet maiisicds the mndulel,
- wrien End 2 key is pressed.
- st will be passed to the application.
Bir - - io vaiue 2.

When SP . &

— Clenr 2o e trpen aoa conresgording data items.

— Curmns b B cn af rorrent FKi-field. |f there i o

Clirt o : g . 5 omiode current,

Foliovasg o s REA PERGMPT =

SPCLRS: T hen Toliowing actions are performed

Wher e Codot

+ Felds except those which have optic

rot cleared, (NCLR ser!
1w FKU-field. f thereis oo

fhis routine aiic
ssaonding FKY-

& 1tems, except wreh *

e -field. 17 there is po

CREDIT REFERENCE MANUAL

Following items the same as when SPPROMPT =1

SPCLRN: When the boolean data item SPPROMPT = 1, then following actions are
performed on calling the module with this name;

— No clearing of input fieids and corresponding data items is performed.
— Display entire format and input fields.
— Cursor is located at first character position of current FKi-field.

If there is no current field, the first input field is made current.
Following items are same as SPCLRA with SPPROMPT = 1. This routine makes
it possible to recall a complete screen layout with its corresponding input field
information.

When SPPROMPT =0

— No clearing of input fields and corresponding data items is performed.
— Cursor is located at first character position of current FKi-field. [f there is
no current field, the first input field is made current.

Further the same as with SPPROMPT =1

This routine makes it possible to enter the module and continue on a current
field without any changing in the format on the screen.

SPERR: When an error is detected outside the module in an application routine other
than SPCHKx, SPAPPL or SPTCHK, the user may call the module with this
error routine name and pass the index of the error message in a binary data
item SPBINW4. Screen management will handle this error as if it was detected
in the package itself. A bell signal is sent and an error message will be displayed
on the last line of the screen. (See also Error handling 5.1).

SPERR2: When an error is detected outside the module in an application routine other than
SPCHKx, SPAPPL or SPTCHK, the user may call the module with this error
routine name and pass the index of the error message in a binary data item SPBINW4,
Screen management will examine and modify the current input field, and control
is returned to the calling routine.
A bell signal is sent and an error message displayed on the bottom line of the
screen (see also Error handling 5.1).

F22
July 1978

CREDIT REFERENCE MANUAL

F3 Communication between Screen Management module and application

Screen management checks the input field on options APPL {application}, SCHK (check)
and CTAB (conditional tabulation). Verification is not yet implemented in the package
but has to be included by the user if required. When one of these options is specified, a
subroutine outside the package is called with respectively the names SPAPPL, SPCHK1
through SPCHK7 or SPTCHK.

These routines are mentioned as externals {EXT) in the screen management module and
require a corresponding entry {(ENTRY) in the application module(s).

F.3.1 SPAPPL. (application)

After data is entered and the input is terminated screen management will check if the APPL
option was specified for this input field. The interface between screen management and
the routine SPAPPL. is as foliows:

Input to routine SPAPPL;

— SPINPUT, a string data containing the data input via the keyhoard.

— SPBINW1, a binary data item containing the number of transferred characters
on input.

— SPBINWS3, a binary data item containing the APPL vailue as mentioned in the
FK1 input field definition. This value will be processed in the sub-
routine.

— SPBINW?2, a binary data item containing the converted end-if-item key ind .x
in the key table.

Output from SPAPPL;

The application has to return in the binary data item SPBINW3 a value 0, 1, 2
or 3 which will result in the foflowing actions in screen management.

(SPBINW3) = 0O The contents of data item SPINPUT will be moved v the
data item of the current input field and displayed on the
screen when the "REWRT’ option is defined for this input
field. Screen management continues according to the con-
verted end-of-item key index as present in SPBINW2,

(SPBINW3) = 1 The contents of data item SPINPUT will be moved to the
data item of the current input field and is always displayed
on the screen. Screen management continues according to
the converted end-of-item key index as present in SPBINW2,

(SPBINW3)= 2 The contents of data item SPINPUT is not moved to the data
item of the current input-field. Cursor is set at the begin of
the current input field and input on this fieid can be performed.

{SPBINW3) = 3 Error detected. Binary data item SPBINW4 contains ar. index
for the error print out format. When the contents is zero, no
error message is printed.

{See also error handling 5.1).

F.3.2 SPTCHK (conditional tabulation)

When a tabulation function key is pressed as forward, backward, upward etc., screen
management searches for the required field.

F.3.1
May 1979

CREDIT REFERENCE MANUAL

When this input field is found and it has the CTAB option specified, screen management will
call the routine SPTCHK, before setting the cursor in this field. The application routine
SPTCHK has to check if this new current input field is wanted, or has to be continued on
tabulating forward or backward to following/preceding firids, Once the tabulation direction,
forward or backward, is set it will continue in this direction until the cursor is positioned.
The cursor remains in its original position as long as CTAB option is specified for these input
fields. The routine SPTCHK has to indicate in the binary data item SPBINW3 which action
has to be taken by screen management.

Output from SPTCHK:

{SPBINW3)=0 Tabulation is at correct input field. The curscr will be
positioned at the first character position in th:s current field.
(SPBINW3) =2 Tabulation must continue forward or backward.
The tabulation will continue backward, by screen management
if the initial (present in SPBINW2) tabulation key pressed
was:
— tabuiation backward
— tabulation right most
— tabulation upwards

All other keys pressed will result in continuing forward
tabulation.
£.3.3 SPCHK1 — SPCHK7

After data is entered and input is terminated, screen management will check if the SCHK
option was specified for this input field. Depending on the vaiue (1 to 7} defined after
SCHK, the routine SPCHK1, SPCHK3, SPCHK4, SPCHK5, SPCHK®B or SPCHK7 will be
called. The user can perform a check on this input fieid.

Input to routine SPCHKx:

— SPINPUT, a string data item containing the data input via the key-
board.

— SPBINWHY, a binary data item containing the number of transferred
characters on input.

—SPBINW2, - abinary data item containing the converted end-of-item

key index in the key table.
— SPBINW4, a binary data item containing the value defined in SCHK
option,

Output from SPCHK x:
This interface is the same as for the SPAPPL routine, aiso in SPBINW3 a
value 0, 1, 2 or 3 has to be returned, with same significance.

Note: When both options SCHK and APPL are specified for the current
input field, first the SPSCHK x routine will be performed and then
the SPAPPL routine.

F.3.2
May 1979

CREDIT REFERENS

F.4. Key tables uses i
F.4.1 General

These
key tables have 3 ... key codes

have to be definr

When a certain £

{7 ras to be set to ¢ - keycode
value x'FF’ {e.g. .

FE

(39

o keys which are allowed o be eniared as
TABZ. are tunction kavs which are allowed to be

The keys in keytap'= 8
input field. The Kk

entered at any other pos.: ant rfleld. The keys in key table .7 77423,
are function keys wn sz anhen the package is switched to edit oo de.
Reading of input craractars iz performadi az - - svhaoard mput with echoing

-

on the display. The function keys are not gohaed on the

ey

The first character read i
keytable and it is &
display will be clearad, i;
character positions are -isdidyad 43 ¢ dumt
length of the current inpur &

o SPITAR 1 not present i the

s he ining sart of the field on the
oed on the display and the remaining
r of dats, correspanding © the maximum

Remaining characters are input and checkad with key tabie SPKTAR2,

arm will sound ang Cading is continued.

If an itlegal key codo s entered. the acoustic a

sured and a check is
ietd, befare

After compietion of the ioaut, the rermeming dots 0 the fleld o
performed if aptions as AFFL and SCHK are gafined for this
continuing according 1o the prassed function key,

F.4.2

kgys in SPE

man the cursor is positioned at the first character position of the
r, error message is dispiayed, then only key codes

This key table is used v
current input-field. ' 15 also used after
at position 2, 3, & and 6 are reievant.

Ligniticance

Position number in
1

v i3 pressed, the cursor
and the corresponding
sced by a dot. !f

-ry trst position of
contants of the data
+will be displaved.
T T ©n enrresnonding
VEroare ¢ oanred, ween iovalue 1s great
The cur o the firgt position

[N

vantayved with the old
! g data item.
casition of the

CREDIT REFERENCE MANUAL

Position number in SPKTAB1
4 .

5

Significance
EOl Comm
to the next

CANCEL1. A raturn 10 the
with in the birary, t

. Tabulat-on forward

ed

plicaticn is performed
BiNW2,

No chscks 4 nout fred.
CANLELZ st in SPBINWZ, the
value 2 is returned. e

TFWD. Tab
No action is wak
an empty comp
defined inpi:
begin of ih

sne next input field.
i2ld is nov present. If
found in an 2arlier

@ cutsor g positioned at the
The comp ssory field

TBWD. Tabuis

kward to the previous input
field. No action s taken if this input fielc is not
present. i v comipulsory fieid is tound in an
eartier defined input field, the cursor is pesiticned at
the begir of this compulsory feld. The zompulsory
field becomes current.

THOME. Tabulation w the firs: iput field of this
format list.

TLDOWN. Tabulation to the first input field on the
next line. -

No action is taken if this input field is not present.

If an empty compuisory fieid is found in an earlier
defined input tieid, the cursor is positioned at the
begin of this comaulsory field. The compulsory field
becomes curreni.

TLEFT. Tabulatior to the most left input field on
the current line. If en empty compulsory field is
found in an eariier dafined input fieid, the cursor is
positioned at the hegin of this compulsoryfield. The
compulsory fieid becomes current.

TRIGHT. Tabulation to the most right input field
on the current line. |If an empty compulsory field is
found in an eai - defined input fieid, the cursor is
positioned at th: pegin of the compulsory field. The
compulsory fieid becomes current,

TDOWN. Tabulation to the input field on the next
line, with a starting cofumn nearest to the starting
column of the current input field. When two nearest
columns are found, tabulation wiit be to the left input
field. When no input field is found, following lines
will be searched. No action is taken if the input field
is not present. if an empty compulsory field is found
in an earlier detined input field, the cursor is positioned
at the heqin ot the cormiilenry fisld. The compulsory
field becomes current.

F.4.2
July 1878

CREDIT REFERENCE MANUAL

Position nurrber in SPKTAB1
14

Significance

TUP. Tabulation to the input field on the preceding
line, with a starting column nearest to the starting
column of the current input field. When two nearest
columns are found, tabulation will be to the left input
field. When no input field is found, preceding lines
will be searched. No action is taken if the input field
is not present. If an empty compulsory field is found
in an earlier defined input field, the cursc. is positioned
at the begin of the compuisory field. The compulsory
field becomes current.

COPY. A hardcopy of the entire screen is made on the
print device.

DUPL. Mave of the contents of the duplication data
item, as defined by the DUPL option in the current
input field, to the field SPINPUT and display. When
no DUPL option defined, an error message wil: be
displayed.

EDIT. Set to edit mode, (See SPKTAB3 description
4.4).

ENTER. Ends the handiing of this complete format if
all compulsory fields are fitled and returns to the
application. When not all compulsory fields are filled,
an error message is displayed and the cursor is positicaed
on the first not filled compulsory field, and this field
becomes current.

Application functions keys. When a function key wit:
a position number 19 or greater in the key table is
pressed, a return will be performed to the application.
In data item SPBINW2 is returned the value 4 fcr a key in
position 19. For a key in position 20 the value 5 is
returned etc.

F.4.3 Function keys in SPKTAB2

The key table has the same layout as key table SPKTAB1 and is used when the cursor is
positioned anywhere in this input field except on the first position. When a function key
is required only in SPKTAB1 and not in SPKTAB2, then the corresponding key position
in SPKTAB2, has to get a key code X'FF'.

Keys from position 7-and up will first be handled as an end-of-item key and after the input
data is found correct a check on SCHK and APPL options is done. Then the function

required is executed.

For position numbers in key table and significance. See SPKTAZ1.

F.4.3
May 1979

CREDIT REFERENCE MANUAL

F.4.4 Functions keys in SPKTAB3, edit made

The edit mode is entered by pressing the function key for edit mode, which key code is
defined in key table SPKTAB1 and SPKTAR2. Furthermore the MAXL option must be
greater than zero.

A change to edit mode may be done during date input for the current field e.g.
three character positions after a wrong character was entered and this has t be changed
before continuing.

In this mode more functions are available to update on character level in the current input
field as e.g. non destructive space, delete a character, insert @ character etc.

After input is terminated and checked the data item belonging to this current input field
will be updated.

if an illegal character is entered the acoustic alarm will sound and editing continues. The
character at the cursor position will be overwritten by numeric or alphanumeric «eys.

Position number in SPKTAB3 Significance

1 — NON-destructive space. Moves the cursor one
step to the right. Accoustic alarm sounds if teying
to exceed the effective item limits.

2 <~ NON-destructive backspace. Moves the cursar one
step to the left. No action if most left position is
reached.

3 INS. Insert a character at current cursor position.

The character under the cursor and the characters
right of the cursor in the current field are shifted one
step to the right with truncation. One space character
will be inserted at the cursor position and the cursor is
not moved.

4 DEL. Delete character at current cursor position. The
other characters to the right, in the current field, are
shifted one step to the left.

5) CLEART1. The input field and corresponding data item
are cleared. Cursor is positioned at the first character
position of the field. Out of edit mode.

6 CLEAR2. The input field is displayed with the old
contents of the data item belonging to this field.

Qut of edit mode.

7 CLEARS3. Ciear field from current cursor position up
to the most right position.
Out of edit mode.

8 The same keys as for SPKTAB1 and SPKTAB2 as
mentioned from position 4 and up.
Out of edit mode.

F4.4
May 1979

CREDIT REFERENCE MinL AL

F.5, Error handting
F.5.1 Errors detected in the Screen Management module

The module checks:

~ the number of characters entered is less than specified in MINL.

~ an {/Q error during input.

— lilegal end-of-item key pressed, e.9. duplication but in the input field
the DUPL option is not specified.

~ Compulsory field{s) not filled when the ENTER key is pressed.

Before the error message is displayed on the last line on the screen, the acoustic
alarm sounds, The error messages are to be defined by the user in a table
SPFTBERR and an index for these messages is present in binary data item
SPBINW4,

When this index is zero no error message is displayed and reading is resumed in
the current input field, After the error message is displayed the cursor will be
placed at the current input field, input is done via the keyboard with using key
table SPKTAB1. Only the functions CLEAR1, CLEAR2, CANCEL1, CANCEL2,
and EDIT are relevant for this input, and clearing of the current input field is
done if the input length as present in SPBINW1 is not zero.

If SPBINW1 is containing zero no clearing of the current input field is done.
The error message is cleared and there will be continued according to keytable

SPKTAB1.
Contents of SPBINW4 Significance
(error message index)
0 No error message displayed.
1 Number of characters input is less than stated in the
MINL option.
2 Not used.
3 1/O-error {e.g. time out, throughput error etc.).
4 tlegal end-of-item key pressed. (e.g. duplication wantec
but option not specified in the input field).
5 Compulsory field not filled after pressing the ENTER
key.
6 This index value and up may be used by the routines

SPAPPL and checkroutines SPCHK1 - SPCHK7.

F.5.2, Errors detected outside the Screen Management module

When an error is detected outside the package, it is possible to enter the module in the error
handling section by calling the routine "SPERR” (PERF SPERR) or “SPERR2"

(PERF SPERR2).

The binary data item SPBINW4 shouin contain the error message index and SPBINW1 must
be unequal to zero if clearing is wanted, or zero if clearing -5 not wanted.

When the package is entered via SPEf T, error handling is the same as described in 5.1. By
pressing the CLEAR1, CLEARZ2 key or the CANCEL1, CANCEL2 key, the user may keep
control of the screen management module or jeave the module.

When the package is entered via SPERR2, only the current irput field can be modified. All
keys, except the EDIT key, are considered as ENTER keys, though a hardcopy is obtained
when the COPY key is presséd.

The routines SPCHKx and SPAPPL. are assumed to be part of the screen management
module, (See 31 and 3.3).

F.61

May 1979

CREDIT REFERENCE MANUAL

F.B. Control from package to application

Control is passed to the application when:

— power off is detected

— CANCEL1 key ispressed. [}

— CANCEL2 key is pressed. i

— ENTER key is pressed. 4

— An application defined, function key is pressed. {19}

This information is passed to the application in binary data item SPBINW2. Also the boolean
data-item SPCHANGE is set to indicate that at least one of the data items h2longing to the
input field is changed. It should Le reset outside the module,

In the application has to be decided what to do with the result in SPBINW2.

Contents of SPBINW2 Significance
0 Power off detected. Return to application, Screen
may be cleared.
1 CANCEL1 key pressed, Return to application. No

check on input performed. Current input field (FKI-
type} and corresponding data item is cleared.

2 CANCEL2 key pressed, Return to application. No
check on input performed. Current input field (FKI-
type) and corresponding data item is cleared.

3 ENTER key pressed. Return to application. No
empty compuisory field(s) are found.
4 and up Application defined function key is pressed. For

SPKTABI1, a key at position 19 and up.

For SPKTAB2, a key at position 19 and up.

For SPKTABS, a key at position 23 and up.

Key position 19 {SPKTAB1, SPKTAB2) or 23
{SPKTAB3), will be converted to index value 4 in
SPBINW2.

Position number 20, respectively 24 will be converted
to index value 5 etc.

F.6.1
May 1979

CREDIT REFERENCE MANUAL

F.7. Required dafinitions outside Screen Manageme::. module

Screen Management uses datz items which are defined in the ¢ -a division of the application.
In the module is referred to the data division by means of a DDUM SPDDIV directive. When
the user wants to use for his duta division an other name, then the name SPDDIV in the
module has to be updated. The equates for the key tables and the format lists describing the
error messages, are expected to be defined in a module SPLITT. The package uses the
instruction INCLUDE SPLITT, LIST. To find the names used in key tables SPKTAB1,
SPKTAB2 and SPKTABS, the moduie SCREEN must be translated. Error messages are
expected to be defined in the format table SPFTBERR. The format list of each error message
must start with the FSL directive.

Format list describing the screen fayout are defined in the application and do not have to be
included in module SPLITT.

Data sets to be defined in the data division and used by screen management.
Name Significance

SPDSPRT Data set with fixed buffer for hard copy device.
The buffer size must have at least the same size as the one used for the
display. (Buffers may be shared).

SPDSSCRN Data set with fixed bufter for the display.
Buffer size must be large enough to hold the maximum number of
characters (e.g. one line) inclusive the conitrol characters. (Buffers may
be shared).

SPDSDYKB Data set for the keyboard.

A farmat control 1/0O declaration {(FMTCTL) has to be defined for input dataset and output

dataset, which are used in the format control |/O instructions. {e.g. DYKI, DISPLAY).

Data items to be defined in the data division and used by screen management.

Name Significance

SPBINW1 A binary data item used to contain the number of characters transferred
during input or used as work item.

SPBINW2 A binary data item used to contain the {converted) end-of-item key.

SPBINW3 A binary data item used to contain the APPL-value.

SPBINW4 A binary data item used to contain the SCHK value {1 up to 7) or criur
code index.

SPCHANGE A boolean data item which is set by screen management to indicate that

a data item belongirig to a current input field is changed. Resetting has to
be done outside the module.

SPPROMPT A boolean data item used to indicate that the prompt texts should be
displayed. If set (TRUE), the entire format is displayed including the prompts.
If reset (FALSE), only the data items belonging to the input fields are
disptayed and not the prompts. SPPROMPT has to be set or reset outside
the module.

SPINPUT Astring data 1tem used as keyboard input buffer. The size must be large
enough to contain the maximum input length, inclusive the end-of-item key.

SPERCALL A booleai: data itern used by screen management to indicate whether th:
SPERR ar SPERR2 entry is used. This data item is set to one when SPERR2
ts called. .

SPSTRGW1 A string data itern {3> 2 characters} used by the error routine,

CREDIT REFERENCE MANUAL

F.8. Example of a coded format

The following picture is defined:

ACCNTNO input field 1
NAME ¢ dnput field 2 N
ADDRESS : inputfield3 3
CITYCODE inputfietdd C1 TY input field 5
field 1 : — numeric

— compulsary field

— exactly 10 digits long

— no end-of-item required

— formatting after input wanted

— CDV-10 check should be performed

field 2 : — alphanumeric
— 2 - 35 characters long

field 3 : - alphanumeric
— 2 - 30 characters long
— duplication from item ITEM10 in an other picture is allowed

field 4 : — numeric

— exactly 5 digits long

— no end-of-item key required

— formatting after input wanted

— after entering the field, the input is used as key in a file for corresponding
CITY.
When found, the CITY is displayed in the next field (field 5). {f not found
the cursor will be placed at the next fieid.

field 5 : — alphanumeric
— 2 - 20 characters long

The corresponding format can look as follows:

PICT1 FRMT
FSL
FCOPY = " ACCNTNO: "
FKi 11, ME, MINL=10, MAXL=10, NEOI, REWRT,
SCHK=1
FMEL IXXXXXXE-XXXX', ITEM?
FNL
FCOPY =" NAM E: "’
FKI 11, ALPHA, MINL=2, MAXL=35
FCOPY ITEM2
FNL
FCOPY =" ADDRESS:~
FKI 11, ALPHA, MINL=2, MAX =30, DUPL=ITEM10
FCOPY ITEM3
FNL
FCOPY =" ClITYCODE: "
F.8.1

May 1979,

CREDIT REFERENCE MANUAL

FKI 11, MINL=5, MAXL=5, NEO}, REWRT, APPL=1
FMEL XXXBXX', ITEM4
FCOPY =" ClTY:"~
FKI 23, ALPHA, MINL=2, MAXL=20
FCoPY ITEM5S
FMEND
F.82

July 1978

CREDIT REFERENCE MANUAL

APPENDIX G : STANDARD CREDIT SUBROUTINES

A number of CREDIT subroutines are held in the system library and may be cailed by a
CREDIT program.

G.01
May 1979

CREDIT REFERENCE MANUAL

STRINP i

Syntax:

Type:

Description

STRINP l

1ata-item-dentitier-1,
. data-ite m-identifier-4,
item-iden: ifier-5.

[statement-identifier|
data-item-identifier-2Z,
index-identifier-i, inde-

CREDIT subroutine cai

Before catling i
{format-list) has 1 b
Character field
items, befonging to F
list. {The MOVE conv
the input string-data-it:
defined by the user. Thes
X'FF.

The character fields are move

i picture description
TFiAT instruction.
e noved to data-

rent format

© sepiration characters
e frem X'00" to

position number (fi
Field sequence numberi
data-item. Two indexes h
consecutive copying is s
When an error is detecte

ng lield type in a binary-
ast field rurmber at which
joreed

returned.

FRIFEINP
sata-iten is not changed by the sub-

Data-item-identifier-2, 10 containing the input

r=-item s not changed by the sub-
routire

Data-item-identifier-3, is a binary-data-item which holds the start
position of the in string referenced by
data-iters-igentifier-2,
First churacter posiLion 15 zero,
This tem will point to the next field
to be mavec.

Data-item-identifier-4, is a string-data-ttem haolding the input

separa ter in the first position.
This da at changed by the sub-
routine.

Index-identifier-1, isabmary irtem comtaining the first
field n {(Mzy not be zero).
This data-iterm wiil point to the fast moved
field.

Index-identifier-2, is a binary-data-itam containing the last field
number. {(May not be zero).
This data item is not changed by the sub-
AT

Data-item-identifier-5, is a binary-data-item in which a code is
returned.

Q = QK ali fie:ds are moved as required.
3= Not OK, E ot format-list is reached
ar end ~F input string is reached.

G.0.2
July 1978

CREDIT REFERENCE MANUAL

STRINP Continued STRINP

Example: PERF STRINP, TYPE, INPSTR, STARTO, SEPCHAR,
INDX1, INDX2, RETCODE

G.0.3
July 1978

CREDIT REFERENCE MANUAL

STROUT

Syntax:

Type:
Description:

String Output STROUT

[statement-identifier] PERF v STROUT, data-item-identifier-1,
data-item-identifier-2, data-item-identifier-3, aata-item-identifier-4,
index-identifier-1, index-identifier-2, data-item-identifier-5.

CREDIT subroutine call

Before calling this subroutine, the requested picture description
{format-list) has to be made current with the ATTFMT instruction.
The contents of data-items belonging to FKI- and/or FINP fields in
the current format-list are moved in consecutive ord~r to an output
string-data-item. After moving a data-item contents to the output
string, a unit separation character wiii be inserted, before the next
data-item, in sequence, is moved.

Decimal-data-items will be converted to 1SO-7 representation and
leading blanks are skipped. An empty item results ir only a unit
separation character,

These separation characters may range from X'00" to X'FF’.

The start position in the output string is indicated with character
position number (First character position is zero).

Field sequence numbering is selected by storing fiela-type in a
binary-data-item.

Two indexes hold the first and last field number at which consecutive
copying to the output string is started and has to be stoppped.
When an errar is detected an errorcode is returned.

Data-item-identifier-1, is a binary-data-item holding the field-type
0=FK!
1=FINP
2 = FKI/FINP
This data-item is not changed by the sub-
routine.

Data-item-identifier-2, is a string-data-itam in which the contents
of the data-items of the format list, will be
packed.

Data-item-identifier-3, is a binary-data-item which holds the start

position of the output string referenced by

data-item-identifier-2.

First character position is zero.

This data-item will point to the next free

area.

Data-item-identifier-4, is a string-data-item hoiding the unit
separation character in the first position.
This data-item is not changed by the sub-
routine.

Index-identifier-1, is a binary-data-item containing the first
tield number. {May not be zero).

This data-item will point to the last maved field.

Index-identifier-2, is a binary-data-item containing the last field
number. (May not be zero).

This data-item is not changed by the subroutinz,

Data-item-identifier-5, is a binary-data-item in which a code is
returned.

0 = OK, all fields are moved as requested
3 = not OK, End of format list is reached or
end of output string is reached.

G.04
July 1978

CREDIT REFERENCE MANUAL

r l
STROUT Continued [STROUT

Exampte: PERF STROUT, TYPE, OUTSTR, STARTO, SEPCHAR,
INDX1, INDX2, RETCODE

G.05
July 1878

CREDIT REFERENCE MANUAL

APPENDIX H : OBJECT CODE FORMAT

When ADRMOD = 2 is specified in the OPTNS directive, the data-item, data-set, formal parameter, literal,
picture, keytable and format references are extended with one byte. The layout of the object code is then
different from the one-byte representation,

OBJECT CODE FORMAT
REFERENCE
TYPE ADEBMOD = 1 ADRMOD=2
Data-Item or [¢] 3 4 7 0 34 7 0 7
ARRAY b P Lol » L1
ARRAY used o] 3 4 7 0 34 7 0 7
in PERF/PLIST | 1
parameter list | b l i J ' 1] b | ! !
Boolean 0 3 4 7 0 314 7 0 7
data item -
N Lel o J[
b is the workblock index, ranging from X'1*' to X'F!
I s the data item index, ranging from X'0' to X'F '
{ ADRMOD=1) orfrom X'00' to X!'FF' { ADRMOD=2),
For boolean data items | is in the range from X'0' to X'F!' in
both addressing modes.
LITERAL
constant o] 7 0 34 7 0 y
| | | l 4 l 10-3 l [14—11
I is the literal index, ranging from X110 ' to X'FF!' (ADRMOD=1) or
from X'100' to X'FFF' (ADRMOD=2).

Ho1
May 1879

CREDIT REFERENCE MANUAL

GBJECT CODE FORMAT

REFERENCE ADRMOD = 1 ADRMOD= 2
TYPE .
Key table 0 7 & 4 P 7
Picture o 7 0 3os 0 7
l; f 1 ’ S 5 - “: 14411
{ is the picture index, rarging from X110 wx FF* 1 pORM D=1) or
from X'M00 ' to X FFF: 0 ADRMOD=2 1
Format list 0 7 G 34 70 7
R | P77 o e}
I is the format list index, ranging from X*10' te X'FF!?
{ ADRMOD=1) or from X'100 ' tc X'FFF' | ADRMOD=2).
Data set 01 2 3 4 7 0 34546 7 0 7
1 H |
L[] B [e [l lo-i)[o
| is the data set index, ranging from X*10°* 10 X''3F*
{ ADRMOD =1) orfrom X'10" to X'3FF!' (ADRMOD=2),
Bits 0/1 or 4/8 are used for transfer of the wait hit and echosexclusive access bit,
Formal 0 3 4 5 87 0 34 7 0 7
parameter
{ except for L 0 ! ! J § o i 0 1 l ! J
data sets }

is the position number of the formai parameter ranging from X'07 to X'7°
for both addressing modes

H.0.2
May 1979

CREDIT REFERENCE MANUAL

OBJECT CODE FORMAT

‘REFERENCE)
TYPE ADRMOD=1 ADRMOD=2

Format 01112314 56 7 3 4567 0 7
parameter
(data sets } 0 I r J] '] { 1

I is the position number of the formal parameter, ranging from X'0' to

X171 for both addressing modes.
Bits 0/1 or 4/5 are used for transfer of the wait and echo/zxclusive access bits.
Immediate 0 7
values
{ e.g. list v
length)

V is a value ranging from X'00' to X'FF' (ADRMOD=1)
Subroutine 0 7 0 7
in PERF

i I

Subroutine 0 ? 0 7
in CALL

L] |
Branch in 0 7 0 7
branch

instructions

[L1

1 is the index into the proper address table for performs, calls or branches.

(FMTITEM

Xc! X'ogoc!

HO.3
May 1979

