PHILIPS

PTS 6800 TERMINAL SYSTEM

User Library

CREDIT
Programmer’s Guide

Module M09

;;m?; Data

T Systems
7




Date : November 1977

Copyright : Philips Data Systems
Apeldoorn, The Netherlands

Code : 5122 993 39931



MANUAL STATUS SURVEY
Moduie M09 “CREDIT PROGRAMMER'S GUIDE”

This issue comprises following updates :

— U1.39931.1079 ( October 1979; complete revision for CREDIT Release 4.1)



CREDIT PROGRAMMER'S GUIDE

CONTENTS
Date
1. INTRODUCTION ... ... . i Oct.
Terminal Configuration . ....... ... .. . . it Oct.

2. CREDIT FEATURES
2.1 Maximize machine usage ............c..cviuiunennn Oct.
2.2 Wide rage of Input/Output commands
2.3 Programmed by terminal class, not workstation
2.4 Work blocks for storage and communication
2.5 Multi-task system .. ... ... Oct.
2.6 Specialized command set

3. CREDITPROGRAMSTRUCTURE ..................... Oct.

Oct.

Oct.

Oct.

Oct.

Oct

QOct.

Oct.

3.1 Directives ... ... QOct.

Oct.

3.1.1 Structure directives .. ... ... . . Oct

Oct.

3.1.1.1  Main program structure directives .......... Oct.

3.1.1.2  Subroutine structure directives .. ........... Oct.

3.1.2 Linkage directives ... .................... Oct.

3.1.3 Listing directives . ............ ... . ...... Oct.

3.1.4 Optionsdirective ....... ... ... .......... Oct.

Oct

3.1.5 Equate directive ... . ... . ... ... . . ... Oct.

3.1.6 Parameter directives .. ........ .. .. ....... Oct.

3.2 Data Division

3.2.1 Overview . ... ... ... Oct.

Oct

Oct.

3.22 Structure of the Data Division .. ... ....... Oct.

Oct

3.23 Terminal class declaration .. ... ... ... ...... Oct.

3.2.4 Startdirective ........... ... ... . ....... Oct.

Oct

3.25 Workblocks ... ... .. L Oct.

3.25.1  Terminal workblocks ... ..... .. . ... .. Oct.

Oct

3252 Commonworkblocks . ....... . .. ... .. Oct.

3.253 Userworkblocks ........ ... ... ... ... ..... Oct.
0.0.7

October 1979

1979
1979

1979

1979

1979
1979
1979
1979
1979
1979
1979
1979

1879
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

Page
1.0.1
1.0.2

2.1.1

25.1

N=O

3.2.2
3.23
3.24
3.25
3.26
3.2.7
3.2.8
3.29
3.2.10
3.2.11
3.2.12
3.2.13



CREDIT PROGRAMMER'S GUIDE

3.254
3.255

3.286
3.2.7
3.27.1
3.2.7.2

3.273

3.274

3.2.75
3276

3.28

3.28.1
3.2.8.2
3.28.3
3.284

4., INSTRUCTIONS

4.1 Arithmetic instructions

AN
DOV WN =

1.
1.
.
1.
1.
A

4.2 Logical instructions
4.3 String instructions

4.3.1
4.3.2

433

Dummy workblocks ..................
Swappable workblocks ................

Data Set directive (DSET) .............

Data items

CREDIT dataitems ..................

Binary data items (BIN} . ..............

Binary coded decimal data items (BCD)

String data items {STRG) ..............
AFrays .. e e

Literals-Overview

Literal constants . ....................
Keytables .........................

Picture literals
Format lists

The ADD instruction  .................

The SUBTRACT instruction

The DIVIDE instruction . ..............

The DIVIDE Rounded instruction
The MULTIPLY instruction

The COMPARE instruction ............

The MOVE instruction . ...............

0.02
October 1979

Date

Oct.
Oct.
Oct.
Oct.

Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.

Oct.
Oct.

Oct.
Oct.

Oct.
Oct.
Oct.

Oct.

Oct.
Qct.
Oct.
Oct.
Oct.
Oct.
Oct.

Oct.

Oct.
Oct.

Oct.
Oct.
Oct.
Oct.
Oct.

1979
1979
1979
1979

1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

1979
1979

1979
1979

1979
1979
1979

1979

1979
1979
1979
1979
1979
1979
1979

1979

1979
1979
1979
1979
1979
1979
1979
1979

Page

3.2.14
3.2.15
3.2.16
3.2.17

3.2.18
3.2.19
3.2.20
3.2.21
3.2.22
3.2.23
3.2.24
3.2.25
3.2.26
3.2.27
3.2.28

3.2.29
3.2.30

“LL oo

Ahh oA
whos o

4.1.4

» LN L
Zo

B opaAnsEA
N momalaaas



CREDIT PROGRAMMER'S GUIDE

Date Page
4.3.4 The DELETE instruction . ................ Oct. 1979 4.3.9
Oct. 1979 4.3.10
4.35 The MATCH instruction . .......... ....... Oct. 1979 4.3.11
4.4 Branch instructions ........ ... ... iiviiiiin . Oct. 1979 4.4.1
Oct. 1979 4.4.2
4.4.1 Unconditional branches . ................. Oct. 1979 443
Oct. 1979 444
442 Branch on condition mask . ............... Oct. 1979 445
4.4.3 Mnemonic branches  .............. .. ... Oct. 1979 4.46
4.4.3.1  Conditional branch after 1/0 instruction .. ... Oct. 1979 4.4.7
4.4.3.2 Conditiona! branch after COMPARE ... ... .. Oct. 1979 448
4.4.3.3 Conditional branch after arithmetic instruction Oct. 1979 449
444 Compare and branch instructions .. ......... Oct. 1979 4410
445 Test and branch instructions . ............. QOct. 1979 4.4.11
4.4.6 Indexed branch instructions .. ... ........ Oct. 1978 4.4.12
5. SUBROUTINE HANDLING
5.1 Introduction .. ... ... Oct. 1979 51.1
Oct. 1979 5.1.2
Oct. 1979 5.1.3

5.2 Parameter handling
5.2.1 Generalrules ... .. ... e Oct. 1979 5.2.1
Oct. 1979 5.2.2
Oct. 1979 5.2.3
6.2.2 Literats, keytables and format lists as parameters  Oct. 1979 5.2.4
Oct. 1979 5.2.5

6. INPUT AND QUTPUT

6.1 Introduction .. ... ... ... Oct. 1979 6.1.1
Oct. 1979 6.1.2

Oct. 1972 6.1.3

Oct. 1979 6.1.4

6.1.1 Extended status . .. ... ... Oct. 1879 6.1.5

6.2 1/0 instructions-overview . .............. ... ... Oct. 1979 6.2.1
Oct. 1979 6.2.2

6.2.1 Wait and No Wait .. ... .. BN Oct. 1979 6.2.3
6.2.2 Echoand NoEcho ... . ............... Oct. 1979 624
6.2.3 Keytables . ..... . ...... ... ... ... ..., Oct. 1979 6.2.5

6.3 Keyboard Input (Kl and NKt} ... .. ... ... .. ... ... Qct. 1979 6.3.1
Oct. 1979 6.3.2

6.4 Edit and Write instruction (EDWRTY ... .. ... ... Oct. 1979 6.4.1
6.5 Formarlists .. ............... PR QOct. 1978 6.5.1

Oct 1979 6.56.2
QOct 1879 6.5.3
Oct. 1979 6.5.4

0.0.3
October 1979



CREDIT PROGRAMMER'S GUIDE

6.6 Format1/OControl ...........ccoviiiiinannnn...
6.7 READ INStruction . ............oiiiuiineniinnn
6.8 WRITE instruction ..............c...iiniininnn

6.9 Data Set Control instructions (DSCn)
6.9.1 Data Set Control zero (DSCO}  .............
6.9.2 Data Set Control one {(DSC1} ..............
6.9.3 Data Set Control two {DSC2}) ..............

6.9.4 The use of data set instructions

6.9.4.1 Cassettedrivecontrol ....................
6.9.4.2 Display control

6.9.4.3  System operator panel and keyboard lamps
6.9.4.4 Teller terminal printer ... ................
6.9.4.5 Teller terminal printer (PTS6371) ..........

6.10 Data Management .. ................uuiiianin.nn

6.10.1 Assigning and closing files  ................
6.10.2  Sequential file organization and access

6.10.2.1 READ instruction ......................
6.10.2.2 WRITE instruction ......................
6.10.3 Random access

6.10.3.1 The Random READ instruction ............
6.10.3.2 The Random WRITE instruction ...........

6.10.4 Indexedaccess ................... ...
6.10.4.1 The Indexed ASSIGN instruction ...........

6.10.4.2 The Indexed READ instruction ............
6.10.4.3 The Indexed READ NEXT instruction .......
6.10.4.4 The Indexed REWRITE instruction .........
6.10.4.5 The Indexed INSERT instruction ...........
6.10.4.6 Deletion of indexed records ...............

7. TASK SCHEDULING AND ACTIVATION

7.1 Dispatcherqueue . ..... .. ... . .

7.2 Morethanonestartpoint .......... ... . ...........

8. INTERTASK COMMUNICATION
8.1 Introduction ... ... ... ...

8.1.1 Unaddressed READ and WRITE  ...........
8.1.2 Addressed READ and WRITE
8.1.3 Examples of Intertask Communication

0.0.4
October 1979

Date

Oct.

Oct.

Oct.
Oct.
Oct.
Oct.

Oct.

Oct.
Oct.
Oct.

Oct.
Oct.
Oct.
Oct.

Oct.
Oct.

Oct.

Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.

Oct.
Oct.
Oct.
Oct.

1979
1979
1979

1979
1979
1979
1979

1979

1979
1979
1979

1979
1979
1979
1979

1979
1979

1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

1979
1979

1979
1979

1979
1979
1979

Page

6.6.1
6.7.1
6.8.1

6.9.1
6.9.2
6.9.3
6.9.4

6.9.5

St~

PO NDPPD OO
T S g . M
coocoooobooD

2

N



CREDIT PROGRAMMER'S GUIDE

9.

SCREEN MANAGEMENT

9.1
9.2

Introduction . ....................
Reguirements of Screen Management ..
9.2.1 Dataltems ..............
9.2.2 Data Sets

9.23 Entry Points .............
9.2.4 Key tables ..............
925 Key table entries

9.25.1 Editor functions ..........
9.25.2 Clear functions ...........
9.2563 Cancel functions

9.2.6.4 Tabulation functions ......
9.26.5 Miscellaneous functions ....
926 Formattable ............
9.2.7 Tabulation validation routine
928 Value check routines ......

Printouts ...............

10. DATA COMMUNCATION

10.1
10.2
10.3
10.4
10.5

Introduction .......... ... .. .. ...

Time-out

Point-to-point . ......... ..., ......

Multipoint

DC task

PROGRAM DEVELOPMENT AND TESTING

1.1
1.2
1.3

1.4
11.5
116
11.7

1.8

Introduction .....................
CREDIT Translator
CREDIT Linker

Flowchart

11.31

Linkage Editor

CREDIT Interpreter

CREDIT Configurator

CREDIT Debugger ................

Line Editor and Text Editor ... ...

0.0.5
October 1979

Date

Oct.

Qct.
Oct.

Oct.
Oct.
Oct.

Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.
Oct.

1979

1979
1979

1979
1979
1979

1979
1979

1979
1979
1979
1979
1979
1972
1979
1979
1979
1979
1979
1979

1979

1979

1979

1979

1979
1979

1979
1979
1879

1979

Page

9.1.1
9.21

oo
N
oW

9.2.6
9.2.7

9.28

9.29

9.2.10
9.2.11
9.2.12
9.2.13
9.2.14
9.2.15
9.2.16
9.2.17
9.2.18
9.2.19

10.1.1

10.3.1

10.5.1

1.1

PR
NN
XY

[RP

1.7
11.7.2
11.7.3

11.8.1



CREDIT PROGRAMMER'S GUIDE

Date
11.9 CREDIT Translator Listings ..................... Oct
Oct.
Printouts ......... ... .. i Oct.
Oct.
Oct.
Oct.
Oct.
11.10 CREDIT Linker listings ....... ... ... ouu.o.. Oct.
11.10.1  Load map
Printouts ........ ... ... i, Oct.
Oct,
11,102 Calltable ... ... .. ... .. ... ... ..., Oct.
Printout ........ ... ... .. . oo Oct.
11.10.3 Longbranchtable .................... Oct.
Printout ....... ... .. .. . ..., Oct.
11.10.4 Performtable ........................ Oct.
Printout ........ ... ... .. ... ... ... Oct.
11.10.5 Literalpool ........... . ... . ... .. ... Oct.
Printout ........... ... .. . ... ... Oct.
11,106 Picturepool ......... ... ....... ... 0.0 Oct.
Printout ........ ... . .., Oct.
11.10.7 Keytablepool ....................... Oct.
Printout ... ... ... .. .. .., Oct.
11.10.8 Formatpool ........... ... .. ........ Oct.
Printout ......... ... .. . Oct
11.10.9 Segmentmap . ...........c.c.coniinii.... Oct.
Printout .......... ... .. ... .. .., Oct.
11.10.10 Linker statistics per segment ............ QOct.
11.10.11 Address cross reference listing
11.11 Linkage Editor listings .......... .. ............. Oct.
Printouts ... ... ... .. . ... . Oct.
Oct
11.12 SYSLOD (Configurationdata) ................... Oct.

0.0.6
October 1979

1979
1979
1979
1979
1979
1979
1979

1979

1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979

1979
1979
1979

1979

Page

11.9.1
11.9.2
1193
11.9.4
1195
11.9.6
11.9.7

11,

11.
1.
11.
11.
11.
0.7

1

11.
11.
11.
11,
11.
11,
11.
11.
1.
1.
.10.18

"

11.
1.

11.
11.
.

11.

10.1

10.2
10.3
10.4
10.5
10.6

10.8

10.9

10.10
10.11
10.12
10.13
10.14
10.16
10.16
10.17

10.19
10.20

111
11.2
1.3

121



CREDIT PROGRAMMERS GUIDE

2. CREDIT FEATURES

CREDIT is a product area designed real time computer language, it has been
designed specifically for programming real time applications on the PTS.
Product area designed languages such as CREDIT have several advantages over
general pupose languages such as FORTRAN. Some of the more important features
of CREDIT are given below.

2.1 Maximize machine useage

CREDIT is an interpretive language, it does not hold a 'core image" of
the application for each user, just a pointer to the next statement to
be obeyed and a set of variables for each user.

N
N

Wide range of Input/Output commands

An important consideration in the design and writing of any

application must be that the final item is "user friendly", otherwise
it may never be accepted by the users, be they bank clerks or managers.
To help the programmer produce a "user friendly" application, CREDIT
offers a number of data set control, input and output commands and
routines to handle such actions as the printing of pass books, the
displaying of signatures on a plaswa display, or option lists on a
visual display unit.

[N
w

Programmed by terminal class, not work station

CREDIT allows the programmer to define different classes of terminals
to handle different functions within the application. For example

one terminal class could be for the bank tellers, one for the foreign
exchange desk and one further terminal class for the manager. A group
of similarly configured work positions, handling the same types of
transaction, is known as a terminal class. Because all work positions
in a teruinal class handle the same type of transaction the same
program code is used for each of the work stations. There can be up
to sixteen terminal classes in one application.

2.4 Work blocks for storage and communication

Within the CREDIT terminal class it is possible to have a range of
different data structures. Data items can be associated with a work
station to record, for, example cash handled at that point; or they
could be associated with a system user in which case the user would
have to enter a recognition code; or they could be common to all
users, holding the current date and time for example.

2,1.1
October 1979



~
W

(]

CREDIT PROGRAMMERS GUIDE

Multi-task system

Each work station within a terminal class is regarded as a separate
task; the work station may be a keyboard and display with an operator
entering information, or it may be controlling data communication with
a remote processor. Every time data is received from a work station
the Terminal Operating System Software (TOSS) Monitor activates the
appropriate task. Hence, several tasks will sgeemingly be active at
the same point in time, however, it is only possible for the computer
to carry out one activity at one point in time and this problem is
overcome by the TOSS Monitor, which schedules tasks such that all
appear to be run simultaneously.

Specialised command set

The CREDIT command set is specifically designed for handling real time
applications; special commands exist to control the printing of bank
pass books etc., handling data communication with a remote processor
or controlling the layouts on a visual display screen.

2.5.1
October 1979



CREDIT PROGRAMMERS GUIDE

3. CREDIT PROGRAM STRUCTURE

A CREDIT program consists of a number of statements. A statement may be a
directive; declaration or instruction. Directives describe the module frame-
work to the CREDIT translator; the translator is a special program which
converts the application program into a form the machine can use, this

output being called ‘object code”’. Declarations specify the type, length and
use of all the variables, constants and tables used in the application aud must
always be located in the main module. Instructions direct the imput,
processing and output of information. They specify the actions to be carried
out by the computer, and direct the sequence of events.

3,0.1
Octaober 1379



CREDIT PROGRAMMER'S GUIDE

SOURCE

TRANSLATOR

INTERMEDIATE
OBJECT
CODE

3.0.2
October 1979



CREDIT PROGRAMMER'S GUIDE

NOISIAIQ VAVQ 1vd0TD ¥V HLIM 3HN1ONY 1S HY1NAOW

I

Alad
NIV NNaa
3009 1N3al

Aldd
NIYW Wnaag
avad  iIN3al

Aldd
NIV WNAag
01240 IN3Q|

NIVIA
N3d0d40

3

Aad
wnaa
AN3Q

anN3

Aldd
NIV Wnaa
OT0SAS 1N3AI

ana

Alad
NIVA WN3a
NdOSAS LN3QI

N\

NIV LN3al

AlQd
Alaa

3.0.3
October 1979



CREDIT PROGRAMMERS GUIDE

The program is written as one or more modules; with the PTS system, as with
many others, it is advantageous to have one module performing one specific
activity, as this leads to more efficient design, writing, testing and
subsequent maintenance of the application.

3.0.4
October 1979



CREDIT PROGRAMMERS GUIDE

edua T T T og T os oy T ot N oz ofalw’ | o6
T T T T TTT YT T T T T 7T T En ekt YT T T TTT
T 7 171 T T T 17 17 17 T T - S S T T T T T T T
LA I B S S B 2 M e A AN S M S B B B B N S TT S 2 el Shvie et s S S S S S S0 S S0 mt S S T
Ty T T LA IR (N S S A [ N A S AR SR B B TS T T T T T 1T T
A B A i e e A oy a T
B SRARER I S e e T r ™ T —r——
T 1T T T T T T LA Rt S S D R R S TToroTT T - T T T T T T T v or
T T T T U f 1 1TTTTT oy T T T T T ¥ T T T 1
R R e T it B et PR S — e s an e et S
T T T T TN Y T T 7YY ;T T T o . . SRR Sl e Sk Sul R S S S s S ShE i
T T T TTTTT T T e s I e B e LA et s i S el Sl g

P i
T T T T LN R TG I T © 450 0 6 gN LN MO QU ST T L TuHITL T T
5T N AL AR L ST EME ST ON 49° |5 0¥ T0 3 ey > 1T a5 g |

T T T T - +
|
T T T T TR TN Ty T v e S T D L e o e e -
{
A T T T T T T T T T P Ty vt e - . i R e I S Skt ¢
I

3.0.5

LN S A = I s oy JS U = 51 % e Yo S Y

T N B T pacy 3o . . - - T R e et
T L S o mt nt S e S 2 S e s e s S BRI fSTHL ST QY T E e s T
e e e e R S T T <4.4?111,‘4,J|1,*A|‘|11;JJ{J

FTTTTT TN T T T TUSINGNTOY 0d ST I5WdS STHL T 8M=ndqeogssd | 13sq

October 1979

1

L2 A E S S St B S s S Bt S M s thlle S S Al ToTT T .ﬂJJ\.il,‘Jjjé\vlg “

ST YT T T T T T TTT T T 51 TT T T T T OYTYTTTTTT T 7T YT T T d, AE“MF .“

. i

B e e S S e e LA A S S Sk S St St o S s St s e B e SR M B LRI ol T T i R

Ty T ,RSHG T

TTTTT I T T TITTT T TTT YT R T T T T T YT 2H¢ anﬂ‘hg “

:

Tmgt 1T T ¢ ¥ T 1T T T T 1+ 1T "~ 7 1 > T 17 T T T T LA B N -
euod 09 os oy of o7 ousiivt o6

SINIWWOD GNVH3dO NOUVH3JdO




CREDIT PROGRAMMERS GUIDE

A CREDIT source program can be read into the PTS system using one of the
following source input devices; cassettes or console typewriter for free format
input, and cards for fixed format input. Regardless of the input device used,
the source program must have follow the rules described below and shown on the

attached coding sheet of examples.

A source line input to the translator is treated as an 80 character card image;
if a free format input device is used then each record can only contain one
source statement. Records longer then eighty characters will be truncated,
while any shorter will be filled with spaces to pad them to eighty characters.

3.0.6
October 1979



CRED1T PROGRAMMERS GUIDE

T —r——r T T — T T T T T T T
ZLIL 0L o0g 05 ov oF [+14 w:mwﬁ aels 9 L
i
s A o e S I SR SR n e e s B B e e SR St st B S e St S B S i s ms S AL S A s B S G AR S Sl S
|
T L E B St S B S e [ S B S T - d Fns Sl S e At A A S A S B SN T T T ooy
)
. '
L e e v St S S A A S A B B e B g T SRR A N - T 1 ooy T
i
L R S S S s s SN B S s B S S B T 2t e S e e e S S e T T T ! LA
‘
I IH
I '
T———T LIS S S o T =T
!
I8 L0 S Sl R S e e B B s s e A i B S ST R . R A : A S SE A
[ !
ST T T T T e B SRRl s et UL S -
i
I S e i e wt S s S ST e AR R - - e s t
i
T T rtTTTTY T O o s ot . - . - - . [ .

| i '
T T T T T T s g€ 0 1a3 M A a0y CannCamoal fun s TELE U 3L\
Y\ NS T T T He LT amg it ama L TNy T oy o Croa Tuo € iy vy T as8\ 8L\ 8V LHds

S -
L I e I E . . . . - '
B S Stk e B E )

T ANTY La3WHeD ¥ ST SIHL &
el S T B s e AL S L R ' - A i -

CrTTT ot T ITTY T . P . . - R e ¢ 1O & WH O.Mn///

it Sl Sl the e S mb o i San SnbSH S SR SR BN

ST vy oy e L e IHHOY 404 ST FoydS STH .r/muﬂusmd«oﬂu‘uufﬂnn./_mx‘wa
i S e S e e e S e T A N A vt =3 oo . . o ( . H
T T T Y T T T T T TR i e i . - A ST . A—MF/QE/
TEHOTUATUL YT v T TTT vy ro . FENIREEE SRS Sth S <41+ m\!\ﬁA o4 Vt_/.—h.xmlr/
T T TR v S e vy s o : . St j_,l B L aTaay
CrTTTIT U TTTTITC T U RTTTTIOTT s o or T s c o S R T ﬂlll.l;,rr. - T zuﬂﬂj

_ - I LN
gdual T T T T Ted T T T T T g or e T o asiler’ ,o;'m K 1
SINIWWOD e ONwH30 | | Nouwisdo| | ! e

0.7
October 1979



CREDIT PROGRAMMERS GUIDE

The source line is divided into four fields or zones:- label field, operation
field, operand field and comment field. The label, operation and openand field
are separated by a tabulation character (\) or at least one space. The label
field begins 'in column one. The operand field can extend to column 71. If the
operation and operand fields are blank to column 30 the rest of the record is
treated as a comment. Columns 73 through 80 are ignored by the tramslator. If
an asterisk is present im column one then the entire record will be treated as
a comment. Continuation of a line is denoted by a ‘C’ in column 72 if card
input is being used, or in the case of free format input by (\\C) two tab
symbols followed by “C”, in the continuation lines the label and operation
field must be left blank.

3.0.8
October 1979



CREDIT PROGRAMMERS GUIDE

3.1 DIRECTIVES
Directives enable the application programmer to pass information to the CREDIT

translator. The directives do not occupy any ‘core” at run time. There are
six categories of directives:-

. Structure
. Linkage

. Listing

. Equate
. Parameter
. Options

3.1.1
October 1979



CREDIT PROGRAMMER'S GUIDE

IDENT
DDIV
DATA DIVISION
PDIV
PROCEDURE DIVISION
MODULE
PROC
SUBROUTINE
PEND
END

FRAMEWORK OF A CREDIT MODULE (WITH DATA DIVISION)}

3.1.2
October 1979



CREDIT PROGRAMMERS GUIDE

3.1.1 Structure directives

The framework of a CREDIT module 1is formed from the directives IDENT, DDIV,
PDIV, PROC, PEND, INCLUDE and END. An example of their use is given below.

IDENT Must be the first statement

DDIV(or DDUM) Start of the data division
The data division contains declarations which define the type, length and value
of data items used as operands in the program, together with declarations which
define the interface between the applications program and the PTS System.

PDIV Start of the procedure division
The procedure division contains the instructions which direct the input,
processing and output of data. It also contains some declarations which must

be used in conjunction with certain instructions.

PROC Start of subroutine instructions

PEND End of subroutine instructions
Several subroutines may exist in one module.

INCLUDE The contents of a source module are included
in this module at this point

END Must be the last statement

3.1.3
October 1979



CREDIT PROGRAMMER'S GUIDE

IDENT
DDUM DUMMY DATA DIVISION
PDIV
PROCEDURE DIVISION
MODULE
PROC
SUBROUTINE
PEND
END

FRAMEWORK OF A CREDIT MODULE (WITH DUMMY DATA DIVISION)

3.14
October 1979



CREDIT PROGRAMMERS GUIDE

3.1.1.1 Main program structure directives

The IDENT and END directives define the start and end of a module, and must be
the first and last statements respectively of a module. The DDIV directive
defines the start of the data division, and must be the second statement of the
module containing the data division. The dummy data division directive (DDUM)
is used in all other modules in place of the DDIV directive, and it refers to
the IDENT of the module containing the required DDIV. The PDIV directive
defines the start of the procedure division.

3.1.1.2 Subroutine structure directives

The PROC and PEND directives define the start and end of each subroutine. The
IDENT, DDIV (or DDUM), PDIV and END directives can only appear once in each
module; the PROC and PEND directives must be repeated for each subroutine
present. However one subroutipne can not be physically embedded within another,
that is two or more PROC directives can not occur without an intervening PEND.

Example:
VALID INVALID

| | | |
| s1 PROC | | s1 PROC |
| | ! |
| | { |
| | | |
| PEND i | |
i . | | s2 PROC |
| s2 PROC | ! |
| | ! |
| | i |
| | | |
| PEND | i PEND |
| | | |
| | | |
| | | PEND |
| | I

The table below gives the structure directives and the page on which they are
described in MO4.

DIRECTIVE | PAGE IN HO4

i
JE U | R
DD IV |
DDUM i
END |
IDENT |
INCLUDE |
PDLV |
PEND i
PROC |

|

e ]

3.1.5
October 1979



CREDIT PROGRAMMER'S GUIDE

S3IONIHIJAH TVNHILXI/AYLNT

ang3
r=——WEnSs 3434
]
H an3d
! 134
1
] 204d
]
t
|
]
1}
]
]
m
1 no3
F-wans 1X3
| 88S AHINI
I Alad
I NIvW  wnad
! NMg  IN3al
:
]
]
]
13
I

a4as

an3g

anN3d
134

J04d

r—- a4gs 443d

1
! nos3
“ no3
g8s  1x3
A

g

WdNS AYINI
/ Alad

/ Alaa
/ NIVW  LN3QI

wans
]

3.1.6
October 1979




CREDIT PROGRAMMERS GUIDE

3.1.2 Linkage directives
Linkage to external modules

CREDIT modules which have to be linked into an application program may contain
references to statements or subroutines in other modules. 1In order to achieve
the correct linkages, entry points in this module and external references to
other modules must be specified. The ENTRY and EXT directives are used for
this purpose. They must be written in the procedure division.

Thus, in order for the references to be correctly handled, a module referring
to a statement-identifier in ancther module must contain the EXT directive to
specify that the reference is not in this module, and this must be paired with
an ENTRY directive in the other module.

Start points

There must be at least one START directive for the entire application. When
the system is started (i.e. the TOSS Monitor is loaded and the application
program begins execution) tasks are activated as specified in the configuration
data to be studied later. The tasks are activated at the start points
specified in the START directives of the relevent terminal classes. The START
directive(s) must be written in the data division and must be specified as
entry points (ENTRY) in the procedure division (PDIV).

1f more than one START directive appears in a terminal class, only the first
start point will be activated when the system is started; the other points will
be held pending and will be activated only after the first task has executed an
EXIT instruction.

Error control with memory management, swappable work blocks or overlay

If memory management is being used and a REENTER point has been defined for
handling disk errors, then this must also be declared as an ENTRY point.

The table below gives the linkage directives and the pages on which they are
described in MO4.

DIRECTIVE | PAGE IN MO&4

|
[
|

|

e |

ENTRY | 1.2.7 |

| EXT | 1.2.9 |

| REENTER | 1.2.22 |

|_START [ 1.2.23 ]
3.1.7

October 1979



CREDIT PROGRAMMERS GUIDE

3.1.3 Listing directives

These directives are used to control the printing of the application listing at
translation time. The available directives are:-

. LIST
. NLIST
. EJECT

EJECT when encountered issues a form feed to the printer, NLIST stops the
production of the program listing, LIST causes the listing to recommence.

The table below gives the listing directives and the pages on which they are
described in MO4.

| DIRECTIVE | PAGE IN MO4 |

| i |

| LIST | 1.2.7 i

| NLIST | 1.2.9 |

| EJECT | 1.2.22 |

I l_ |
3.1.8

October 1979



CREDIT PROGRAMMERS GUIDE

3.1.4 Options directive

This directive, if required, must be located immediately after the DDIV or DDUM
directive and controls the following items:-

. Lines per page for translator listings

. One or two byte addressing for data items

. One or two byte addressing for literal comstants
. One or two byte addressing for keytables

. One or two byte addressing for pictures

. One or two byte addressing for format lists

. One or two byte addressing data sets

- Number of entries in work blocks

A one byte addressing system allows only 16 entries per work block whereas a
two byte system would permit up to 255 entries. With one byte addressing up to
255 literal constants, keytables, pictures and format lists are allowed; if two
byte addressing were used then there could be up to 32767.

The lines directive is overruled if the number of lines per pagz is given wheun
entering the program developument sytem (DOS-PTS).

The various options can be written in any order.
The format of this directive isi-

OPTNS {LINES=decimal number, }{LITADR=decimal number,}{ADRMOD=decimal
number}
The LITADR option is followed by a four digit decimal number coamposed of one’s
or two’s, a one representing oune byte addressing a two, two byte addressing.
The first digit of the number is for literal constants, the second keytables,
the third pictures and the fouth format lists.

The address mode option (ADRMOD) is used to specify one or two byte addressing
for data items, literal constants, data sets, keytables, format lists and
pictures; the valid forms of ADRMOD are shown below:-

ADRMOD=1 one byte addressing is to be used (default).

ADRMOD=2 two byte addressing is to be used; LITADR will be set by
the translator to 2222,

Example 1
OPTNS LINES=72,LITADR=2212
In example 1 there will be seventy two lines per page on the program listings,

and two byte addressing will be used for literal constants, keytables and
format lists; but a one byte addressing systom is to be used for pictures.

3e1.9
Qctober 1979



CREDIT PROGRAMMERS GUIDE

Example 2

OPTNS ADRMOD=2

In example 2 two byte addressing is to be used, permitting more workblock
entries (data items), two byte addressing will also be used for the literals.
Literals, keytables, format lists, pictures and data sets are described in
sections 3.2.8, 6.2.3, 6.5 and 3.2.6 respectively.

| _DIRECTIVE | PAGE I8 MO4 |
| "OPTNS | 1204 ]

3.1.10
October 19739



3.1.5 Equate directive

CREDIT PROGRAMMERS GUIDE

The EQU directive is used to set up constants with mnemonic names; the
prorammer uses the name when writing the instructions, and when the program is
translated the constant is substituted for the name. The EQU directives can be
located anywhere in the procedure division after the ENTRY and EXT directives.
The maximum value that can be held in an equate directive is 255.

The directive format is:-

nnemonic-name EQU value-expression

eg
BSP  EQU
NDBS EQU
CHA  EQU
NGP  EQU

X09”
BSP

X407
CHA+L

BSP to be replaced ty Hex. value 9
NDBS to be replaced by contents of BSP
CHA to be replaced ty Hex. value 40
NGP to be replaced ty Hex. value 41

| DIRECTIVE | PAGE IN MD4 |

|_1.2.8 |

3.1.11
October 1979



CREDIT PROGRAMMERS GUIDE

3.1.6 Parameter directives
These are special directives for use when passing format lists, keytables,
literals and parameters to subroutines. There are four directives used within
the subroutines:-

. PFRMT for format lists

. PLIT for literals

. PKTAB for keytables.

. PLIST for subroutine parameters

They are required when ADRMOD is set to two, or if the formal parumeter is not
preceeded by a $ sign, and are located after the directive PROC, see below:-—

SUBF PROC FORM1 (ADRMOD=2)
<opt> FORML

SUBF PROC SFORM1 (ADRMOD=1)

SUBF PROC FORM1 (ADRMOD=1)
<opt> FORM1

<opt> is either PFRMT, PLIT or PKTAB.
PLIST Actual parameter list

This is used to pass parameters to subroutines that have been act:vated using
the indexed perform (PERFIL) instruction.

The handling of subroutines, and the syntax of parameter passing :.s described
in detail ian sectiomn 5.

| _DIRECTIVE

| _PAGE IN M04 |

| PFRMT | 1.2.18 |

| PLIT [ 1.2.20 |

| PKTAB | 1.2.19 |

|_PLIST _ }_1.4.210 |
3.1.12

October 1979



3.2 Data division

3.2.1 Overview

CREDIT PROGRAMMERS GUIDE

The DDIV contains declarations which define the type, length anil value of data
items used by the program, together with those declarations whi:h define the
interface between the application and TOSS Monitor. The basic layout is shown
below, and will be described in detail later.

DDIV
TERM
TWB
DSKB1 DSET

START
START
Work block declarations are located
in this section

Directive for start of data division

T0 Terminal class identifier

TB1 Terminal work block TB1

FC=20,DEV=KB Definition for keyboard imput

S1 First ='- -t point for this terminal class
S2 Next -' @ point for this terminal class

PDIV Start of procedure division
ENTRY Sl Entry point Sl is in this module
ENTRY S2 Entry point S2 is also in this module
EXT SCREEN Externally held subroutiane

KEY EQU D56

Explanation of the above example

i

ii

iii TWB
iv DSKB1

DDIV - this indicates the start of the data division.

TERM

TB1 -

DSET

START -

TO ~ the terminal class identifier; TO is the name of
the terminal class, as described in section 3.2.3.

TB1l is to be used as a terminal work block for this
terminal class. A description of work blocks is given
in section 3.2.5.

FC=20,DEV=KB - assigns a dataset device to be used by
this terminal class, which will be referred to in the
progran as DSKBl. It has a file code of 20 and is a
keyboard device. The DSET command is described in
detail in section 3.2.6.

This gives the program entry point wtere execution

will commence. The directive is described in section
3.2.4.

3.2.1
October 1979



CREDIT PROGRAMMER'S GUIDE

DSKB
DSJT
DSvO

cB1
RDLA
ADDLA
INDX
DATE
WKSTR

CB2
TB1

TB2

DATA DIVISION (1)

IDENT
DDV
TERM
cws
cws
TWB
TWB
START
DSET
DSET
DSET
BLK
BIN
BIN
BIN
BCD
STRG
BLK
BLK
BLK

PDIV

MAIN

T0

cB1

c82

TB1

TB2

GO

FC=20,DEV=KB
FC=34,DEV=JT BUFL=80
FC=30,DEV=TP BUFL=80

X*0080°
X‘0001°

10D°0
5

322

October 1979



vi TB1
iii
viii

ix

b KEY

CREDIT PROGRAMMERS GUIDE

BLK - this is the start of the declarations which fomm work
block TBl, work block definitions must be located at
the end of the terminal class definitions

PDIV - start of the procedure divisiaon

ENTRY S1 ~ the entry point S1 will be located in this module

EXT SCREEN ~ this is reference to an externally hell routine

EQU D’56” - a constant is set up with the decimal value
56« The maximum value for a constant is 255.

3.2.3
October 1979



CREDIT PROGRAMMERS GUIDE

3.2.2 Structure of the data division

The data division is divided into two sections, the first contains the terninal
class definitions and the second defines the data items that make up the work
blocks. An example of a data division is given below, with two terminal
classes; note that the terminal classes must all be defined before the work
blocks.

DDIV
TERM TO Terminal class identifier
- TWB TB1 Terminal work block TBl
CWB CX1 Common work block
CWB CX2 Common work block
DSKB1 DSET FC=20,DEV=KB Definition for keyboard imput
DSDY1 DSET FC=50,DEV=DY,BUFL=120 vdu display
START s1 Start point for this terminal class
TERM 50 Terminal class identifier
TWB TB1 Terminal work block TBl
CWB CX1 Common work block
DSKB1 DSET FC=20,DEV=K3 Definition for keyboard input
DSPRT DSET FC=40,DEV=LP,BUFL=240 line printer
START s2 Start point for this terminal class
STACK 128 Stack size for this class

in this section

PDIV

3.2.4
October 1979



CREDIT PROGRAMMER'S GUIDE

10 T1 T2 T3
SO
* * * *
#
# *[MAIN
# *| INPUT
# *[PROCESS * MODULES (PROGRAMS)
USED BY TERMINAL CLASS T
# +*[ouTpPUT # MODULES {(PROGRAMS)
USED BY TERMINAL CLASS S0
*[CURRENT
ACCOUNT
+[SAVINGS TERM 70
ACCOUNT W8  TB1
TWB  TB2
# [CURRENCY TWB  TB3
EXCHANGE cwB  CB1
*[OPEN
ACCOUNT
*[CLOSE TERM SO
ACCOUNT TWB T84
TWB  TB5
# [CHEQUES TWB  TB6
CWB  CB1

TERMINAL CLASS

325
October 1979



CREDIT PROGRAMMERS GUIDE

3.2.3 Terminal class declaration

The TERM declaration identifies the terminal class with a unique two character
jdentifier. This declaration is followed by the relevent work blccks, start
points, data set identifiers etc. for the terminal class. A terminal class is
defined as a collection of work stations performing similar functions.

Each terminal class has its own specified work blocks, input/output devices,
entry and reentry points stack; a terminal class may consist of several work
stations. Each work station or task forming the terminal class will have its
own copy of the above mentioned items. For example terminal class SO has a
specified stack size of 128 bytes, so each task forming that class will have
its own stack 128 bytes in size. The STACK declaration is described in MO4.

Each work station in a terminal class is identified with a “task identifier’,
which is specified at system configuration time. The first task in terminal
class TO will have a task identifier of TO, the second will have a task
identifier of Tl, the nth task wil have an identifier of Tn-l.

In the example on page 3.2.6 the task TO has been configured with four copies,
the tasks forming this class have the identifiers TO, T1l, T2 and T3.

DECLARATION | PACE IN MO4
| STACK | 1.3.22 |

1 TERM__t 1.2.26 |

3.2.6
October 1979



CREDIT PROGRAMMERS GUIDE

3.2.4 Start directive

The start directive gives the program entry point where program execution will
commence for this task. There must be at least one start point in a proagram.

If a terminal class contains multiple start points the first will be usad at
the start, subsequent start points only being used when an EXIT is encountered.
In the example shown in section 3.2.2, execution will commence at S1 but when
an EXIT is encountered execution wil pass to entry point S$2.

If a terminal class does not contain a START directive then it can only be
invoked by another terminal class with the activate (ACTV) instruction

T DECLARATION | PAGE IN MO4 |
]l _ START _ } _1.2.23 ]

3.2.7
October 1379



CREDIT PROGRAMMER'S GUIDE

SH3079 XHOom

gms
[91 tas
ams
[5] 1as
ams
Lan amn
[2] 1as 199 amo
ams 181 amL
0L WY3L
[£] ras
ams
[z] 188
ams
[T] tas amo
199
aml amL aML
» 181 o [R:18 181
¥ NOILISOd £ NOILLISOd Z NOILISOd
suom [ NHOM NHOM
£1 A 1L

L NOILISOd
FHom

oL

Lan

Lan

Lan

L8n

tan

Lan

328
October 1979




CREDIT PROGRAMMERS GUIDE

3.2.5 Workblocks

These are used by the programmer to provide areas of store whica can be used
for input/output buffers and work locations. There are five types of work
block:

. Terminal workblocks (TWB)
. Common workblocks (CWB)

. User workblocks (UWB)

. Dummy workblocks (DWB)

. Swappable workblocks (SWB)

There can be a maximum of fifteen work blocks in a terminal class and 16
non~boolean entries in a block, though this can be increased to 256 non-boolean
entries in a block if the option ADRMOD=2 is specified in OPTNS directive, as
described in section 3.1.4. Each workblock can contain up to sixteen boolean
items, as one word is reserved for these data items per block. Yon-boolean
items occupy one entry in the workblock, except arrays which taxe up two
entries in a work block, unless they are the last item in a work block when
they occupy only one entry.

Valid 16 entries Invalid 17 entries
TB1 BLK TB2 BLK
I1 BOOL Il BOOL
NBIN1 BIN NBIN1 BIN
NBIN2 BIN NBINZ BIN
ABIN3 BINI (4) ABIN3 BINI 4)
ABCD4  BCD D°0* TELNO  STRGI (40, 3),10C
ABCDS BCDIL (12),50°0° ABCDS5 BCDIL (12),50°0°
TBCDX  BCDI (8),120°0" TBCDX  BCDI (8),120°0°
ACCX BCDI (99),80°0° ACCX BCDIL (99),80°0°
BRANCH STRGI {40),10C BRANCH STRGI (40),10C
MNGR STRGI (40,2),25C MNGR STRGIL (40,2),25C
TELNO STRGI (40,3),10C ABCD4 BCD 5D°0°

The declaration for a terminal block consists of the mnemonic for the block
type in the operator field and the name of the block in the operand field, eg:-

TWB TB1

Associated with each work block declaration will be a work block description
where each data item forming part of that work block is described eg:-

TB1 BLK

CASTID STRG 6C %"

DEP BCD 12p°0°
WHDL BCD 12p°0"

3.2.9
October 1979



CREDIT PROGRAMMERS GUIDE

3.2.5.1 Terminal workblocks

A terminal class can contain one or more terminal workblock (TWB) definitioms,
each task within the terminal class having a separate copy of the work blocks.
Each terminal work block will contain the data items to be used by that
terminal class; the list of terminal work blocks to be used will be located
after the terminal identifier (TERM), the work blocks being located after :he
terminal definitions.

For example:-

TERM AQ
. TWB TB1
TWB TB2
TERM BO
TWB TB1
TB1 BLK
NAME STRG 20
ADDR STRG 30
ACNO BCD 12
OVFT BCD 8
BAL BCD 8
TRAN STRG 3
FLAG BCD 2D
TB2 BLK
FL BOOL

SPPROMPT BOOL

SPCHANGE BOOL

SPERCALL BOOL

SPBINWL BIN

SPBINW2 BIN

SPBINW3 BIN

SPBINW4 BIN

SPINPUT STRG 80Cc” *
SPSTRGW1  STRG 2¢c” ¢

In the above example the data items making up terminal work block TBl wil. be
avallable to terminal classes A0 and BO, but TB2 is only available to terminal
class A0. Each task making up the terminal classes will have a separate «opy
of the data items, and so it is not possible to use terminal workblocks to pass
information to, or receive information from other tasks.

[ IDENTIFIER | PAGE IN MO4 |
B ___ | 1.3.4 |

3.2.10
October 1979



CREDIT PROGRAMMER'S GUIDE

DSKB

DSKB

cB1

RDLA

TB1
TB2

DATA DIVISION (2)

IDENT MAIN

DDIV
TERM TO
cws cB1
TWB TB1
START GO
DSET FC=20,DEV=KB
TERM SQ
cwB CBA- oo
TWB TB2 -
START SO GO
DSET FC=20,DEV=KB
BLK
BIN X'0080"
¢
BLK
2
BLK
¢
PDIV
ENTRY GO
3.2.11

October 1979

TERM

- TWB
--CWB

START

SO
TB2
CB1
SO GO



CREDIT PROGRAMMERS GUIDE

3.2.5.2 Common workblocks

These are used to hold information required by more than one task, for example
the current date and time, and may be used for passing information from one
task to another; one task may write to a data item in a coumon workblock, and
atother task may subsequently access that data item. A common workblock (CWB)
d:finition can be present in one or more terminal classes, and all the tasks in
tiwe terminal classes containing that common workblock declaration are able to
access the information held in that common workblock-

For example:~

TERM AQ
TWB TB1
CWB CX2
CWB CX1
TERM BO
TWB TB1
CWB CX2

lach task in terminal class A0 will have a separate copy of terminal work block
[Bl and will be allowed access to common work blocks CX1 and CX2. Tasks in
terminal class BO will have a separate copy of TBl but they are only al.owed
iccess to common work block CX2. Information can be stored in a common work
block by one task and accessed by another task. For example the supervisor may
enter the current date as part of the start of day routine, then whenever a
task requires the date it will obtain it from the date field in the common work
block. Note that in terminal class A0 the order of work blocks is:=-

TERM A0
TWB TB1
CWB CX2
CcwB CX1

If CX1 and CX2 had been reversed then an error would occur when accessing work
blocks in terminal class B0, as in terminal class BO common work block CX2 is
located after TBI.

|_IDENTIFIER | PAGE IN MO4 |
L cus 1 1.3.6 |

3.2.12
October 1979



CREDIT PROGRAMMERS GUIDE

3.2.5.3 User workblocks

In this context "user" is the work station operator. It may be necessary for
the application program to wmaintain accumulators for each work station user,
for example. However there need not be a fixed one-to-oue relationship between
work positions and users. There need not be the same number of users as work
stations and they need not be assigned to particular stations.

To maintain user information, areas of memory are required which are associated
with individual users and not with work stations. These areas of memory are
called user work blocks (UWB). One or more user work block types may be
defined for each terminal class.

Tasks may only refer to a user work block if it has been defined for their
terminal class and then only when the program has executed a “USE’ instruction
specifying the block identifier and index identifier, of that user work block.
An index ideantifier is an integer in the range 1 to 999 which is used to
differentiate between user work blocks of the same format.

For example:-

TERM AQ
TWB TB1
CWB cx2
UWB UBL
UB1L BLK
CASID STRG 6C 7 *"
DEP BCH 120767
WHDL BCD 12n70”

The number of copies of a user work block is entered in the configuration data,
see MO4 page 3.4.3 for details. If the user work block UBl had been configured
with four copies, then to access copy three of the user work block UBLl the
following section of code would be executed.

MOVE INDX, =W’3°
USE UB1, TUDX
ADD DEP,CSH

T IDENTIFIER | PAGE IN MO4 [

Loo_uwws ] 1.3.28 |

2.2.13
October 1979



CREDIT PROGRAMMERS GUIDE

3.2.5.4 Dummy work blocks

Dummy work blocks can be used to redefine the data items forming another work
block. TFor example:- it is only possible to read from disk into a string data
item, so it is useful to have a work block which contains just the string data
item and a dummy work block containing the field definitions to be imposed on
this record. In the example below workblock TBl contains the string data item
which the record will be read into and DBl contains the redefinition.

TWB TB1
DWB DBL(TB1) Note work block to be redefined is TBl
TB1 BLK
BUF STRG 66
DB1 DBLK Note dummy block definition begins DIBLK
NAME STRG 20
ADDR STRG 30
POSTC STRG 8
TELNO STRG 8

For example if the contents of BUF are:-
FREDERIC SHMYTHE 15, THE LOGWALK NEWTOWN LL5 T11 789-1276

Then the contents of the data item identifiers forming the dummy work block DBL
will be as shown below.

NAME FREDERIC SMYTHE

ADDR 15, THE LOGWALK NEWTOWN
POSTC LL> 111

TELNO 789-1276

| IDENTIFLER | PAGE IN MO4 |
| DWB |  1.3.20_ |

3.2.14
October 1979



CREDIT PROGRAMMERS GUIDE

3.2.5.5 Swappable workblocks

These can form the transition between work blocks held in the program and disk
held files. Ordinary workblocks can have preset or empty values; each time the
application is started other than via IPL, then the program held workblocks are
set to the initial state. However swappable (disk held) workblocks contain what
ever they held when the machine was last closed down.

The name "swappable work block" is derived from the fact that they can he
"'swapped" or exchanged between memory and disk storage, enabling values to be
updated and held for future use. For a task to use a swapppable work block it
must issue the USE command, and when it no longer requires the swappable work
block the UNUSE command is issued which releases the block and copies i: back
to disk. It is not possible for two tasks to have the same swappable wockblock
in memory at the same point in time, though there can be more than one zopy of
a8 work block on disk and different tasks could access these different coipies.

The USE and UNUSE commands have two arguments:- the block identifier (SB8l) and
a data item identifier. The block identifier specifies the name of the
swappable work block e.g. SBl and the data item identifier is used to specify
which copy is required.

AT IPL THE THE DISK HELD FILE WILL BE RE-SET TO THE lliitIAL CONTENTS.

TERM AQ
TWB TB1
SWB Skl Swappable work block
SBl BLK Start of definition for SBl

Definitions for 881

The disk file for holding swappable work blocks is called $SWAP and is created
at sytem load time, and the configuration file contains the details of the
block definitions; see 04 page 3.4.4. Each copy of the work block is
referenced by a data item identifier for example:-—

TERM AD
TWB TB1
CWB CX2
SWB SBL
SB1 BLK
CASID STRGC 6C7* 7
DEP BCD 12p°0"
WHDL BCD 12707

If, for example, the swappable work block Sul nad four copies specifiel in the
configuration file, then the tollowing instructions would be required to access
information held in the cthird copy of the swappable work block.

MOVE INDE, =W’ 3"
USE S31,INDK
ADD DEP,CSH

| IDENTIFIER | PAGE IN MNO4 |
fooooosWs | . 1.3.25 |

3.2.15
October 1979



CREDIT PROGRAMMER'S GUIDE

DSKB
DSCAS
DSSOPI

DATA SET DECLARATION

IDENT
DDIV
TERM
TWB
TWB
cwB
START
DSET
DSET
DSET

PDIV

END

MAIN

T0

TB1

82

CB1

TGO

FC=20, DEV=KB

FC=12, DEV=TC, BUFL=100
FC=10, DEV=S1

3.2.16
October 1979



CREDIT PROGRAMMERS GUIDE

3.2.6 Data set directive (DSET)

In a CREDIT program input and output devices are specified by terminal class,
and they are defined using the dataset directive (DSET). This must occur after
the appropriate terminal class directive (TERM) in the data division. The DSET
directive is used to associate a data set identifier used in the procedure div-
ision with the TOSS device type and file code. With the DSET directive it is
also possible to specify the buffer length to be used, and if the buffer is to
be shared with any other device. The format of the DSET directive is:-

data-set-identifier DSET FC=file code
{,BUFL=decimal number }
{,DEV=device type
{,BUFDS=buffer data set}

FC folllowed by a hexadecimal number gives the TOSS file code, in the example
below the numeric display is using file code 41l.

The keyword BUFL is followed by the length in decimal notation of a fixed

length buffer to be used with this device. This must not be specified if the

1/0 operations on the device use a system buffer.

Device type (DEV) is an optional field and its sole purpose is as an ilde-
memoire to the programmer. It is recommended to use the TOSS device types as
listed in 1104, as at system generation these device codes will be usel to assign
the file codes to the required devices for each terminal class.

The keyword BUFDS specifies that the buffer is to be shared with anotier data
set in the same terminal class.
For example:=-

SCRN DSET FC=50,DEV=DY,BUFL=240
AUX DSET FC=41,DEV=DN,BUFDS=SCRN

Here the VDU (T0SS device type DY) shares a buffer with the numeric display
(TOSS device type DN).

T_DIRECTIVE | PAGE IN MO4 |
4 t.3.18 ]

3.2.17
Uctober 1379



CREDIT PROGRAMMERS GUIDE

3.2.7 Data items

Before studying all the different types of data items available in CREDIT it is
important to have a basic understanding of how information is held within a
computer.

The system used by PTS to hold information is called binary; the presence of an
item being denoted by the value one and the absence of an item by the value
zero. An analogy can be made with a lightbulb, which is either lit (having
information) or out {no information).

Within the computer this binary information is held in BITS ~ one bit holding
one binary item; for comvenience bits are assembled into larger urits called
words - each word consisting of sixteen bits. However as much of the work of a
modern computer is handling character strings, and all possible ctaracters can
be represented by eight bits then the computer word has been divided into two
equal sections called BYTES, these bytes are also subdivided into two
hexadecimal (base sixteen) digits. This arrangement of units is shown in the
table below:-—

hexadecimal digits

| NAME | INT. REPRESENTATION | CONTENTS |
l | E— !
| | | |
| BIT el | can hold a zero or a one |
! | | |
| DIGIT | Joeusl | four bits, can hold one hexadecimal |
i | | character

| | | |
P BYTE | leeenenes] | eight bits, can hold one IS0-7 |
| | | character or two hexadecimal digits |
| I | |
] WORD | Jeesennannennnsnasl | sixteen bits, two characters, four |
| | | |
| | | !
| I | |

3.2.7.1 CREDIT data items

CREDIT has several types of data items, and use either bits, digits, bytes or
words depending on how the data item is defined. The different types of data
items used in CREDIT are described on the next few pages, and listed below.

BOOLEAN

BINARY

BINARY ARRAYS

BINARY CODED DECIMAL

BINARY CODED DECIMAL ARRAYS
STRING

STRING ARRAYS

LITERALS

3.2.18
October 1979



CREDIT PROGRAIMMERS GUIDE

3.2.7.2 Boolean data items (BOOL)

Each work block can have up to sixteen boolean data items and each boolean data
item occupies one BIT. The bit is set to one 1f the data item holds the value
TRUE and zero if it holds the value FALSE. The format of the boolean data item
declaration 18:-

data=-item-identifier BOOL {value]

The data item identifier is the means by which this data item will be
referenced in the PDIV.

The value is an optional field which allows the data~-set-identifier to have a
preset value. If the value is omitted then the default value of false is
assumed. Valid values are shown below:-

TRUE
T
FALSE
F

Boolean data items must always be the first entries in the work block.

Below are some examples of boolean declarations.

NAME YALUE HEMORY
CONTENTS

FLAG BOOL TRUE 1

NEW BOOL T 1

CHNGE  BOOL FALSE 0

LITE BOOL F 0

DLTE BOOL 0

T LOENTIFIER | PAG
L. .BOoL | __

3.2.19
October 1979



CREDIT PROGRAMMER'S GUIDE

BIN

BIN
BIN

8IN
BIN
BIN

BIN
BIN

BIN

BINARY

w'20°

X 'F3'
5X%' 315FA

4D'0100°
D*123456°
1D*5°

C'NO’
C’ANO’

3220
October 1979

——X'0014 "

— - X'00F3°
———X'15FA’

——X'0100"
——= X" 3456"
—X"'0005’

s XLELF
———— K4ELF

————=X'0000’



CREDIT PROGRAMMERS GUIDE

3.2.7.3 Binary data items (BIN)

A binary data item occupies one word (sixteen bits) and can be used for holding
items shown im the table below. The interpretation given to the contents of the
data item is dependant on the value code, the default value being type word (W)
and value zero. The binary data item declaration format is shown below:

data~item-identifier BIN [([length]value-typel][‘value’]]

The data item identifier is the means by which this data item will te
referenced in the PDIV.

The value type is one of the following:-

number with sign
(4*4 bits)

sign pit is B for positive, D Eor
negative

| Type | Int. representation | Notes |
| | |
| W | One word |  Number in range -32768 to +32767 |
f |  (1*16 bits) |
| C | Two bytes | Can contain two ISO-7 characters |
| | (2*%8 bits) ] |
| X | Four hexadecimal | Hexadecimal number |
| | digits } t
| | (4%4 bits) | |
| D | Three digit decimal | Unused elements set to zero, the |
| | | |
| | | |
I | | |

Below are listed examples of binary data items, some with values as:uigned,
together with the internal representation.

| Data item Value | Hachine form |
| identifier | hexadecimal |
| |-=- |
| SPl BIN W 327677 | 7FFF |
| Sp2 3IN 4D7 1007 | 8lo0 i
| se3 BIN 3 i 0OFF |
| SP4 8IN 2CNO’ | 4E4F |
{ SP5 BIN | 0000 |
| SP6 BiN C’DOMING” f 4E4LF |
| sp7 BIN 3D | BOOO |
| !

Note:-

In SP2 the specified length includes tie -ign.

In SP6 only the last two characters are held in the item.

in SP7 the largest possible value is 999 ulthough it was only specified as a
two digir fisld plus sign.

L IDENTIFIER [ PAGE TN M4 |
Lo BN ] 1.3.12 ]

3.2.21
Qctober 1979



CREDIT PROGRAMMER'S GUIDE

DATA-ITEM-SPECIFICATION

LENGTH VALUE TYPE "VALUE®
ITEM SIZE
BCD NUMBER OF s} ‘DECIMAL NUMBE R’
(4 BITS) DIGITS
X ‘HEXADECIMAL
INTEGER'
BIN 1 WORD w ‘DECIMAL NUMBER'
NUMBER OF D ‘DECIMAL NUMBER’
(4 BITS) DIGITS
NUMBER OF c ‘CHARACTER
(8 BITS) CHARACTERS STRING’
NUMSBER OF X 'HEXADECIMAL
(4 BITS) HEXADECIMAL INTEGER’
DIGITS
STRG  NUMBER OF c ‘CHARACTER
(8 BITS) CHARACTERS STRING’
NUMBER OF X 'HEXADECIMAL
{4 BITS) HEXADECIMAL INTEGER’
DIGITS
3222

October 1979



CREDIT PROGRAMMERS GUIDE

3.2.7.4 Binary coded decimal data items (BCD)

BCD data items consist of a number of digits (4 bits) holding either a decimal
(base 10) or hexadecimal (base 16) number. The maximum number of digits that
can be held in one data item is 255, though in the case of decimal aumbers the
first digit position is reserved for the sign. The format of this Jeclaration
is:i~

data-item-identifier BCD { length, value type [ ‘value’ ] }
{ [length,] value type ‘value’ }
{ [length[, value type]] ‘value’ }

The data item identifier is the means by which this data item will be
referenced in the PDIV.

Length is the number of digits to be used for this data item, including the
sign.

Value type - this specifies whether the data itew is to be hexadecimal digits
(value type X) or decimal digits (value type D), the default type is ‘D’

The value field allows a preset value to be given to a data item, as shown in
the table below.

| Contents of | " Example |
| value field | Specified | Ccntents |
| I | l
|Not Given | Zero 0 |
| | I
|Less Than | Value right justified 6D"23" BC0023
|specified | within data item
|Length | [
| | |
|Greater than | Least significant 4D” 26007 B¢00O |
{specified | digits will be held
|length |
S S DI o j
Note:-

Either the value or the type and length must bpe specified; the value must be
enclosed in quotes.

3.2.23
October 1979



CREDIT PROGRAMMERS GUIDE

Examples of BCD data declaratioms are given below:=-

| Data item Value | Machine form
| identifier | hexadecimal
|
BCD1 BCD 6D’ -23" | D00023 negative
| value sign
| set to D
BCD2 BCD 3071007 | BlOC rounded up
| to evan no.
| of bytes
BCD3 BCD X" FF’ | FF
BCD4 BCD 6D | 000000
BCD5 BCD ©123007 | B12300 (implied D)
BCD6 BCD X ACE560° | ACE560
BCD7 BCD 5X | 000000
|

|
|
I
|
I
: I
|
|
|
|
|
I

|

BCD

1 1.3.10

L

3.2.24
October 1579

|
|
}
|
|
I
I
|
|
I
|
I
|
I



CREDIT PROGRAMMER'S GUIDE

DATA-ITEM-SPECIFICATION

LENGTH VALUE TYPE “VALUE'
ITEM SIZE
BCD  NUMBER OF D ‘DECIMAL NUMBER'
{4 BITS) DIGITS
X ‘HEXADECIMAL
INTEGER'
BIN 1WORD w ‘DECIMAL NUMBER’
NUMBER OF D ‘DECIMAL NUMBER’
{4 BITS) DIGITS
NUMBER OF c ‘CHARACTER
{8 BITS) CHARACTERS STRING*
NUMBER OF X ‘HEXADECIMAL
{4 BITS) HEXADECIMAL INTEGER’
DIGITS
STRG  NUMBER OF c ‘CHARACTER
{8 BITS} CHARACTERS STRING'
NUMBER OF X "HEXADECIMAL
(4 BITS) HEXADECIMAL INTEGER'
DIGITS
3.2.25

Octaber 1979



CREDIT PROGRAMMERS GUIDE

3.2.7.5 String data items (STRG)

String data items are composed of 1-4095 bytes, each byte holding ome alpha-
numeric character. The format of the string data item identifier is:-

data-item~identifier STRG {[[ Length,] Value type] ‘Value’}
{ [ Length [,Value type])] ‘Value’}
{ Length, Value type {’Value’]}

The data item identifier is the means by which this data item will be
referenced in the PDIV.

Length - is the number of characters that will make up the string

Value type - 1s either character (type C) or hexadecimal (type X), the default
being “C°.

Value ~ is an optional field and allows a data item to have a preset value

| Contents of | Contents of data item | “Example |
| value field | | Specified | Contents |

| | | |
[Not given | Spaces |

| | |
[Less than | value left justified | 6C7AC’ Accece |
|specified | within data item. Last| 6C°AC * AC |
|length | character repeated {

I | |
|Greater than | Leftmost characters | 4C"BRANCH” BRAN |

| | I

| | I

| | |

|specified will be stored

|length

| e e
| Data item Type Value | |achine form |
| identifier | hexadecimal |
] | - |
| STRGL STRG 6C | 202020202020 |
| STRG2 STRG 3C7ABC” ) 414243 |
| STRG3 STRG X FF” | FF |
| STRG4 STRG 6C7ABC” | 414243434343 |
| STRGS STRG 6C’ABC 7 | 414243202020 |
| STRGS STRG 5C"BANK ID° | 42414E4820 |
| STRG7 STRG 5% | 00000 |
I | |

{ IDENTIFIER | PAGE IN MO4 |
1 __ STRG 0 1.3.23 |

3.2.26
October 1979

v



CREDIT PROGRAMMERS GUIDE

3.2.7.6 Arrays

There are three types of arrays in CREDIT: BCDI, BINI and STRGT. They can be
either one or two dimensional. The subscript must be a binary data item. The
maximum subscript is 32767 for one-dimensional arrays. For two~dimensional
arrays neither subscript can exceed 255. Arrays occupy two entvies in a work-
block, unless an array is the last item in the workblock when it occuples only

one. The rules for the storage of the values are the same as for BCD, BIN and
STRG data items described above.

The general format for an array declaration is:-

data-item~identifier type (51(,52))[,[length] type] [‘valie’...]
Sl - is the "row" subscript

S2= 1is the "column” subscript for two dimensional arrays

‘value’... -~ this enables the array to be initialised. If few2r values are

provided than there are elements in the array, then all remaining elements are
filled with the last provided value, e.g.

BRANCH STRGI (40),10C"LONDON “,"ROME °,’PARIS *,"*’

This sets up a forty element array containing branch locations; as only three
exist at this point the unused elements are filled with asterisks. The

Eirst
six elements of this array are shown below:=-

element contents
[¢V] LONDON

(2) ROME

(3) PARIS

4) KAEKAXARAKX
(5) AxEXAKKXKK
(6) LR RT3

If the contents of an element are less then the string length then the last

character is repeated, if for example the declaration had takea the following
form: -

BRANCH STRGL (40), 107 "LONDON", "ROME”, " PARIS ", * **
Then the contents of the first six elements would be:-

element

(1)
(2)
(3)
{(4) LR E RS
(5) *esek ok kkk ok K
(6) KA KK kE XA

Neceber 1979



CREDIT PROGRAMMERS GUIDE

For a two dimension array the data items should be ordered by rows then
columns, for example:-

MONQUA STRGI (3,4),10C"JANUARY *,’FEBRUARY °,”MARCH ‘,’APRIL ‘,
‘MAY’,‘JUNE °,°JULY ,”AUGUST °,”SEPTEMBER *,
“OCTOBER “,”NOVEMBER ”,’DECEMBER *
This would set up a table of the months in each of the four quarters of the

year, the month in the quarter being the first subscript, the second the
quarter of the year. The machine representation would be:-

. Element Contents Element Contents Element Contents
(1,1) JANUARY (2,1) FEBRUARY (3,1) MARCH
(1,2) APRIL (2,2) MAY (3,2) JUNE
(1,3) JOULY (2,3) AUGUST (3,3) SEPTEMBER

(1,4) OCTOBER (2,4) NOVEMBER (3,4) DECEMBER

The binary declaration is similar to that for strings, an example of a two
dimensional bilnary array is given below.

G,4),7 17,727 737 T4 U57 767 77 P87 ,797,7 107 X" B’ ,

TAB BINI 4, 1,
X’C’,X'D’, X E",X F’,X"10°

Element Contents Element Contents Element Contents Element Cortents

(1,1) 0001 (2,1) 0002 3,1) 0003 (4,1) (004
(1,2) 0005 {2,2) 0006 (3,2) 0007 (4,2) 008
(1,3) 0009 {2,3) 000A (3,3 0008 (4,3) 000C
(1,4) 000D (2,4) 000E (3,4) 000F (4,4) wol0

[_IDENTIFIER | PAGE IN MO4 |

| BCDI | 1301 |
i BINT | 1.3.13 |
. STRGI | 1.3.24 |

3.2.28
Octaber 1979



CREDIT PROGRAMMERS GUIDE

3.2.8 Literals - overview

With CREDIT there are four distinct catagories of literals; these are literal
constants, keytables, pictures and format lists; after translation each of
these literals will be held in separate pools.

3.2.8.1 Literal constants

These are the normal form of constants used in a program and have the general
form:=

=[Value typel] “value’

Value type is one of those listed in the table below

number with siga
(1*4 bits)

Sign bit is B for positive, D for
negative

| Type | Int. representation | Notes )
| | | I
i W | One word | Number in range -32763 to +32767 |}
| | (1*16 bits) | |
| C | (n) bytes { Can contain (n) 1S0-7 characters

| | (n*8 bits) | |
| X | (n) hexadecimal digits | Hexadecimal number n ligits long

| | (n*4 bits) ! |
| D | (n-1) digit decimal | Unused elements set to hex F |
{ I ! }
| | ! |
| [ | |

Note:-

Literal constants can never form the destination part of an instruction, in
that a constant may be added or moved to a data item, but a data item can not
be added or moved to a literal coastant.

Examples of literals are:-

=727 Typeless literal

=W 45’ One word containing valae 45
=C“BANK IN.” Character string

=6D"-97892" BCD constant

=X’2030" Hexadecimal constant

Degaber 1979



CREDIT PROGRAMMERS GUIDE

3.2.8.2 Keytables

These are used for holding lists of character codes which could be used to
terminate keyboard input. Only hexadecimal (type X) or character (type C)
data items may be used Iin a keytable. A description of keytables is given in
section 6.2.3. The format of a keytable declaration is:=-

key-table-name KTAB {literal constants }

{EQU data items 3}
For example
BSP EQU X’05”
°  CLEAR EQU X719
CLR2 EQU X’00°
EOI EQU X12°
CANC1 EQU X' 14"
CANC2 EQU X‘15°
SPKTABl  KTAB BSP,CLEAR,CLR2,EQT,CANCL,CANC2

3.2.8.3 Picture literals

These are used when formatting numeric itews for display or printing purposes;
either for output of for re-displaying an iuput item. Picture literals can
only be used with the FMEL instruction. Some examples of picture litercls are
shown in the table below:

| Picture  Data item Result |
| |
| |
| “AAA999” BFFO456 0456 i
| |
| XXY-XX" 2702 27-02 |
| |
| “XXY-XX" FFFF |

|
|°9909° B123 1203 |
| |
| Faxsv9” DF11 *-1.1 |
| |
|799,99° B123 12,34 |
| |
| “99899” 6521 65 02 |
| i

3.2.8.4 Format lists

These are used to hold format layouts for the output of information. Examples
of format lists are shown below, and are described in more detail in section
6.5.
ERFMOL FRHT

FSL

FTEXT “TOO FEW INPUT CHARACTERS”

FMEND
*
ERFMO2  FRMT

FCOPY =X‘2031°

FTEXT “RETYPE ANWER YES OR No: *

FMEND

3.2.30
October 1979



CREDIT PROGRAMMERS GUIDE

4. INSTRUCTIONS

Instructions direct the input, processing and output of 4information. They
specify the actions to be carried out by the computer, and direct the sequence
of events.

The general form of CREDIT iastructions is:-
{STATEMENT~IDENTIFLER] INSTRUCTION=-MNEMONIC OPERAND~1( ,0PERAND-2...)

STATEMENT IDENTIFIER - this identifies a point within the program and is used
in branch and entry iastructious; a statement identifier need not be on the
same line as the statement, e.g.

FRED! ADD A,B this statement is identified as FREDI
could also be written on two lines, e.g.

FREDL
ADD A,B

INSTRUCTION MNEMONIC - this speciries the basic operation to be performed by
the instruction. There are nine groups of instructions, and the instruction
anemonic must be derived from one of these groups; see appendix A for a list of
instructions and categeries. In the above example the INSTRUCTION MNEMONIC was
ADD, one of the arithmetic group of instructious.

OPERANDS ~ these contain the operationsl part of the instructions, their
significance beiny differeat for cach instruction. Each instruction described
here and in MO4 refers to operands from left to right as OPERAND-1, OPERAND-2
etc.

The groups of instructious available in CREDIT are as follows:

Arithmetic

Branch
Input/Output
Logical

Scheduling

Storage Control
String

Subroutine control
Format I/0 coatroi



CREDIT PROGRAMMER'S GUIDE

GROUPS OF INSTRUCTIONS

—  ARITHMETIC INSTRUCTIONS
—  LOGICAL INSTRUCTIONS

—  STRING INSTRUCTIONS

— BRANCH INSTRUCTIONS

— SUBROUTINE INSTRUCTIONS
— INPUT/OUTPUT INSTRUCTIONS
— SCHEDULING INSTRUCTIONS

— STORAGE CONTROL INSTRUCTION

4.0.2
October 1979



CREDIT PROGRAMMERS GUIDE

4.1 Arithmetic_instructions

These have two operands, and consist of the following instruction mnemonics:=

ADD Add

CMP Compare

DIV Divide

DVR Divide rounded
MOVE Move {conversionsg)
MUL Multiply

SUB Subtract

The arithmetic instructions ADD, SUB, MUL, DIV and DVR operate on either BCD or
BIN data items or arrays. Both operands must be of the same type, e.g. both BIN
or both BCD.

The CMP instruction operates on BCD, BIN or STRG data items or arrays. Both
operands must be of the same type.

The MOVE iastruction can be used with BIN, BCD or STRG data items or arrays,
and the operands need not be of the same type.

After the execution of most CREDIT instructions the status will be held in a
special register by the Interpreter, called the Condition Register (CR). This
can be used to determine the path the program takes on different conditions.

Arithmetic instructions will cause the Condition Register to be set as shown in
the table below.

| Value | Meaning |
| 0 | Zero result {
| 1 [ Positive result |
{ 2 f Negative result !
{ 3 | Arithmetic overflow occurred|
l I !

4.1.1
October 1979



CREDIT PROGRAMMER'S GUIDE .

ADD INSTRUCTION

TB1
10 CATOT
11 EOTAPE
10 INDEX
11 INLEN
12 LAMP1
13 LAMP9
14 SUBACC
15 TWORK1
16 ARRAY
19 DMSTR

TAGO
021415
0216 10 15

IDENT
DDiIV
TERM
TW8B
START

BLK
BOOL
BOOL
BIN
BIN
BIN
BIN
BCD
BCD
BCD1
STRG

PDIV
ENTRY

ADD

ADD

412

MAIN

70
TB1
TAGO

FALSE
FALSE
0

0
X'0200°
X'0100"
8

8
(6),10D°0"
c’ -’

TAGO

SUBACC, TWORK1

ARRAY (INDEX), TWORK1

October 1979



CREDIT PROGRAMMERS GUIDE

4.1.1 The Add instruction (ADD)

The ADD instruction adds operand-2 to operand-l1 and stores the result in
operand-l. Execution of this instruction will affect the Condition Register,
as shown in the table in section 4.l.

Examples of the ADD instructiom

ADD ACC,DEP

This increases the contents of the data item ACC by the contents of the data
item DEP.

ADD LOOP ,=W 1"
This increases the contents of the binary data item LOOP by one
ADD CASH(TID,USER) ,DEP

This Iincreases the element in array CASH referenced by the subscripts TID
and USER by the amount held in the data item DEP.

4.1.2 The Subtract instruction {(SUB)

The SUB instruction subtracts the coutents of operand-2 from the contents
of operand-l; execution of this instruction will alter the Conditiocn Register
as shown on page 4.1.1.

Exawmples of the SUB instruction

SUB LOOP,=W"1"

If LOOP had an initial value of 10 then after execution of this statement it
would contain 9.

SUR TEST,=W’'~1"

If test held an initial value of 5 then after this statemeunt had bean executed
it would hold the value 6.

T_INSTRUCTION | PAGE IN M04 [
{ ADD | 1.4.24 |
SUB | 1l.4.149 |

4.1.3
Octaopar 1379



CREDIT PROGRAMMERS GUIDE

4.1.3 The Divide instruction (DIV)

The DIV instruction divides the contents of operand-1 by the contents of
operand-2 and stores the result in operand-l, any remainder being ignored.
Division by zero results in overflow, thus giving a value of 3 in the CR. The
Condition Register contents are described on page 4.1.1.

Example of the DIV instruction

DIV COM,=W" 100"

This divides the data item COM by 100, if COM had an initial value of 378, then
after this instruction COM would have the value 3.

COM/100 = 3.78
Rounded down =3

Result in COM 3

W

4.1.4 The Divide Rounded instruction (DVR)

The DVR instruction divides the contents of operand-l1 by the contents of
operand-2; 0.5 is then added to the result and the rounded down result stored
in operand-l. The Condition Register is set as described on page 4.1.1

Example of the DVR imstruction

DVR COM, =W’ 100"

If the data item COM had the initial value 378 then after the division the
result would be 4, as shown below.

COM/100 = 3.78
+ 0.5 = 4.28
Rounded down = 4

Result in COM = 4
4.1.5 The Multiply instructiom (MUL)
The MUL instruction multiplies the contents of operand-1 by the contents of
operand-2 and stores the result in operand-l. The CR is set as described on
page 4.1.1.
Example of the MUL instruction

MUOL AMM , XRATE
The data item AMM is multiplied by the data item XRATE. If the initial value of
AMM was 1700 and XRATE 450 then after this statement had been executed AMM
would contain the value 765000. If the receiviny data item is not large enough

to hold the result, its contents will be undefined and the CR will be set to to
overflow (value 3).

T_INSTRUCTION [ PAGE IN M04

1
| DIV | 1.4.68 |
| DVR | 1.4.91 |
i MUL t 1.4.129 |

4104

October 1979



CREDIT PROGRAMMERS GUIDE

4.1.6 The Compare instruction (CMP)

The CMP instruction compares two data items of the same type for similarity. It
sets the condition register to one of the values shown below, according to the
relationship between the two data items.

When the two data items are of different lengths, the comparison will be
executed as follows:

. For string data items the shortest data item will be extended (by the
Interpreter) with blank characters (X°20°) from the right.

+ For decimal data items the shortest data item will be extended (by the
Interpreter) with zero digits (X°0").

The values held in the Condition Register after executiom of this instruction

are:-—

| VALUE | MEANING |
| o] | Operand~l = Operand-2 |
| 1 | Operand-1 > Operand-2 |
| 2 | Operand-l < "perand-2

| | |

Examples of the CMP instruction

CMP

cMp
CcMP

CON1 EQU
CMP

SPBINW1, SPBINW2 Two items of like type

SP3INW3,=W'97" Comparison with a constant
SPINPUT,=C‘YES’

w'97”

SPBRINW3, CONL Use of an EQU constant

| INSTRUCTION | PAGE IN MO4 |
1T _cw 1 1.4.62 )

4.1.5
October 1979



CREDIT PROGRAMMER'S GUIDE

BIN—»BIN
STRG-»STRG

BCD-»BCD

MOVE OP1, OP2

opP2 [

[ 1
v !
OP1 [ ]
o1 r /"Wr\]
opP2 O T ]

Y
or1 [ "'not CorieD

OP2 T 11 1]
v ‘
oP1 Z:
oP2
T FFF
OP1 /0 —]
NOT COPIED
——t——
oP2 7 N
oP1 T

4.1.6
October 1979



CREDIT PROGRAMMERS GUIDE

4.1.7 The Move imstruction (MOVE)

The MOVE instruction moves the contents of operand-2 to operand-l. The
operands can be of type BIN, BCD or STRG, though transfer from BIN to SIRG or
STRG to BIN is not permitted.

The MOVE can be used for transferring numeric information only between the data
types linked by arrows in the diagram below.

BIN <===> BIN <=-~> BCD <~==> BCD <=-~-> STRG <-=-=> STRG

The rules for moving of data items is given on pages 1.4.127-128 of MO4. In
summary, moving to a shorter data item causes truncation of information, and
moving to a longer data item results in padding.

Examples of the MOVE instruction
MOVE OUT,=C“PLEASE ENTER USER CODE’

If OUT has been defined as STRG with a length of twenty-two characters then the
character string would be transferred to OUT. If OUT were longer than twenty
two characters then the last character in the string would be repeated. For
example, if OUT had been defined as length twenty-five, then after this inst-
ruction had been executed it would contain "PLEASE ERTER USER CODEEEE". If OUT
had been defined as length ten, then it would comtain "PLEASE ENT", only the
left hand ten characters being transferred.

[ INSTRUCTION | PAGE IN M4
1 MOVE | 1.4.127 |

44147
October 1979



CREDIT PROGRAMMER'S GUIDE

STRG—+BCD

opP2

OoP1

0oP2

oP1

0oP2

OP1

oP2

OoP1

MOVE OP1, OP2

[ [ | 1| stRa
i
J

a BCD
STRG

FFF
7] ] scp

[ 39 37 41 41 32 31 30 | STRG

1

[BFFFFFFFFo72 10] sco

‘f] STRG
7
/L

4.18
October 1979



CREDIT PROGRAMMERS GUIDE

MOVE OUTX,=C"PLEASE ENTER YEAR E.G. 1979 :

If, in the above example, QUTX had been defined as BCD then it would contain
“1979° as non~numeric characters are not transferred from STRG to BCD. Note
that after execution the contents of OUTX will have been right justified, have
the sign digit set and all unused digits will be set to X'F’ (X’F" is the null
digit for BCD items). If a transfer of a number to either a BCD or BIN data
item is requested, and the number is too large to be held by that data item
then its contents will be uncertain and the Condition Register will be set to 3
(Overflow).

[ INSTRUCTION | PAGE IN MO4 [
[ uovE L 1.4.127 |

4.1.9
October 1979



CREDIT PROGRAMMER'S GUIDE

BCD—=STRG

MOVE OP1,0P2

oP2

OoP1

0oP2

OP1

orP2

OP1

oP2

OP1

{//rl Lt ] BCD

RN

[ ] STRG
| BCD

[# 7 # 00 0000 |STRG

{1 ~ |8CcD
iR STRG
Bl _© 5 1 3 7 |8cD

T

[+ 303032 363133 37]STRG

4.1.10
October 1979



CREDIT PROGRAMMERS GUIDE

MOVE FLDA,NUMB

1f FLDA has been declared as a STRG data item, four bytes long, and NUMB
is a BCD data item containing the value +123456, then the result in FLDA
will be

+456

since moving from BCD to STRG always results in the sign being moved first.
The remaining digits are moved, and converted, from left to right, but in
this case the receiving field is too short, hence only the rightmost digits
are transferred.

4.1.11
October 1979



CREDIT PROGRAMMERS GUIDE

4.2 Logical instructions

These are single operand instructions and allow logical operations on boolean
data 1items. Boolean data items are used for holding such things as status
flags. Note that the Condition Register will be set to the previous contents
of the data item after execution of a logical instruction.

The available instructions are

CLEAR Clear a boolean data item (result binary zero)
INV Invert a data item (reverse its state)
SET ‘Set a data item (result binary one)
TEST Compare with zero (false) and set condition
. reglster

Examples of logical instructions
CLEAR FLAG

This sets the boolean data item FLAG to FALSE (zero)
INV FLAG

The state of FLAG is reversed - if it was FALSE it will now be TRUE

| INSTRUCTION { PAGE IN MO4 |
| CLEAR |  l.4.61 i
| INV | 140117 |
| SET | l.4.146 |
1 TEST 1 1.4.155 |

4.2.1
October 1379



CREDIT PROGRAMMERS GUIDE

4.3 String instructions
These instructions are for the manipulation of character strings.
The available instructions are

COPY
MATCH
INSERT
DELETE
XCOPY

These instructions operate on string data items, with two exceptions
. The XCOPY command can be used with both STRG and BCD data items.
. The COPY command can be used with BIN, BCD and STRG data items.

The string handling commands have two differeut types of operand.

. Character strings (or BIN and BCD data items in the case of the two exceptions
listed above).

. Pointers and lengths, held in binary data itews.

4.3.1
October 1979



CREDIT PROGRAMMER'S GUIDE

copry

FIELD 2

FIELD 1

TEXT 2

TEXT 1

COPY INSTRUCTION

Fl

ELD1,PLLNGTH, FIELD2,P2

P2

01 }LNGTH

P |

S <
N S
\ AY

NN

L

%/

INSERT INSTRUCTION

INSRT TEXT1, P1, LNGTH, TEXT2, P2
P2
LNGTH
L l J
s
Jo-
P1
0
L ]
*
—_—

ORIGINAL CONTENTS SHIFTED TO THE RIGHT

* COND.REG.=3 |F NON-SPACE
OR NON-ZERO
CHARACTER SHIFTED OUT

4.3.2
October 1979



CREDIT PROGRAMMERS GUIDE

4.3.1 The Copy instruction (COPY)

The COPY instruction is used to move a number of decimal digits or bytes from
one data item to amother of the same type. Both data items must be STRG or both
must be BCD or both must be BIN.

The instruction format is:-

COPY Dest, Start, No., Source, Start-2
Dest -~ is the data item which is to have information copied into it.
Start - is a binary data item containing a pointer to the positior in Dest

where the copied information is to begin.

No. - is a binary data item containing the number of characters (bytes) or
decimal digits (half bytes) to be copied from Source to Dest.

Source =~ is the data item, part or all of which will be copied into Dest.

Start-2 - is a binary data item containing a pointer to the start of the
information in Source that is to be copied into Dest.

The pointers (Start and Start-2) assume that tue first byte location is zero,
so to access the second byte or digit the pointer must have a value of smne.

Example of the COPY instruction

MOVE S1,=W"0"
MOVE S2,=W"4"
MOVE 53,=W"1°
copryY DEST,S1,52,5RC,53

If SRC had been defined as a STRG data item ten bytes long, containing the
string "XCURRENCY", and DEST as a STRG data item four bytes long, then after
execution DEST would contain "CURR".

If SRC had been defined as a BCD data item ten digits long, containing the
decimal number "523012350", and DEST as a BCD data item four digits long, then
after execution DEST would contain "2301". Note that the sign position in a BCD
data item can be changed by the program, Ly use of this instruction. The
Condition Register is not affected by the exescution of this instruction.

T INSTRUCTION | PAGE IN Q4 |
1 ___copy | 1.4.63 |

4.3.3
October 1979



CREDIT PROGRAMMERS GUIDE

4.3.2 The Extended Copy instruction (XCOPY)

The XCOPY instruction moves bytes between any non-boolean data items.
It always coples at byte level, regardless of data tvpes.

The instruction format is:=-

XCorYy Dest, Start, No., Source, Start=2
Dest ~ 1s the data item which is to have information copied into it.
Start ~ is a binary data item containing a pointer to the position in Dest

where the copied information is to begin.

No. - is a binary data item containing the number of characters to be
copied from Source to Dest.

Source - is the data item, part or all of which will be copied into Dest.

Start=2 - is a binary data item containing a pointer to the start of the
information in source that is to be copied into dest.

The pointers (Start and Start-2) assume that the first byte location is zero,
S0 to access the second byte or digit the pointer must have a value of ona.

Example of the XCOPY instruction

MOVE S1,=W 07
MOVE 52,=W"4"
MOVE $3,=W" 1"
xcopy DEST,S1,82,S8RC,83

SRC has been defined as a STRG data item ten bytes long and contains the string
“ABCDEFGHI", and DEST as a BCD data item eight digits long. Then after
execution of this statement DEST will contain "424344457, the hexadecimal
equivalent of the character string “BCDE’.

If SRC had been defined as a BCD data item fourteen digits long and contained
the hexadecimal characters “24435552525553”, and DEST as a STRG data item four
characters long, then after execution of this instruction DEST would contain
“CURR’ «

The Condition Register is not affected by the execution of this instruction.

1 Xcopy | 1.4.173 1

4.3.4
October 1979



CREDIT PROGRAMMER'S GUIDE

COPY

FIELD 2

FIELD 1

TEXT 2

COPY _INSTRUCTION

FIELD1,PL,LNGTH,FIELD2,P2

P2
01 yLNGTH
‘ﬁ N N J
N S
AN \\
NP1
:

-

INSERT INSTRUCTION

INSRT TEXT1, P1, LNGTH, TEXT2, P2

P2
‘ LNGTH

—

*

ORIGINAL CONTENTS SHIFTED TO THE RIGHT

* COND.REG.-3 |F NON-SPACE
OR NON-ZERO
CHARACTER SHIFTED OUT

4.35
October 1979



CREDIT PROGRAMMERS GUIDE

4.3.3 The Ingert instruction (INSRT)

The INSRT instruction 1s used to insert a character string into an existing
character string, the existing contents being shifted to the right to produce
the required space.

The instruction format 1is:-

INSRT Dest, Start, No., Source, Start-2
Dest - is the data item which is to have ianformation iaserted into 1it.
Start - is a binary data item containing a pointer to the position in Dest

where the inserted information is to commence.

No. - is a binary data item containing the number of characters from Source
to be inserted into Dest.

Source - is the data item, part or all of which will be inserted into Dest

Start=-2 - 1s a binary data item containing a pointer to the start of the
information in Source that is to be inserted into Dest.

The pointers (Start and Start-2) assume that the first byte location is zero,
$0 to access the second byte or digit the pointer must have a value of one.

If a non-space or non-zero character is shifted out of Dest, the Condition
Register will be set to 3 (overflow). Each character shifted out of the
dataitem is lost.

Example of the INSRT instruction

MOVE S1,=W"5"
MOVE S2,=W"4"
MOVE S3,=W"4*
INSRT DEST,S1,52,5RC,S3

If the initial contents of the string data item DEST was ‘CODE:=N/A ° and the
contents of SRC was “23456789° then after this operation DEST will contain
*CODE:=6789". Note that the previous contents have been shifted to the right
and as the field length was only ten characters the last four are lost. One
data item could be saved by writing the instruction in the form shown below:-

INSRT DEST,S1,52,SRC,S2
If the initial contents of DEST nad been ‘ABCDEFGHLJKL” and SRC contained
“23456789° then after execution of this statement DEST would contain

“ABCDE6789FGHI" .

The details of this operation are shown below:

| INSTRUCTION | PAGE IN MO4
| INSRT [ 14,416 |

4.3.6
October 1979



CREDIT PROGRAMMERS GUIDE
DEST

ABCOEFGHLIKLN SRC
23456789

Move four spaces into DEST

ABCDE __ FGHI take four characters from SRC starting at
at character position four (the first character
position is zero)
6789

Now put the two parts together

ABCDE6789FGHL

If a non-blank or non-zero character is lost off the end of the receiving field
then the Condition Register will be set to 3 (overflow).

4.3.7
October 1979



CREDIT PROGRAMMER'S GUIDE

DELETE INSTRUCTION

DLETE FIELD, P1, L1

P1 L1
m———t———
0 1 1 2 3 4 5 6

FIELD | 30 : 31 ;32 | 33 {34 | 35 | 41 ]

RESULT AFTER EXECUTION

P1
o1 2 3 4 5 s
FIELDr30§34§35%41520§20%20;!

4.38
QOctober 1979



CREDIT PROGRAMMERS GUIDE

4.3.4 The Delete instruction (DLETE)
The DLETE iunstruction is used to remove characters from a STRG data item, the
characters remaining to the right of the deletion are then shifted to the left
to £111 the gap caused by the deleted characters, and spaces are used to fill
from the right.
The Condition Register is not affected by the execution of this instruction.
The instruction format is:~

DLETE String, Start, No.

String - is the character string which contains the item to be deleted

Start - this is a binary data item giving the character position for the
deletion to begin

No. ~ this is a binary data item and contains the number of characters
to be deleted

The pointer (Start) assumes that the first byte location is zero, so to access
the second byte the pointer must have a value of one.

Example of the DLETE instruction

MOVE, S1,=W’6"
MOVE SZ,=W’4’
DLETE DEST, 51,82

If the initial contents of DEST was ‘SMITH MRS PAT”, after the abov: section of

program had been executed DEST would contain “SMITH PAT .
The details of this operation are shown below
Delete characters SYLITH «...PAT" {. is deleted char)
Move rtemaining characters TSMITH PAT...."

Fill from right with spaces “SMITH PAT ’

|_INSTRUGTION | PAGE IN MO4 |
| DLETE | 1.4.69 1




CREDIT PPOGRAMMER'S GUIDE

MATCH iNST

MATCH TEXT1,71,L1,TEXT 2,P2,L.2
P2
| e

TEXT 2 [ W ﬁ ]

P1
L1
|

TEXT 1 / 7 A J

IF MATCH QCLCURE THEN COND.REG.=0

RESULT:
P1
i
+
TEXT 1 L 7 J
+
§
v
CHARACTERS SEARCHED
{LEHGTH CORRESPONDS
WITH £2)
4.3.10

Ccetober 1979



CREDIT PROGRAMMERS GUIDE

4.3.5 The Match instruction (MATCH)

The MATCH instruction is used to search for the occurence of a string or partof
a string within another string. The condition register will be set to zero if

a match is found,

If a match occurs

or 4 1f there is no match.

then the second operand (Start-1) will be set to the position

where the match was found; if there was no match then the contents will be

undefined.

The instruction format is.-—

MATCH
String-l1 -~ is
Start~i =~ is
No.~1 ~ is

String-2 -~ is

String-l, Start-1, No.-l, String-2, Start-2, No.-2

the character string to be searched

the position at which the search will start in String-l.
the number of characters to be searched in String-l.

the data item containing the string to be matched.

Start-2 - is a binary data item giving the position in String-2 for the
start of the string that is to be compared with String-l.

No.-2 - is a binary data item containing the number of characters in
String-2 that are to be matched with String~l. This data item
must contain a number that is less than or equal to No.-l.

The two pointers (Start-l and Start-2) assume that the first character position

is zero.

Example of the MATCH instruction

MOVE
MOVE
MOVE
MATCH
BE

If VAL contained

SL,=W'0"

§2,=W"27"

53,=W"3"
VAL,S1,52,I8P,53,53
OK

“001,002,003,004,005,006,007” and INP “ID=005", then after the

MATCH instruction has been executed control will be transferred to the
statement identifier OK and Sl will be set to “167.

|_INSTRUCTION | PAGE IN 404 |
L mATcH ) _i.4.125 |

4.3.11
October 1979



CREDIT PROGRAMMERS GUIDZ

4.4 Branch instructions

An important cousideration when writing any real time application, is that all
potential error situations are detected and handled correctly; to aid the
programmer achieve this objective many CREDIT commands use the Condition
Register to record the status after execution.

CREDIT provides a wide variety of branch instructions to transfer control
according to the contents of the condition register. There are also braach
instructions which allow the comparison of two data items and branch if a
certain condition occurs, to branch on boolean data items, indexed branches
and unconditional branches.

The CREDIT Translator produces two kinds of branches:

. Short branches where the destination is within 255 bytes of the branch
. Long branches for all other situations.

Short branches have a one byte displacement for holding the destination

address; however a long branch has an index to T:RBAT (the long branch table)
where the address of the destination is held.

4.4.1
October 1979



CREDIT PROGRAMMER'S GUIDE

BRANCH INSTRUCTIONS

SHORT BRANCHES LONG BRANCHES
UP TO 255 CHARACTERS ALL MEMORY
ADDRESSES
SHORT BRANCH (SB)
LONG BRANCH (LB)

COMPARE AND BRANCH (CB)
INDEXED BRANCH (1B)
TEXT AND BRANCH {TB)

44.2
October 1979



CREDIT PROGRAMMERS GUIDE
4.4.1 Unconditional branches

The unconditional branch instruction enables the transfer of cont-ol to the
statement label identifier specified in the operand.

The instruction format is:=~
B oP1

OPl is the statement label identifier to which the program will branch after
having encountered this instruction.

Example of an unconditional branch

B FRED1

The program will always branch to the statement label identifier FREDI when
this statement is encountered.

1 INSTRUCTION | PAGE IN MO4 |
B | 1.4.25 |

4.4.3
October 1973



CREDIT PROGRAMMER'S GUIDE

BRANCH WiTH CONDITION MASK

LB 1, CONT?
GR EQU 1
LB GR, CONT1
GR EQuU 1
cB GR, INLEN, CBINO, RDERR2
1B INDEX, SYS20, SYS40

4.4.4
October 1979



CREDIT PROGRAMMERS GUIDE

4.4+.2 Branch on condition mask

These instructions enable a branch to be made according to the contents of
a condition mask.

The general format of this instruction is:-

{58}
{ B} [<COND>, J<statement identifier>
{LB}

If the branch instruction "B’ is used, the Translator decides whether it is a
long or short branch and produces the appropriate object code. SB and LB are
the mnemonics for long and short branch respectivly.

The <COND> is optional, and if present gives the appropriate condition mask
for the branch, as shown in the table below; if this field is ommitted then it
becomes an unconditional branch.

| Cond. Cause of this condition
[_Code e
Zero result from arithmetic operation
] Equality found with Compare instruction
Logical data item had previous value of false
I/0 operation completed satisfactorly
Positive result from arithmetic operation
1 Operand-1 greater than Operand-~2 in Compare instruction

End of file detected ou I/0 operation

[
|
|
|
|
|
|
|
|
|
| Negative result from arithmetic operation
2 | Operand~l less than Operand-2 in Compare instruction
| 1/0 error on an I1/0 operation
|
|
}
|
I
}
|
|
]

3 Arithmetic overflow
Beginning or End of device on I/0 operation
4 Inverse of condition code zero
5 Inverse of condition code one
6 Inverse of condition code two
7 Unconditional branch

Example of conditional branch
B 5,L1
This will cause a branch to statement identifier Ll if the condition mask is

equal to five (negative, or operand one less than or equal to operand two, or
no end of file encountered by I/0 operation)

| INSTRUGTION | PAGE IN MO4 |
1 B L 1.6.25 |

4.4.5
October 1979



CREDIT PROGRAMMERS GUIDE

4,443 Mnemonic branches

To make the branch instructions easier to use the code can be replaced by a
mnemonic branch. The mnemonic branches use the Condition Register to establish
whether or not control is to be transferred, and can be divided into three
sections:

. Those for use after I/0 operations

. Those for use after the CMP instruction

. Those for use after arithmetic instructions

These instructions have only one operand and this contains the statement label

identifier to which control will be transferred, should the condition be
satisfied.

4.4.6
October 1979



CREDIT PROGRAMMERS GUIDE

4.4.3,1 Conditional branch after I/0 instructions

Both input and output instructions cause the Condition Register to be set when
they are executed. It is regarded as good program design to include checks to
detect any errors that have occurred as a result of an input or output
operation, and have routines to handle these situations. If an error has
occurred more detail can be obtained with the XSTAT imstruction, as shown in
section 6.1.1.

The branch commands available for use after input or output operations are
shown in the table below.

Note:

Not all these conditions can be generated by all I/0 operatiomns, for example,
EOF coundition will not occur when writing to a display.

The following mnemonics are used for these branches:

BEOF Branch if End of File

BERR Branch if Error

BEOD Branch if End of Device

BNOK Branch if not 0K (Same as BEKR)
BNEOF Branch if not End of File
BNERR Branch if no Error

BOK Branch if OK (Same as BNERR)

| INSTRUCTION | PAGE IN MO4 |
] BEOF | 1.4.28 |
| BERR | 1.4.29 |
| BEOD i 1.4.26 |
| BNOK | 1.4.39 |
| BNEOF | 1.4.34 |
| BNERR | 1.4.35 |
1l BOK [ 1.4.43 |
baba7

October 1979



CREDIT PROGRAMMERS GUIDE

4.443.2 Conditional branch after compare

Two operands may be compared using the CMP command described in section 4.1.6;
as a result of this comparison the Condition Register is set, and can be used
by branch instructions.

These branch instructions have one operand which is the statement identifier to
which control will be passed if the condition defined in the branch mnemonic
matches that set by the compare.

The example below shows the branch mnemonics that can be used after the compare
instruction.

Example of conditional branching after compare

P OLD, NEW COMPARE TWO FIELDS
BE Ll BRANCH IF EQUAL
BG L2 OLD > NEW

B L3 OLD < NEW

If OLD contained the value 5 and NEW the value 5 then control would be passed
to the statement at label L1l. If OLD contained the value 6 and NEW the value 5
then control would be passed to the statement at label L2, otherwise control is
passed to L3 unconditionally since OLD must be less than NEW.

The conditional braunches may be one of the following:

BE Branch if equal (Operand-1 = Operaud=-2)
BG  Branch if greater (Operand-l > Operand~2)
BL Branch if less (Operand-1 < Operand-2)
BNE Branch if not equal (Operand-1 ~= Operand-2)
BNG Branch if not greater (Operand-l1 -> Operand-2)
BNL Branch if not less (Operand-1 -< Operand-2)

INSTRUCTION | PAGE IN MO4

{
| BE ! 14,27 |
| 3G ] 1.4.30 |
| BL | 1.4.31 |
] BNE ] 1.4.33 |
} BNG | 1.4.36 |
1 BNL | 1.4.37 |

4.4.8

October 1979



CREDIT PROGRAMMERS GUIDE

4.4,3.3 Conditional branch after arithmetic instruction

After an arithmetic instruction has been obeyed the Condition Register will
contain information about the tesultant value, if it was positive, zero or

negative or if overflow had occurred. The branch instructious which can be
used after arithmetic instructions are:-

BN Branch if result < 0
BNN Branch if result > 0 or = G
BNP Branch if result < 0 or =0
BNZ Branch if result < 0 or > 0
BOFL Branch if overflow occurred
BP Branch if result > 0
BZ Branch if result = 0

Example of conditional branch

The following section is from a program which is being used for processing
binary (BIN) data items.

MUL AMM, XRATE, CONVERTED AMOUNT
BOFL OVF57 OVERFLOW
BNP MC17 NO POSITIVE AMOUNT
MOVE WK1, AMM WORKING STORE VAR.
MUL WK1,=W"175"
BOFL OVF58 OVERFLOW
DVR WK1,=W’100" AMM*1,75
MOVE BAL, WK1 STORE
8 MC18

MC17 MOVE BAL, AMM

MC18 RESULT NOW IN BAL

If AMM contained 1700 and XRATE 450, then after the multiply command had been
executed, the contents of AMM would be undefined, though the overflow bit in
the condition register would have been set. When the branch on overflow (BOFL)
command is encountered a branch would be made to the statement identifier OVF57.

1f AMM contained 0 and XRATL 450, then a branch would be made to the statement
identifier MC17.

Following the multiplication of WKl by the comstant 175 overflow may occur (the
largest binary number that the machine can store is 32767), and a test is made.
If overflow has occurred then a branch would be made to OVF58. However, as
there is no risk of overflow or division by zero at the DVR command, no checks
follow that instruction.

| INSTRUCTION | PAGE IN MO4 |
| BN ] 1.4.32 |
| BNN ) 1.4.38 |
| BNP | 1. 4440 |
| BNZ | Leda 4l |
) BOFL ] 1.4.42 |
| BP | Lodobdd |
1 BZ 1145 ]
4.4.9

October 1979



CREDIT PROGRAMMERS GULDE

4ebo4 Compare and branch instructions

These instructions are combined compare and branch instructions; but they can
only be used where a short branch would be generated, hence the destination
address of the branch must be within 255 bytes of the current address. If the
destination address is greater then 255 bytes from the current address then the
following section of code could be used.

CMP A,B
BE L1

However for short branch situations the following combined instruction is used.
CBE A,B,L1

The rules for data types in the compare instruction also apply to the data
types in the compare and branch instructions. This is a three operand
instruction of the format:-—

CB< type> data item 1, data item 2, statement identifier
The first operand must be a data item identifier.
The second operand is either a data item identifier or a literal.
The third operand is the statement identifier which will be branched to 1if the
condition specified in the compare and branch instruction is satisfied by the
first two operands.
The type is one of E,G,L,NE,NG,NL and is used to form the mnemonics listed

below.

Examples of the compare and branch instruction

CBL BAL, AMM,OVD Branch to OVD if BAL is less than AMM
CBE AMM,MAXL, SPC1 Branch to SPCl if AMM is equal to MAXL
CBNE LOOP,=W’1",ROUND Branch to ROUND if LOOP is not equal to 1
CBL RATE, IRR, GO Branch to GO if RATE is less than IRR
CBG AMT,FIX, ERR Branch to ERR if AMT is greater than FIX
CBNG ACC,MIN, READ Branch to READ if ACC is not greater than MIN

| INSTRUCTION | PAGE IN MO4 |

| CBE { 1. 4449 |

| CBG | 1.4.51 [

| CBL | 1.4.53 |

| CBNE | 1.4.55 |

| CBNG | 1.4.57 |

1 cBNL | 1.4.59 |

4.4.10

October 1979



CREDIT PROGRAMMERS GUIDE

4.4.5 Test and branch

These instructions can only be used for branching dependent on the condition of
boolean data items, and have the following format:-

command boolean variable, statement identifier

The command can either be test and branch if true (TBT) or, test and branch if
false (TBF).

The first operand specifies the boolean data item on which the decision to
branch or not will be made.

* The second operand is the statement identifier to which control will be passed
should operand one satisfy the criteria of the command.

Example of the test and branch command

TBT STAT,MC17

This will cause a branch to statement label MC17, if STAT holds the value TRUE
otherwise the next cousecutive instruction will be obeved.

INSTRUCTION | PAGE IN MO4 |

] TBF | 1.4.52 |

1 TBT | 1.4.53 |
44,11

October 1979



CREDIT PROGRAMMERS GUIDE

4.4,.6 Indexed branch instructions

The indexed branch command (IB) is used to generate a long or short branch to
one of a number of statement labels depending upon the value of an index.

The format of the indexed branch command is :-

18 Index, Label-], Label~2,..... Label~-n
Index - is a binary data item containing the index to be used by the branch.
Label-1 etec. - these are a list of statement identifiers to which the program
may branch depending upon the value in the index. If the index held the value
one then this would cause a branch to the statement at Label-l, if the index

held the value 2 then a branch would be made to the statement at Label-2 and so
on.

If the index contains the value zero, or a value greater than the number of
statement label supplied, then the unext consecutive instruction will be

executed.

Example of an indexed branch

B SPBINW2, READIN, DUMMEY, KEOT, KTFWD, KTBWD, KTHOME, c
KTLDOWN, KTLEFT, KTRIGHT , KTUP, KENTER
SUB SPRINW2, =W 14"

SPBINW2 is the binary index used for controlling this indexed branch; where the
program branches to depends on the contents of this data ltem.

Coutents of Statement identifier to which
SPBINW2 control will be passed

1 READIN

2 DUMMEY

3 KEOT

4 KTFWD

5 KTBWD

6 KTHOME

7 KTLDOWN

8 KTLEFT

9 KTRIGHT

10 KT DOWN

11 KTUP

12 KENTER

If SPBINW2 contains the value zero, or a value greater thean twelve then the
next consecutive statement will be execnted, in this case the subtract command.

1 INSTRUGTION | PAGE IN MO4 |
1 IB | 1.4.114 |

4ubal2
October 1979



CREDIT PROGRAMMERS GUIDE

5., SUBROUTINE HANDLING

5.1 Introduction

Subroutines are usually small sections of a program for performing a single
function, be it initialising data items, displaying items on a visual display
screen, or carrying out a wodulus eleven check, for example.

Writing programs as a series of subroutines can reduce development, testing and
maintenance time compared with a ‘monolithic’ approach. As smaller units are
easier to understand, testing can be carried out on each subroutine in turm.

If a CREDIT subroutine is located in a different module to the routine that is
to call it, then the calling module must contain an external directive (EXT)
giving the subroutine name, and the module containing the subroutine itself

must contain an entry directive (ENTRY) to match.

Example: Main module Subroutine module
EXT SUBL susl PROC
PERF SUB1!

Subroutines in CREDIT are euclosed in directives starting with the procedure
directive (PROC) and ending with the procedure end directive (PEND).

Example:
XCH PROC
<
> CREDIT statements forming
< the subrcoutine called XCH
PEND

The subroutine name is located in the label field of the PROC directive; in the
above example the subroutine name is X¥CH, and this is the name that must appear
in the ENTRY and EXT directives, if performed from another module.

5.2. Execution of a subroutine

The transfer of control to the subroutine is achieved using the perform
command (PERF) or the perform indexed comnand (PERFI), and the return of
control to the calling routine with the return command (RET).

The PERF and PERFI command both store o the system stack the address of the
next instruction to be obeyed after a norual return from the subroutiune, along
with other informatinn on che task mnd.t.. Each stack entry occupies six bytes,
and the stack currventiy has deis size of 128 bytes though this may be
altered by using the stack di , for example, a large number of
embedded performs are to be nade »¢ may have to be increased, and 1if no
embedded calls are to be made wiwe way be reduced.

TR
:
1




CREDIT PROGRAMMER'S GUIDE

CREDIT SUBROUTINE IN THE SAME MODULE

PERF SuB1
—

SUB1 PROC
. ——t

RET
PEND

512
October 1979



CREDIT PROGRAMMERS GUIDE

The perform command has the following format:-
PERF subname{ ,p1{+..,pn}}

where - subname is the name of the subroutine to be executed.
- pl to pn are actual parameters which will be passed to
the subroutine.

The indexed perform command has the following format:~
PERFI index,s1{,s2...,sn}

where — index is a binary index to be used for selecting the
subroutine that is to be executed
- sl,s2...,8n is a list of subroutine names, the first
entry being regarded as entry one, so if the variable
being used for the index has a value 2 then the
2nd subroutine will be activated.

The retura command has the following format:-
RET <opt. byte dis.>

The optional byte displacement specifies the number of bytes which are to be
added to the return address before the return command is executed.

The RET instruction transfers control hack to the calling routine at the
instruction after the PERF command or PLIST directive (see below), and must
therefore be the last logical instruction in a subroutine.

The address to which the return will be made is held on the system stack; it is
the byte displacement from the perform instruction. The perform instruction may
vary in length depending on the number of parameters and the type of addressing
adopted; when the RET instruction is encountered control is returned to that
instruction. It 1is possible to add a displacement to the return command to
enable a return to a subsequent instruction, as described above.

Example:
PERF ABC, A, B
8 Ll
ADD A,B
RET

On encountering the above return insiruction, control will be returned to the

branch iastruction, which will transfer control to the instruction at statement
identifier LI. However as the bra.h iastruction occupies two bytes; if the
subroutine ABC is terminated by the iunstruction:=

RET 2

then contrel will be returned to the ADD iastruction, as the branch instruction
occupies two bytes.

[ REFERENCE | PAGE IN MO4 |

| PERF I 1.4.134 |}

| PERFI | 1.4.135 f

1 _RET i 1.4.139 ]
5.1.3

October 1979



CREDIT PROGRAMMERS GUIDE

5.2 Parameter handling
5.2.1 General rules

A subroutine can access directly any data item defined in the data division
which is available to the calling routine. In addition a subroutine may have
formal parameters, which are local names listed in the operand section of the
PROC directive and used solely within that subroutine. When the subroutine is
executed then the actual parameters will be substituted for these formal
parameters. The actual parameters are variable names used within the calling
routine. The actual parameters are specified in the PERF command after the
subroutine name, and if the PERFI command is used then they are specified in
the PLIST directive immediately after the PERFI command. There can be up to
eight formal parameters in a subroutine, depending on the contents of the
LITADR option in the directive OPTNS.

The parameters in the calling program are called the "actual parameters" and
those in the subroutine the "formal parameters'. The valid types for actual
parameters are listed below.

boolean (BOOL) data items [
binary (BIN) data items |
binary arrays (BINI) |
binary coded decimal data items (BCD) {
binary coded decimal arrays (BCDI)

string data items (STRG)

string arrays (STRGI)

data set identifiers |
literals, but not those with an unspecified type or of type X {

The indexed perform may pass parameters to a subroutine, in which case all the
subroutines in the subroutine list will require the same number of parameters.
The parameters to be transferred are specified in the parameter list directive
(PLIST) located immediately after the PERFI command. The format of the PLIST
directive is :-

PLIST pl{,«..pn}

pl{,...pn} is the list of actual parameters which will be passed accross to the
subroutine.

Example:

PERFI SUR1,SUB2,SUB3, SUB4
PLIST ACCNO, NAME, =D *1” ,BINW4

Note:-

If an arvay element is being passed to a subroutine, then the array and the
subscript must be passed as separate parameters. In addition, the formal
parameter for the array itself must be followed by open and close parenthesis,
to indicate that it is an array.

Example:

PERF SUB2, ARRAY, INDEX, AMOUNT

SUB2 PROC FARR () ,FINDX, FAM

1 DIRECTIVE | PAGE IN MO4 |
{1 _PLIST | 1.4.210 |

5.2.1
October 1979



CREDIT PROGRAMMER'S GUIDE

ACTUAL/FORMAL PARAMETERS

IDENT __, MAIN

pDIvV

:

OLDBAL BCD
AMOUNT BCD
AUX BCD

PDIV

PERF
[

suB1 PROC

MOVE
ADD

RET
PEND

END

12
12
20
sUB1, OLDBAL, AMOUNT
/{ ’ ’ //’(
L L,
FODS8, FAM
AUX, FODB
AUX, FAM
522

QOctober 1873



CREDIT PROGRAMMER'S GUIDE

SUBROUTINE (FORMAL PARAMETERS, ARE
KEY TABLE, FORMAT LIST, LITERAL)}

PERF SUB1, LENGTH, FORM1, KTABT, =D‘1°
suB1 PROC INLEN, $FORM, $KTB, $LIT
¢
ADD TRANR, $LIT
K1 DSKB, INBUF, $KTB, INLEN, INDEX

{
EDWRT  DSVOU, SFORM

PEND

523
October 1979



CREDIT PROGRAMMERS GUIDE

5.2.2 Literals, keytables and format lists as parameters.

There are two ways of passing literals, keytables and format lists to
subroutines, as follows:

Method 1

The actual parameter is specified in the normal way, and the formal parameter
is given a name which starts with a $ (dollar sign). This tells the tranmslator
that the actual parameter to be substituted at execution time 1s one of the
three types defined above, e.g:

PERF SUB1, LENGTH, FORM1,KTAB1,=D ‘1’
SUBL PROC INLEN, $FRM, $KTB, $LIT1

A&D INLEN, SLIT1

i

PEND

Method 2

The formal parameter is not given a name starting with a dollar sign. In this
case, the directives shown below must appear immediately after the PROC
statement at the start of the subroutine.

PFRMT when using format lists

PLIT when using literals

PKTAB when using keytables
These are always required when ADRMOD is set to 2 in the OPTNS directive, and
the formal parameter must not then be preceded by a § sign, e.g:

PERF SUB1,LENGTH,FORMI,KTAB1,=D‘1*

SUB1 PROC  INLEN, FRM,KTB,LIT
PFRMT FRM
PKTAB KTB
PLIT LIT
|
ADD  INLEN,LIT
!
RET
PEND

A summary of rules for passing formar lists, keytables and literals is shown
on the next page.

1 DIRECTIVE | PAGE IN MO4 [

| PFRMT | 1.2.18 |

| PKTAB | 1.2.19 |

1 pLIT | 1.2.20 |
5.2.4

October 1979



CREDIT PROGRAMMERS GUIDE

Summary of rule for passing literals, keytables and format lists

name PROC
<opt>

name PROC

name PROC
<opt>

FORM1 (ADRMOD=2) $ not required
FORM1

$FORM1 (ADRMOD=]) $ required
FORM1 (ADRMOD=1) $ not required
FORM1

name is the name of the subroutine
<opt> is either PFRMT, PLIT or PKTAB.

5.2.5
October 1979



CREDIT PROGRAMMERS GUIDE

7. TASK SCHEDULING AND ACTIVATION

7.1 Dispatcher queue

It has been previously stated that, in a system when more than one task exists,
the tasks are ‘considered for dispatching’ when a LKM is performed. The
mechanism for task dispatching and queuing, of tasks will now be outlined.

The scheduling of tasks is performed by the TOSS Monitor: at system start, all
the tasks are placed in the Dispatcher queue, and the first task is then
activated, {.e. starts execution.

A task runs in User mode, which means that when an I/0 instructiom is executed,
control passes to the Monitor. The Monitor then starts the I/0 operation. The
task can not continue until the I/0 is complete, assuming Wait is used, and
this means that the task is put at the back of the dispatcher queue, which
operates on a FIFO principle, and another task may get control. This principle
is necessary particularly for keyboard imput, which is relatively slow, since
otherwise the keyboard input task would hold up the other tasks in the system.
It is quite possible that the dispatcher queue can be empty, 1f all tasks are
waiting for 1I/0 to be completed. In this case the Monitor is in an “idle loop’,
until such time as I/0 completes for one of the tasks. There are other ways in
which the dispatcher gueue can be affected and these are the instructions:

PAUSE inhibits execution of the task, until restarted by another task;
. during this time the task is pending, and is not considered for
dispatching.

RSTRT restarts the specified task; the task does not necessarilly get
control, but is placed at the back of the dispatcher queue.

EXIT terminates the task, and it ceases to exist; task tables and all
references to the task are deleted.

ACTV activates a task, which may or may not have already been active and
performed an EXIT. Activation may be at any statement that contains a
label. Again, the task may not get control, but is placed in the
dispatcher queue.

| Keyword | Page in |
| | manual |
| PAUSE ] MO4 1.4.133 |
| RSTRT | MO4 1.4.142 |
| EXIT | MO4 1.4.106 |
| |

ACTV | Mo4 1.4.20

T.1.1
October 1979



CREDIT PROGRAMMER'S GUIDE

SCHEDULING OF TASKS

TIME  TASK DISPQUEU 170 PENDING
ALL TASKS
ACTIVATED
TOGETS | -~
CONTROL
1/0 STARTED
1/0 » TO_WAITS FOR
TTGETS COMPLETION
CONTROL | - 170
P 1 1/O STARTED
1/0 T1WAITS FOR
T2GETS '[’ COMPLETION
CONTROL | - 1/0
10
710 | i'o}compLeTED
1o 1/0 STARTED
TO GETS - T2 WAITS FOR
iJ0 CONTROL COMPLETION 1/0
S
T2,
1/0 COMPLETED

712
October 1979



CREDIT PROGRAMMERS GUIDE

7.2 More than one start point

It is possible to specify more than one start point in a module. At system
start, the task will be activated at both start points. However, since the task
can not exist twice, one start point is placed in the dispatcher queue, and the
other in the pending queue.

When the task EXITs, the task is deactivated, and the second start point is
removed from the pending queue and placed in the dispatcher queue, and is
thereby activated at the second start point.

T.2.1
October 1979



CREDIT PROGRAMMER'S GUIDE

MULTIPLE START POINTS
START PNTS—#» 51,52

CREDIT TOSS MONITOR
PENDING
s1
DISPQ
EXIT |
1
]
|
DISPQ
S2
PENDING
ACT 81 _ .

EXIT

722
October 1979



CREDIT PROGRAMMERS GUIDE
8. INTERTASK COMMUNICATION
§  Introduction

It is possible for tasks to communicate with each other within the system, by
issuing ‘messages’. These messages may be directed to a specific task or may be
general, i.e. issued to all or any of the other tasks. Similarily, tasks may
request a message from a specific task, or from any task that has issued a
message.

Two queues are maintained in the system for unaddressed message requests, omne
for input (read) messages, and one for output (write) wessages. Only one queue
may have entries at one point in time. When both queues have an entry the
message transfer takes place and both items are removed from the queue.

This queueing sytem works on the first in first out (FIFO) principal, with one
exception that will be seen later in this section. The simplest case is as
“follows:-

Task A issues an unaddressed write command. This request is placed in the
unaddressed write queue, until such a time as Task B issues a read; at this
] ‘nt the two requests are satisfied, and the queues cleared. Task A would
tnen be able to resume, assuming the instruction had the wait bit set.

In addition, a task may issue a specific read for a message from another task,
and this may result in the reception of a message specifically directed to the
reading task, or one from the queue of unaddressed writes, providing the
message in the latter case was issued by the task from which the current task
is now requesting a message, and no matching addressed request exists.

Furthermore, a task may issue a specific write directed at another task, and in
this case, if no read is oustanding from that task in either of the queues,
this request is queued until such a time as the specified task issues a read
directed at the task sending the message. The .NW and WAIT functions apply to
intertask I/0 in the same way as for conventional I/0.

8.1.1
October 1979



CREDIT PROGRAMMER'S GUIDE

INTERTASK COMMUNICATION

TASKS QUEUES
Al B2 c3 D4 RIU  w/u
O Read
o— Read
0——Read .
° Write
.
O— Write
B- Read
® _ Write

812
October 1979

MATCH

NO

NO

NO

YES

NO

YES

YES

YES

TIME




CREDIT PROGRAMMERS GUIDE
6.1.1 Unaddressed read and write

These use the standard read and write commands, the data set directive being
the TOSS file code defined for intertask communication. Examples of these
instructions are shown below:-

READ DSIC,MESBUF,SIZE
WRITE DSIC,MESBUF,SIZE

8.1.2 Addressed read and write

These use the same read and write commands as random 1/0, and again the data
set directive will be using the TOSS file code defined for intertask com—
munication, and in place of the record number will be the appropriate task
identifier. If an addressed read is issued, then the unaddressed queue will

first be checked to see if the task specified has already issued an unaddressed

write, if none is found then the addressed queue will be searched, and if a
match was not found then the task will be suspended until the read can be
satisfied. Examples of these instructions are shown below:-

RREAD  DSIC,MFSBUF,SIZE, TASKID
RWRITE DSIC,MESBUF,SIZE, TASKLD

8,1.3 Examples of intertask communication

Four tasks exist in the system; Al, 32, C3 and D4.

Action Result
Al issues a READ ADDRESSED tg C3 Request queued in C3
B2 issues a READ UNADDRESSED Request in R/U queue
C3 issues a READ UNADDRESSED Request in R/U queue

Al issues a WRITE UNADDRES

SED Matched to lst in R/U queue
message passed to B2

C3 issues a WRITE ADDRESSED to B2 Request queued on B2

C3 issues a WRITE UNADDRESSED Matched to Al R/A on C3
message passed to Al

Matched to W/A on C3
message passed to C3

B2 issues a READ UNADERESIE

Al issues a WRITE UNADDRESSED “atched to lst in R/U queue
passed to C3

I 14140
Clil s
[ .4.169

¢
i 1




CREDIT PROGRAMMERS GUIDE

9. SCREEN MANAGEMENT

9.1 Introduction

Screen management consists of several CREDIT subroutines utilizing format 1/0
control, format I/0 control was described in section 6.6 of this manual. This
package enables a complete screen of information to be displayed, typically
with a number of areas where the operator has to enter or change items. These
"input fields" can initially contain an existing value or they could be set to

blank.

Each prompt and input field is in a format list in the application program. The
format list is attached with the ATTFMT instruction prior to screen management
being called, the DISPLAY being done within the package.

With display units that permit both high and low intensity display, the items
entered from the keyboard will be displayed in high intensity mode; those items
of text emanating from the format list will be displayed in low intensity.

This package is held as CREDIT source code in a file called SCREEN, in the user
area SCREEN on the system pack. Before the package can be used it has to be
copied to the application user area. As the package i1s written in CREDIT, the
routines can be easily modified; for example, the package as written expects
the DDIV of the application to be held on a file called SPDDIV; if this is not
the case, then the DDUM statement in the screen management package must be
altered accordingly.

9.1, 1
October 1979



CREDIT PROGRAMMERS GUIDE

9.2 Requirements of screen management

Screen management requires that a number of definitions are made within the
application. These are three keytables, some extra data items, data sets for
keyboard, display and associated printer, a format table of error messages and
a number of checking routines. The data item, data sets and format control
statements must be included in the DDIV for the application. It is usual to
group all other items in a file called “SPLITT’, this file being incorporated
into the screen management module at translation time; the screen management
package use the INCLUDE directive to bring across the information from SPLITT.

If the module SPLITT is not used, then the INCLUDE directive in the module
SCREEN must be removed, or if a module name other than SPLITT is used, the
INCLUDE directive must be changed to the new name.

Note:

It is not possible to have an IDENT statement in files which are to be included
via the INCLUDE directive. A sample layout of SPLITT is included at the end of
this chapter.

9.2.1
October 1979



CREDIT PROGRAMMERS GUIDE
9,2.1 Data items
The data items given in the table below are required for use by the screen
management package and must be defined in the DDIV of the application program.

These data items must be accessable to the task which is initiating the perform
of screen management .

Data items required by screen management

| Name | Type | Size | Use |
| | | | i
| SPBINWl1 | BINARY | One word [ Work variable

| SPBINW2 | BINARY | One word | " [
| SPBINW3 | BINARY | One word | " |
| SPBINW4 | BINARY | one word | " i
| SPCRANGE | BOOLEAN | One bit | Fields changed|
| SPPROMPT | ROOLEAN | One bit | Display form |
| SPINPUT | STRING | Length greater then | Input item {
] | | Largest input field | |
| SPERCALL | BOOLEAN | One bit | Work variable |
| SPSTRGW1 | STRING | Greater than one ] " |
{ | ! | !

9.2.2 Data sets

Screen management uses three data sets, a printer, display unit and a keyboard.
These data sets must be defined in the application program with the names shown
in the table below. The buffer for the display umit must be large enough to
hold the longest line plus the associated control characters; the buffer for
the print unit must be at least the same size as the display. The two buffers
may be shared. The data division must include the FMTCTL directive to link the
two devices and enable some of the format control I/0 instructions to be used
by screen management.

Data sets used by screen management
| Name | Deseription

|

} SPDSPRT | Printer data set

| SPDSSCRN | Display data set |

| SPDSDYKB | keyboard data set |
i |

9.2.2
October 1979



CREDIY PROGRAMMERS GUIDE

9.2.3 Entry points

There are & number of entry points for the package, as described below. The
required entry points must be defined as external (EXT) in the application

program.

The entry points are subroutine names, hence they will be accessed by

a perform (PERF) or indexed perform (PERFI) instruction in the application

program.

SPCLRN

SPCLRS

SPCLRA

SPERR

SPERR2Z

The prompts and titles described in the attached format 1ist will be
displayed on the screem, only if the boolusn data item SPPROMPT has
the value "TRUE’; if SPPROMT has the value °FALSE’ then they will not
be displayed. Irrespective of the vaiue of SPPROMPT, the «ld contents
of the data items in the format list will be displayed, the cursor
will be placed at the first data field and will wait for the user to
enter information, or move the cursor to another data field.

The prompts and titles described in the attached format 1.st will be
displayed on the screen, only if the boolean data item SPPROMPT has
the value “TRUE’; if SPPROMT has the value ‘FALSE” then they will not
be displayed. Irrespective of the value of SPPROMPT, the old contents
of the data items in the format list will be displayed only if the no
clear (NCLR) option is specified in the FKI command, the other fields
will be left blank; the cursor will be placed at the first data field
and will wait for the user to enter informatiom, or move the cursor to
another data field.

The prompts and titles described in the attached format list will be
displayed on the screen, only if the boclean data item SPPROMPT has
the value °TRUE’; if SPPROMT has the value ‘FALSE” then they will not
be displayed. Irrespective of the value of SPPROMPT the old contents
of the data items in the format list will not be displayed, the cursor
will be placed at the first data field and will wait for the user to
enter information, or move the cursor to another data field. The use
of this call with an SPPROMPT value of FALSE should be avoided as it
results in a blank screen.

When screen management detects an errvor the acoustic alarm is sounded
and an error message is displayed on the last line of the screen.

This entry point allows errors detected in the application program to
be displayed in a similar manner. After the error message has been
displayed control will return to the application. The binary data item
SPBINW4 is used as an index to rhe tormat table SPFTBERR which holds
the format lists for the error wessages.

Like SPERR this entry point allows an error detected in the
application to be displayed; in addition it allows the errored field
to be corrected before control is transferred back to the application.
The binary data item SPBINW4 is used as an index to the format table
SPFTBERR which contains the format lists for the error messages.

9.2.3
October 1979



CREDIT PROGRAMMERS GUIDE

9.2.4 Keytables

Screen management uses three keytables, one to control editing of the current
field, one to check the first character entered in a field and one to check all
subsequent characters in the field. The hexadecimal values generated by the
actual keys on the keyboard used in the application must be present in the
keytables, and the entries are position dependant. As supplied the package
expects the keytables to be called SPKTABl, SPKTAB2 and SPKTAB3.

SPKTAB]

SPKTAB2

is used to check the first character entered in a field. If the
character entered matched to an entry in the keytable then the
appropriate action will be taken, for example if the ‘TAB LEFT’ key
had been entered then the first input field on the current line is
made current. .

If the character entered did not match with any of the table entry and
was not a valid alphanumeric character then the acoustic alarm in the
display unit will be sounded, and the cursor remains at the start of
the field.

If the character entered was a valid alphanumeric character, and did
not match with the keytable then it will be transferred to the string
data item SPINPUT and the remainder of the field on the display unit
will be filled with periods “.”.

The field size is either the limit specified in the MAXL option on the
DYKI instruction, or the length of the string, if the MAXL is not
specified.

is used to check the second and subsequent characters entered. If a
match is found with the keytable then the specified action will be
taken.

If the character entered was not found in the keytable, and it was not
an alphanumeric character then the acoustic alarm will be sounded and
the cursor remains in its current position.

If a valid alphanumeric character was entered and a match was not
found with the keytable then the character is placed in the string
data item SPINPUT and the cursor is positioned at the next character;
if the field has been filled then all characters entered until a valid
terminator is entered, except when the NEOI flag is set in the DYKI
instruction. In this case, when a field is filled the next field will
become current, the cursor is then positioned at the first input
position of that field.

9.2.4
October 1979



CREDIT PROGRAMMERS GUIDE

SPKTAB3 1is used for holding the character codes to be used for editing the
current field. When the editing has been completed and the field
contains the desired contents then one of the function keys will be
used to make the next field curremt. If the DYKI instruction has the
NEOI flag set then when the current field is filled, the next field
will become current.

Note:

If a keytable entry is not required then the value of X'FF’ should be entered
in the approriate position. This is often called the NOKEY value.

If a 6236 keyboard is being used then it is necessary to include a special
character conversion table CTABO!l, which specifies the code to be generated by
each key. When a table entry is not required it should be set to the bell
character X"07.

An example of the three keytables is given in SPLITT at the end of this
section. The position and description of the function key codes within the
three keytables is described in the next section.

9.2.5
October 1979



CREDIT PROGRAMMERS GUIDE

9.2.5 Keytable entries

9.2.5.1 Editor functions

Non-destructive space — Position 1 in SPKTAB3

When this key 1s pressed the cursor is moved one position to the
right; the acoustic alarm is sounded if an attempt is made to go
beyond the current last character of the input field. Also it is not
possible to position the cursor beyond the current contents of the
field.

If for example, the field had been specified with a length of ten
characters, and currently the field held only five characters then the
acoustic alarm ‘would be sounded if an attempt was made to move the
cursor to position six.

If the NEOI flag is set in the DYKI instruction, and this key is
pressed when the cursor is in the last position of the field a return
will be from edit and the next field will become current.

If the NEOI flag was not set and the cursor was currently in the last
position of the field when this key was pressed, the acoustic alarm
will be sounded and the cursor position will not be changed.

Non~destructive backspace - Position 2 in SPKTAR3

Insert -

Delete -

The cursor is moved one position to the left. The acoustic alarm will
be sounded if an attempt is made to go beyond the left hand field
ldimit.

Position 3 in SPKTAR3

A space character is inserted into the string at the current cursor
position, the characters to the right of the cursor being moved one
place to the right. The character string will be truncated if it
exceeds the field limit.

Position 4 in SPKTAB3
The character at the current cursor position is deleted, the

characters to the right of the cursor will then be shifted left one
place, the right most position being replaced by a space character.

Backspace ~ Position 1 in SPKTABL and SPKTAB2

When this key is pressed, the cursor is moved one place to the left
and the corresponding position on the display is replaced by a period
‘.. If backspace is performed at the first position of the curreat
input field, then the previous contents of the data item, if any, will

be displayed.

9.2.6
October 1979



CREDIT PROGRAMMERS GUIDE

9.2.5.2 Clear functions

Clear 1 - Position 2 in SPKTABl and SPKTAB2, position 5 in SPKTAB3
The input field on the display unit and the corresponding data item
will be cleared, the cursor is placed at the first position of the
current lnput field. If this key 1s pressed when in EDIT mode the
edit will be terminated and the next input field made current.

Clear 2 - Position 3 in SPKTABl and SPKTAB2, position 6 in SPKTAB3
The cursor is placed at the first position of the current input field,
the previous contents of the data item, if any, will be displayed. If
this key is pressed when in EDIT mode, the edit will be terminated and
the next field made current.

Clear 3 - Position 7 in SPKTAB3

Characters from the current cursor position to the end of the field
are deleted and the edit operation is terminated, the next field is
made current.

End of item - Position 8 in SPKTAB3 and position 4 in SPKTAB1 and SPKTAB2
The current operation is completed, the unext field is made current.

9.2,5.3 Cancel functions

Cancel 1 - Position 5 in SPKTABl and SPKTAB2, position 9 in SPKTAB3
A return is made to the application program, with the index item
SPBINW2 containing the value one. Note mo check is made on the
contents of the field via SPAPPL etc..

Cancel 2 - Position 6 in SPKTAB! and SPKTAB2, position 10 in SPKTAB3

This is the same as Cancel 1 but the index SPBINW2 will contain the
value two.

9.2.7
October 1979



9. 2.

Tab

Tab

Tab

Tab

Tab

Tab

Tab

Tab

CREDIT PROGRAMMERS GUIDE
5.4 Tabulation functions
forwards - Position 7 in SPKTAB] and SPKTAB2, position 11 in SPKTAB3

Make the next input item current. If there are no more input items on
the screen then the cursor is re-positioned at the start of the
current field. The next field can be on the same line as the current
field, or it may be on a subsequent line. If there is more than one
input field on a line, then the Tab forwards will make the left most
field on the next line current.

backwards - Position 8 in SPKTABl and SPKTAB2, position 12 in SPKTAB3

Make the preceeding input item current. If the current input field is
the first on the screen then the cursor will be positioned at the
start of the current field.

home - Position 9 in SPKTAB! and SPKTAB2, position 13 in SPKTAB3

Move the cursor to the first position of the first input field of the
current screen format.

left and down - Position 10 in SPKTAB! and SPKTAB2, position 14 in SPKTAB3

Tabulate to the first input field on the next line. If no input field
exists on the screen, below the position of the current screen then no
action will be taken.

left — position 11 in SPKTAB1 and SPKTAB2, position 15 in SPKTAB3

Place the cursor at the first character position of the left most
field of the current line.

right -~ Position 12 in SPKTABl and SPKTAB2, position 16 in SPKTAB3

Place the cursor at the first character position of the right most
field of the current line.

down - Position 13 in SPKTAB! and SPKTAB2, position 17 in SPKTAB3

Move the cursor to the data item on the next line, which is in the
positlon nearest the current input field. If the line has two fields
equidistant from the current field theu the left most of the two
fields will be selected. If there are no fields below the current
field on the screen then no action will be taken.

upwards ~ Position 14 in SPKTAB1 and SPKTAB2, position 18 in SPKTAB3

Move the cursor to the data item on the preceding line, which is in
the position nearest the current input field. If the preceding line
has two fields equidistant from the current field then the left most
of the two fields will be selected. If there are no fields above the
current field on the display then no action will be taken.

9.2.8
October 1979



CREDIT PROGRAMMERS GUIDE

9.2.5.5 Miscellaneous functions
Copy — Position 15 in SPKTABl and SPKTAB2, position 19 in SPKTAB3

A copy of the screen will be produced on the printer. This will have
the effect of terminating input to the current field,

Duplicate - Position 16 in SPKTABl and SPKTAB2, position 20 in SPKTAB3

The contents of the field specified in the duplicate option will be
moved to the current input field. If the option was not specified in
the FKI instruction, error message number four in the format table
SPFTBERR, will be displayed on the last line of the screen and the
acoustic alarm sounded.

Edit - Position 17 in SPKTABI1 and SPKTAB2, position 21 in SPKTAB3

The keyboard will be set to edit mode. If the package is already in
edit mode this instruction is ignored and the acoustic alarm sounded.

Enter ~ Position 18 in SPKTAB1 and SPKTAB2, position 22 in SPKTAB3

This causes a return to the application. If compulsory fields have
not been filled, then an error message is produced, and the empty
compulsory field nearest the top left corner is made current.

Application function keys - Positions 18 and above in SPKTAB1 and SPKTAB2Z,
positions 22 and above in SPKTAB3

These are treated as an ENTER. On return to the application the index
item SPBINW2 will hold the number of the application key in the
following form:- if application key 1 was pressed then SPBINW2 will
hold the value 4, if application key 2 was pressed then SPBINW2 will
hold the value five, and so on.

9.2.9
October 1979



CREDIT PROGRAMMERS GUIDE

9.2.6 Format table

The error messages produced by screen management are held as a series of one
line format lists, the names of these format lists being given in the format
tabie SPFTBERR. The first five positions of this table have a predefined
meaning within screen management, subsequent positions being available for
holding application related error messages. The meaning applied to the first
five elements is given in the table below:-—

Format table entries for error messages in gcreen management
| Pos. | Use

]

Number of characters entered is
less then that specified in MINL

1

!
| |
| ! |
i | |
! | |
) 2 | Not used (available to appl) {
| ! |
{ 3 | 1/0 error (e.g. time out) |
i | |
| 4 | T1legal end of item key (dupl. key
| | pressed but not specified in FKI) |
| | |
[ | Compulsory field still blank |
l | |
| 6 [ And upwards available to appl. |
| | |

When an error is detected either in the application, or screen management, the
acoustic alarm will be sounded and the appropriate message displayed on the
last line of the screen.

Wheu an error message has been displayed on the screen - not via SPERR, a
correct value may be entered in the errored field only after one of the
following function keys has been pressed:- CLEAR 1, CLEAR 2, EDIT, CANCEL 1,
CANCEL 2.

9.2.10
October 1979



CREDIT PROGRAMMERS GUIDE
9.2,7 Tabulation validation routine

It is necessary to write a subroutine called SPTCHK. This routine is called if
the field that has been tabulated to has the CTAB option set, it will be called
before data can be entered to the field. Heuce a checking progvam can be
written to see if the field can be made current in the existing environment,
providing a means of controling the cursor position. The result of this routine
is held in SPBINW3; in the case of a correct tabulation this data item will
contain zero, and if the tabulation 1is to continue it will contain a non zero
value.

Tabulation check routine

Contents |
of ! Action
SPBINW3 |

Any other | Tabulation will

|
|
|
| Zero | Correct tabulation
|
]
j__value | continue

9.2.11
October 1979



CREDIT PROGRAMMERS GUIDE
9.2.8 Value check routines

Data items entered may be checked via a user written subroutine before the
value is transferred frow the DYKI input area (SPINPUT) to the data item
identifier specified in the FCOPY or FMEL instruction. These subroutines are
written by the user and are called:-

. SPAPPL
. SPCHK1
. SPCHK2
. SPCHK3
. SPCHK4
. SPCHKS
. SPCHK6
. SPCHK7

These routines must be present as ENTRY points in the application, as they are
defined as EXTernal in the SCREEN module.

The SPAPPL subroutine will be called after the DYKI iastruction, if the
associated field descriptor (FKI) contained the APPL option. The APPL option
is followed by a number between -32768 and 32767. When the routine is called,
the number will be held in the data item SPBINW3, to be used in an indexed or
ordinary branch.

The subroutines SPCHK] through SPCHK7 will be called after the DYKI instruction
but before the SPAPPL routine, if the associated field descriptor (FKI)
contained the SCHK optiou. The SCHK option is followed by a number between 1
and 7. This number is used to call the appropriate routine.

It is possible to specify both APPL and SCHK routines in the same FKI, 1in which

case the SPCHK routine will be called first, the SPAPPL routine will be called
when a RETurn is encountered in the SPCHKx routine.

The data items passed from screen management to the application checking
routine are:-

SPINPUT The string data item containing the data that has been input from the
keyboard.
SPBINW1 A binary data item containing the number of characters transferred

SPBINW2 A binary data item containing the converted end of item key index in
the key table

SPBINW3 A binary data item containing the value defined in the APPL option of
the FKI command, heace a number between -32768 and 32767.

9.2.12
October 1979



CREDIT PROGRAMMERS GUIDE

The output from the SPCHKx series of routines and SPAPPL is shown below. The
data item SPINPUT may be altered by one of these routines, but if its leugth is
changed, then SPBINW! must also be altered.

The data items passed from the application checking routine to screen
management are:-

SPINPUT The string data item containing the data that has been input from the
the keyboard, and possibly changed by the routine.

SPBINW! A binary data item containing the number of characters transferred to
the screen management package in SPINPUT.

SPBINW2 A binary data item containing the converted end of item key index in
the key table.

SPBINW3 A binary data item containing one of the values from the table shown
below.

SPBINW4 A binary data item containing an index to the error message to be
displayed. If no message is to be displayed, then this will contain
the value zero.

Contents of| Action
SPBINW3 |
Zero The contents of the data item SPINPUT will

moved to the data item of the current input
field and displayed on the screen when the
‘REWRT” option is specified in the FKI
command. Screen management will continue
according to the end of item key.

|

|

|

|

One | The contents of the data item will be
displayed and moved to the data item of the
| current input field. Screen management

| will continue according to the end of item
|

|

|

|

|

|

key held in SPRINW2.
Two The data item 1s not moved to the current
input field, the cursor is set to the
begining of the current field, and input
| can be performed on this field.
Error condition, the binary data item
SPBINW4 will contain the index to the error
message in SPFTBERR, when SPBINW4 contains
zero no message will be displayed.

|
|
I
|
|
|
|

!
!
!
|
|
:
!
!
|
|
I
!
|
I
!
|
|
!
I
|
|
|
i

9.2.13
October 1979



CREDIT PROGRAMMERS GUIDE

Example of the use of value check routines

FNL

FTEXT ‘PLEASE ENTER YOUR USER CODE
FKT 29,MAXL=4, SCHK=1

FCOPY USER

FNL

FTEXT ‘PLEASE ENTER THE CURRENT DATE ~
FKI 33,MINL=6, SCHK=5,APPL=8

FCOPY DATE

FMEND

When the user code 1s entered it is validated by the subroutine SPCHKl. The
number of characters entered, excluding the EOI character, will be held in
SPBINW1, the actual characters entered in SPINPUT. The transfer of characters
from SPINPUT to USER takes place when the FCOPY instruction is encountered.

When the date is entered the subroutine SPCHKS will be called first and then
SPAPPL; when SPCHKS is called, SPBINW4 will hold the value 5; when SPAPPL is
called, SPBINW3 will hold the value 8. If an error was detected by SPCHKS then
the message would be displayed etc. without the SPAPPL routine having been

called.
Note:

. If the number of characters in SPINPUT is changed, then SPBINWI
also must be changed to the new number.

. The end of item key index may be changed, for example the EOI
code X’03° may be changed to the ENT code X'17°.

9.2, 14
Qctober 1979



CREDIT PROGRAMMERS GUIDE

AldW3 ST W3LT-Uib@ 4T 4831
= 1ALdW3 3NTLNOUEAS AT18WISSY--

L "ON
9 "ON
STON
h "ON
€ "ON
2 "ON
T "ON

NOTLiU¥TINAYL-TUNOTLIANOD
S3ANTWN- TddY -
NOTLIUINGYL-TUNOTLIGNOD
319NTYNI 0L-INTLNOY- YIEN
$3NUN Tdde
IIGNYH 0L --INTLNOY- ¥3ISN

ANTLINOY

ANTLNOY
INTLINOY

ANTLNOY-

INTINOY

ANTLINOY-
ANTLNOY

‘MIIHI
~HI3HI

HI3HI
HI3HI
HI3HI
HI3HD
AIFHI

QYUANY1S-
QUYAINYLS-
QUYINYLS-
QHYANYLS-
JUYAINYLS-
QUYQINY L5~
QYYANYLS-

"NNNL3Y ¥ 47314 LNI¥END
31Y0dN ‘35USS3W ¥O¥NI AYIdSTO-
“lUWYO4 2
NI 3NNIINOJ % Q73T4 LN3¥¥Nd-°° -

31¥0dN “33YSS3U-MOHYI AUIdSIAO-
SQT3I4 378YTHYN ON N¥U3IT)
SC1314 3718YTY¥YA 3WOS ¥Y3TD
SG13T4 318YTYYA ITY-HY3TD

2000 339d « STOT6L FLYQ =

IN3UWNOJ -

-~NIFYIS- INIQGT «

LALdu3

NHJI1dS

TddYdS
LAHIdS
9AXHIAS
SXHId5
hHHIdS
ENXHI S
2XHIdS
THHIdS

cyYIdS

YY3dS
NY¥T13dS
S5¥704dS
Yy713d5

iX3

IX3

1X3
1x3
1X3
1X3
1X3
1X3
1X3
1x3

AY1IN3

AYLIN3
AYINT
AYLIN3
AYIN3

nI1dad

SONYYId0 3002d0

« $EO00
SEDD
hEQ0

« EEOD
2E00
TEQD
[120210]
6200
9200
4200
9200
5200
h2oo
£200
2200
1200
0200

*  4T00
9100
LT00
9100
STo0
hT00
£700
2100
1100

+ Q07100
6000

738971 3INID

NOTSINIG 3i¥NQA3I0¥d

« E2906L T°h 3Y

9.2.15
October 1979




CREDIT PROGRAMMERS GUIDE

IN3

WWod

-QD-X
»mo—x
hPX
EETR
LbaX
264X
JIBLX
OY.X
1 96.X
JThX
129X
LFX
88X
JTRLX
88.X
-oo»x
SRaX
99X
L06.X
PEY-TP 1
664X
129X
EYL X
168X

ne3a
ne3
ne3
ne3
no3
no3
ne3
nes
ne3
ne3
no3
ne3
ne3
LE!
no3l
ne3
ne3
ne3a
ne3
ne3
ne3
no3
ne3
ne3

£4712
134
SNI
ASNON
SONTUW
iN3
qanad
an4d
dna
AdOdH
dn
N#OQ
LH3TY
1437
NtO G
3WOH
ana
an 4
103
LyM3d
ZINYD
TINYD
48370
458

»

309X%09d NIFYIS HITIM NOILIINNOD NI 03Snos
SINOLNTYd HONHI GNU 5378YLA3IN SNIYINOGD LIow
"3OUNIVA-NIIUIS A8 Q3ISN ST IINAOK SIHLO
11717 d50s

LSTI“11T7dS

SANYYIdO

AANTINT
132313

300240

-

73801

-6200
-9200
-£200
-9200
-5200
-h20d0
-£200
-2200
-1200
~0200
~4T00
~8108
~100
~9T00
~8100
~-hTO0
~£100
~21ao
-1100
-DT00
-4000
-§000
-.000
-9000
-§000
-h000
-£000
-2a0a
-1000
-0000

E00

LE00

INIT

9.2.16
October 1979



CREDIT PROGRAMMERS GUIDE

3 LNIUWOD

1E6.X nes3
09.X noe3

1531 -TE0O
3dAl -0EO0Q

SONUY¥3d0 300040 138971 3NTY

onwN:Nc ANQAI0Ud

9.2.17
October 1979




CREDIT PROGRAMMERS GUIDE

(SRS [GRE LS R

LOO

+SHILIYYYHD INdNI N34 00L. 1X314
54
14y 4 TOM 443

*

GOW YT SOM YT hOKIYI4EOU AT 20WSHT*TOWIYI  3T8YLd H¥3I8L4dS

*

SINOLNTYHd HOYYI ININIULINQD 378Y1 1BWY¥0 40+

*
»wu» JdALSOANTU “AN3“AINON‘AIAON
‘AdOIH* dN “NROQ  LH3TY¥* 1437
‘NMOQTIWOH  aH8“ aMd
“ZINYD“TINWI “TOTE¥TS LYM3Y

*¥UITD P IFQ SN GM8D M40 8Yid  EBUYLAHALS

-

JQ0W 1143 NI 43S IT8YLADNO=
-

L1531 3dAL SNANTH LN QNET AIAON
CAOIH AN NNOQ  LHITY L 437
“NMOQT IWOH QMEdM 4
‘ZINGDTUINYD 1034 LMM3Y YYD ‘45, SUiN  HYINGS
»
41374 INIYMND 31 NI JS¥T4 Ad3N 3HL LNG NOTITS0d0w
ANY 1V - Q3297d ST d0580D NIHM §3SH 3T8YLAIH0«
*
FdALAIHONANI“ M 4D “dNQ
*AdOJH dN“NMOG* LHITY 1437
‘NP0 3WOK  aMg “ aM 4
‘ZINGDTONWD 103 1YMIY ' ¥YITD * dSE 89id  TEYLNAdS
*

09374 IN3YUND JHL NI NOTLIS0d 1SHI 40w
A¥3n 3HL 1V 43097d ST HOSYND NIHM 03SN ITEYLAINO=
103r3

INIHUOT- SONVY340 300340 138917

-g900
-2900
-1%90D0
-0900
-6500
-2500
-¢500
-9500
-5500
-h500
~-£500
-2500
-1500
-8500
-6h(0
-9h00
-Lh00
~9ha0
-Shiu
-hhQg
-Eh00
~2h037
~ThDO
-0n0G
-6E00
~9E00
-LE00
-9tac
-5€00
-hE00
-££00
-2£00

ANIT

*T 91 £J TO00
03 o000

S5ONUY¥3d0 20 207

4.2.18

g

OctouetT



CREDIT PROGRAMMERS GUIDE

) [LERE]

LANYA WIITT. 1X3L14

1S4

FULE]

ON3IW 4

Q37714 LON-QT3T4 AMOSINGWOD, 1X3L4
as4

JIULE

aN3W4

fAIN WILT-40-AN3 Y93I, iX314
154

Luyd

ON3IK4

+HO¥Y¥3-0/T1, 1X314
sS4

1uy4

GN3W 4

+HO¥YI QGINT J3ANN. 1x314
IS4

JURE}

ON3W4

AN3UWOD - - SQNUY¥3Id0 300240

NOISIAIQ 3¥n

300¥d

-9900

-L900

-9%00

90U 483 -S900
~h800

-£900

~2%00

SOW 443 -T900
+ -0¥00
-6.00

-9400

~4.¢00

hOWJ¥3 -9200
* =5¢00
~he00

~£¢00

-2¢00

£0W4¥3 -T¢0D
+ =000
-6900

-¥900

-L900

20W 4¥3 -9900
+ -5900
-h?00

738Y¥7 3NIT

©T 40

SQNBY¥3d0

%]
03

€2
03

€2
03

[>%]
03

£)
03

1000
0000

1000
0o0o0

T000
gooo

1000
oooo

1000
0000

9.2.19
October 1979




CREDIT PROGRAMMERS GUIDE

10. DATA COMMUNICATION

10.1 Introduction

The subject of data communication is a complex one, with different protocol
systems for each kind of mainframe. For a programmer to arrange all the
correct sequences of control instructions to go down the line at the right time
time will obviously be a complex task. This is handled in CREDIT by having a
number of differaat drivers to handle the differing protocols.

There are two instructions used with data communication :-

READ read data from the line
WRITE send data down the line

The DC action is treated in exactly the same manner as any 1/0 operation. A
dataset must be defined for the line and given a dataset name for use with the
instructions. The action on the line is different between point-to-point and
multipoint configurations, as shown below.

10.2 Time out

Because of the way in which DC applications work, it is necessary to
incorporate a ’timeout” function. This means that a time limit is set for
completion of the read or write request. 1f no message has been received on a
read after the timeout expires, the request is completed, and an indication is
given to the task of this occurrence.

It is important that the terminal task and mainframe task should have different
timeout values, to prevent a BID collision. This occurs when both the terminal
and the mainframe are trying to use the line at the same time. TIf both
requests time out and then try the request again, the same collision will
occur. This can be avoided if the mainframe task has a shorter timeout value
than the terminal task, therebv getting priority on the line.

To set the time out, which may be altered before each read or write, a data set
control instruction is used:-

Dscl DSDC,X’0B*,TIME

0.1t
October 1979



CREDIT PROGRAMMERS GUIDE

10.3 Point-to-point

This is the simplest form of data communication with the computer connected to
the terminal by means of a cable, see below:i-

M e | T

computer terminal

The two instructions described before are adequate for this situation. The
terminal should be polled regularly in case it wants to send a message. This
can be performed by issuing a read instruction at regular intervals. If an
answer is required, the write instruction is performed to send data back to the
terminal.

If the task is performing on a strict question and answer basis, it must be
remembered that the task may still be switched between reading and writing,
since this involves an LKM request.

If the terminal is connected to the computer via a telephone or telegraph line,

then it may be necessary for amn operator to dial the number and switch the
modem or accoustic coupler on, when the carrier tone 1is heard.

10.4 Multipoint

This situation is more complex than point-to-point as a number of terminals
could be connected to the line. this is shown in the diagram below:-

The line can be connected either permanently, or switched if all terminals are
in the same area, so the connection is the same as described above. All
messages must be addressed to the required terminal by transferring the
terminal address to the DC driver. The same must be performed for a read
instruction from a particular terminal, or by the terminal task when addressing
a message to the computer.

10.3.1
October 1979



CREDIT PROGRAMMERS GUIDE

10.5 DC task

With some applications it is possible for a terminal computer to receive data
from the mainframe without it being requested. It is advisable in this case to
write a task dedicated to the receiving of unsolicited messages. This task
would have a READ outstanding on the line with no time out set. It would be
entirely up to the application how the message was handed over to the
processing task but this could be done using intertask communicatiom.

10.5.1
October 1979



CREDIT PROGRAMMERS GUIDE
11. PROGRAM DEVELOPMENT AND TESTING
11.1 Introduction

The source data for a CREDIT program may be entered to the system under DOS by
one of three media:

. Cassette (standard assigument)

B Punched cards

. Console typewriter

The sequence of processes necessary to develop a program is shown on foil 42,
and all these processes take place under DOS.

The testing of programs, however, takes place uander control of the TOSS
Monitor, as has been mentioned before.

The processors required for the development of a credit application are
described in this section.

11.2 CREDIT Translator

The CREDIT Translator is called into execution by the TRA command, and performs
the following actions:

. Each module is processed separately by the Translator.

. This produces an Intermediate Object Code module, which must be
made permanent by the KPF command, unless it contains the DDIV for
the entire application.

. The instructions in these modules use a byte-oriented addressing
system, and this code is printed on the output listings at the

left hand side.

. Each module may contain references to:

. Labels in the same module

. Literals in the same module

. Labels in other CREDIT modules
. Assembler application modules
. Assembler system routines

The first type of reference is satisfied by the CREDIT Translator.

It is recommended that all temporary files be scratched before running the
Translator.

11.3 CREDIT Linker

The resulting object modules are then processed by the CREDIT linker. This is
called into execution by the TLK comaani, and performs the following functions:

. Solves references to the sccond two types of reference described
above.
. Links together the object nodules to form word~oriented object
modules .
{ Keyword | Page in |
1 i Manual |
| TLK LMl 6,12.43
| TRA PMIL 602044 |
|_ KPP} MI! 6.12.12 |
11.1.1

October 11379



MEMORY

CREDIT PROGRAMMER'S GUIDE

LINE/TEXT
EDITOR

CORRECTIONS

PARAMETERS

SYSGEN

TOoss
MONITOR
LOAD
MODULE

SOURCE
MODULES

CREDIT
TRANSLATOR

INTERMEDIATE

SOQURCE

STATEMENTS
ON CARDS

OBJECT
MODULES
UPDATES
CONFIGURATION
CREDIT fresdfel LINE/TEXT
UINKER A EDITOR

QOBJECT
MODULES

LINKAGE
EDITOR

APPLICATION
LOAD
MODULE

CREDIT
+ CREBUG

USER
ASSEMBLER
ROUTINES

INTERPRETER

CONFIGURATIO
DATA

$PDISC

S$PCAS

APPLICATION
PROGRAM
INTERPRETER
!CREBUG
SYSLOD
{OVERWRITES
ITSELF)

MONITOR
APPLICATION
CONFIGURATION}:
DATA

t_

11.1.2

O O

MONITOR
APPLICATION
CONFIGURA-

October 1979

Note: Dotted lines denote method
of creating Monitor, Application
and Configuration Data for
loading from cassette.



CREDIT PROGRAMMERS GUIDE

11.3.1 Segmentation

It is possible for an application to be split up into a number of ‘segments’.
There is always one segment, number 00, which contains the DDIV, Interpreter,
and Assembler subroutines. This segment is always resident in memory during
application running. The remaining segments may be disk resident, or memory
resident, depending on a) the wishes of the programmer, and b) the size of
memory of the machime in use. 1If wno action is taken by the programmer on
segmentation, then the result of the TRA and TLK processing described above
will be an unsegmented program, i.e. segment 00 will contain the entire
application. If segmenting is required, the segments are built up by use of
the INC and NOD commands.

11.4 Linkage Editor

The output modules from the CREDIT linksr are processed by the Linkage Editor.
This is called into execution by the LKE command, and perfoms the following
functions:
. Links together all the modules from the Linker to form one
application load module. :
. Solves the remaining references between modules and system
routines.
. Includes Assembler application routines if required.
N Includes the CREDIT Interpreter.
. Includes the CREDIT configuration program.
. Includes the CREDIT Debugger, unless explicitly excluded.

11,5 CREDIT Interpreter

The load module created by the above processors can not be executed directly by
the machine, but must be in a fermat suitable for execution under the control
of the TOSS Monitor. The way in which the moving from DOS to TOSS is explained
below. Once the load module is in memcry, it must be interpreted by the CREDIT
Interpreter, that is the functions ia the CREDIT intermediate object code are
called into execution by the Interpreter by means of calls to Assembler system
routines.

11.6 CREDIT Configurator

Af ter system configuration, which iz covered later, the CREDIT configurator
takes control: this sets up all the required workblocks, stacks, data set
buffers, and task coatrol areas that are requited by the tasks to be executed.

Following this, control is handed
execution.

tha Tnterpreter, and the program commences

| KQward‘r‘A

|
!

NOD



CREDIT PROGRAMMERS GUIDE

11.7 CREDIT Debugger

The CREDIT debugging program (CREBUG) is an interactive diagnostic task which
runs under the control of the TOSS monitor. It is used to control execution of
the application in the following way:-

. Traps may be set

. Variables may be examined and modified
. Trace may be turned off

etc.

CREBUG is specified as a special task at SYSGEN time; 1t runs at a priority
leval higher than that of the application, to enable the application task to be
interupted, it also has a special task identifier TB.

The programmer can use the Translator and linkage lists to set traps, verify
the contents of data items change elements in the picture pool etc.

| Keyword | Page in |

— -] manual |

|_Debugger ] MO4 4.1.1 |

11.7.1
October 1979



CREDIT PROGRAMMER'S GUIDE

-
MEMORY ;
|
i
|_REL
MASTER (" 0000
CALCUL 0071
0PCLOS " 015F
-
|
i
1
1
|
!
-
| REG.D
|10
| REG.1
P -
| 20
| REG.2

RELOCATION REGISTER

SOURCE
PHYSICAL
0800 0000
[: MASTER
0871
0000
[ CALCUL
095F
}”oooo
L oPCLOS
CONTAIN; ;80_0_ |
" oo oorip |
CONTAINS 0871 |
/0000 015F,D_1

|
CONTAINS 095D .}

11722
October 1879



CREDIT PROGRAMMER'S GUIDE

LOAD MAP
MODULE Loc ERROR
MASTER 0000
CALCUL 0071
OPCLOS 015F
OPOPEN 0192
READN 01E3
SYcLOS 0254
SYSOPN 0283
BOOK 02E8
MASTER 0000 3
CALCUL 0071
OPCLOS 015F
OPOPEN 0192
APPLICATION
READN 01E3 PROGRAM
sycLos 0254
SYSOPN 0283
BOOK 02E8 J
11.7.3

October 1979



CREDIT PROGRAMMERS GUIDE

11.8 Line Fditor and Text Editor

If errors do occur while testing, it is possible to correct some of them via
the debugger. However, at some stage the source code has to be corrected or
updated. This can be done easily by using one of the DOS processors, the Line
Editor/Text Editor. By the use of various commands available, the source code
can have lines amended, inserted and deleted.

Page in

| Reyword | !
| manual |
{ {

|

| Line editor | MI11 8, 2.1
|_Text editor | Mil z.1.1

11.8,1
October 1979



CREDIT PROGRAMMERS GUIDE

11.9 CREDIT Translator Listings

During the processing of the CREDIT Translator, a listing is produced (unless
specifically suppressed), containing:

. CREDIT Source statements
. Incermediate Object code
. Error messages

The heading of the listing contains the Release Number of the Translator in
use, and the date, the heading Data Division or Procedure Division, as
appropriate, and the name of the module from the IDENT statement. Reading from
left to right across the page, the following appear:

10C = Location Counter
This 1s a four digit hexadecimal counter, which is increased by one
every time a byte of intermediate object code is produced, for the
Procedure Division only. This counter is used when using the CREDIT
Debugger, to display and/or amend the contents of memory. For the data
division, the counter is the index value of items within workblocks,
where the first digit is the workblock number and the second the
number of the item in the workblock. Thus 32 = Workblock 3, Item 2
(Workblocks start at 1, Items 0). Note that Boolean data items, for
which one word is reserved in each block, the second number is the bit
within the word at the start of the block. These numbers are also used
for DSET statements, where they are again an index value of the DSET
within the task.

0C OPERANDS
These are the Operation Code and the Operands generated from the
CREDIT source, in Intermediate Object Code, they are printed at the
left hand side of the translator listing.

Where an operand is shown as LL, this is a reference to the literal
pool, which is filled in by the CREDIT Linker later. This code is
present for Literals (=X6142")

Format Lists (FRMT)

Keytables (KTAB)

Where an operand is shown as RR, this is a reference to a subroutine
within the same module, which 1s also filled in by the Linker.

Where an operand is shown as XX, this is a reference to an external
routine, also filled im by the Linker.

11.9.1
October 1979



CREDIT PROGRAMMERS GUIDE

STMT = Statement
This {s a four digit decimal line number, and is the line number used
when editing with the Line Editor on the source module.

LABEL OPCOD OPERANDS COMMENT
These are self-explanatory.

C = Continuation
This shows that the statement is continued on a new line, as 1t was
too long for one source line.

ERROR MESSAGES
If the Translator detects an error in the source code, it prints an
explanatory message under the statement in error, together with an
asterisk to indicate the part of the statement that is incorrect.

At the end of the listing, the messages PROGRAM LENGTH and ERROR are
printed. The program length is the hexadecimal number of bytes
contained in the module, and the error count is a decimal count of the
number of errors detected in the module.

In addition, two tables are listed at the end:

» Data item name table, showing all the data item names used in
the module, with a U printed by them if they are not referenced
within this module.

« Procedure label table, showing the labels (names) of all the
PROC statements referred to in the module.

11.9.2
October 1979



CREDIT PROGRAMMERS GUIDE

149 1S ingy 2100 hT

(=)
6 S¥IS  uNDIY 1100 3¢ "
att 038 INWY  DTO0D 27 :
NIO xXI 4000 " S5
NIG .~ NIINI 9000 o1 =g
x8 18) 2000 1 p
Yoy 1M¥Y1S 9000
00T=1N8°40=A30°0h=)) 1150 4050 5000 b8
8¥=A30:02=)4 1354 X5 w000 ot
19 . and £000
\CARE YR ¥ 2000
aTa00 1000
2X3  IN20I 0ooo
) AN3NNOD SANWN340 300240  138YT  INID X1
< 1000 399d * 02806¢-31¥0 = -~ ¢x3 IN3GT » NOTSTATO Wi¥G o £25062 T°h 13U NOLYISNYHL L1Q38) o

-t -

S



N3 2500

[TETTE 1800
INMY 68066656666, REE] o%00 2T dd 170
. INNOUY,  1X31J 4£90 *° 80 £) w100
W0E02.X= AUDYJ 9£00 1 T3 2Tnn
) %A Enp 93 TN
TR h C ST °£00 T 03 npn
¢OCHNLMNAIIYL IX3LY S£00 >+ 8g £3 2ran
JIE02.X= AdOD S hENA 11 12 onen
LUy i1no  £€00
saneee 2500
w0 D 2 €00 9C 4§ 9fen
AN Lang Lmag nenn 11 Th XY TF TP
AN LY 3500 4200 ST 7T Anoonn
WYGY*  TT. M= NI INGD NILWY §200 9T 17 AT ¢T 970N
2 WY gy 3 L200 2T 4§ 470N
5 NTLUM TV a1 2200 20 10 1Y °F 57NN
© LY ¥y39 §200 20 HS £70)
m - TXTNIINTTALN 3NIT* INSQ INN h200 11 0T XX AT 04 XX 0Of 2100
LTT . M= NIINT 380U Wyoy  E200 71 0T 10 4TN0
m 4NAT*INDDY 3nou 2200 "t €1 00 9100
o Y05’ ,0T ., M= *N3INT 3ING) NIWNN 1200 9T 71 0T 4T 2100
g 009 i} 0200 27 35 0100
NTHANTXT al 6100 20 T0 Tt 9t J000
g 1909 w438 100 30 v§ ¥ mo
=] : TXI*NIINITELM’ INAT *ANSQ N 2100 TT O XX AT 0¢ XX OE €009
8 ,0T. A= *NIINT 3A0H T™vos 9100 T 0T 1D 0000
J£2.X YN 181X $S100
YOS  AMINI 2100
n1Qd €100
AN3UNOY- SONWY¥3d0 300)d0 38¥7 NI SONYY3d0 20 01

TOU0 3%Yd « 026062-319Q ¢ -- (X3 INIQT » NOTSIATQ JUNQII0Ud o £2504¢ T°h TIW  HOLVISNUYL L1IQ3Y) »

11.9.4
October 1979



CREDIT PROGRAMMERS GUIDE

ANIUKOD

11.9.5
October 1979

0000 = ¥WOW¥3 QE00 = HLI3NIT WWYIOHd

-

SANYN3I40 30040 13871 3NIT SONYY¥3Id0 20 207

3

v

G

0 39Yd = 02606L-3iYQ » -

(X3 IN3QT o NOISIATQ 3¥NQII0Nd « £2504Z T °h 13I¥  YOLVISNUNL 1I034) »




CREDIT PROGRAMMERS GULDE

wig 18 N3WINT - - - uis L) ¢ nar (bR} 2K
3dAl 43¢ U - 3dAl i INUN AdAL 4N
AGU0 399d ¢ 02606L-31¥0 » - -(XF INIQT o 37891 JWUN WIALT Yivd

S

o

~

o

D -

-

. QU

-]

-0

3

NI8 1t ™1

LINUY s 114 1NY3Y
T 3MYN 3dAL 42y JUYN

® £2506¢ T°h T3 VOLVISNWYL LTQ3Y) =




CREDIT PROGRAMMERS GUIDE

iA3 n000 CINNSL - -
aly 2100 NIWNN - -
3éAL AN . T

e

* 5000 339d & 02606¢-3i¥Q = -

11.9.7
October 1979

-SUC9L-S2E-HO0-HOO :3UI1 QISHYII d0ud

HyQqy w04 1000 iino
o ¥ay 8200 NIiWY
JUUN AL i T IMUN

ix3 2000 4ng3: L ¥av 6100
A3¥ 0000 o ¥av 0000
3daL i3y JUYN 3dAl EkL ]
-4X3 IN3QT o $738Y7 3UNCGII0Nd

—————— cm————

* £25062 T°h 3% WOLYISNYYL L1IQIN) »




CREDIT PROGRAMMERS GUIDE

11.10 CREDIT Linker listings

The following listings are produced by the CREDIT Linker:
. Load map
. Long branch table
. Call table
. Perform table
. Literal pool
. Format pool
. Keytable pool
. Segment map
. Address cross reference list
. Literal cross reference list
. Picture/format cross reference list
B Linker statistics

11.10.1 Load map

This is used for setting the relocation registers when debugging programs.

11.10.1
October 1979



CREDIT PROGRAMMERS GUIDE

crement e -o-

1

11.10.2
October 1979

TIIT0 Y3 02-40-62 T°h wHl LX3 0000
IN3UNOD WON¥3  3NQ0M ~ 07

39vd *» 024062 -31V0 =

‘00 IN3W9IS  J¥M QYO & £2506L T°h 3W WINNIY 3000 A1Q32) o




CREDIT PROGRAMMERS GUIDE

o

oo

=20

. U

=2

-3

IS

¥noatL 20 sese  JEOO

DIN:L 10 sees  YEOD

"GINT 436 0GWAS XTI CTUT T 3 |

- - - - ———————— = —

. 3304 » 026062-3iY0 o - - oo »zu:uum vl W) . nngh T 138 WANIT 340D :owzu .




CREDIT PROGRAMMERS GUIDE
11.10.2 Call table

This table contains all referances to external routines (CALL instructions)
which were not satisfied by the TLK command. Each time a reference is
encountered in the intermediate code, the linkage editor (LKE command),
replaces it by an “index value’ which points to the called address in the call
table. During execution of the application program, the interpreter refers to
the call table for actual destination addresses.

. LOC is the displacement of each entry in the table within
segment zero.

. DATA is the call Address relative to the start of segment
zero.

. IX is the index value (01 - FF).

. SYMBOL is the name of the external routine.

. DEFINED is not used in this table.ll.10.3 Long branch table

11.10.4
October 1979



CREDIT PROGRAMMERS GUIDE

61 #E0

r 1 43t0
23136 A ¢ S3e0
L1234 " 2420
LTI 5T 1020
LL2 nt 9920
17 2 4 £800
: 21 240170
T 9890

cY 9%

10 S670

3 1490

39 9040

20 9010

30 s1C

w0 0497

40 4900

%0 ~ 300

L 4420

90 2330

S0 S4vQ

%0 1500

£9 9900

20 3n00

iT2730 2909 T2 lt00
A3NT437 deUAS  XT v

o Z0.06L 2avid » 00 IN3WI33 37891 37 o £2606l T°h T34 WIWMIT 360D

P e e o = - . =

00 &030
00 0n30
00 Ji40
00 %1400
00 wjco
00 0440
00 13340
00 9390
90 340
09 0390
g0 Jean
00 eaa0
00  hagn
00 7449
00 120
20 9240
23 w40
0 ()40
J¢ 1840
00 9810
00 4840
00 o084aC
00 )Jvoo
00 evaeo
00 +vao

198 J07

L ]

L1G34)

11.10.5

October 1979



CREDIT PROGRAMMERS GUIDE
11.10.3 Long branch table

In order to reduce the ammount of memory required for a long branch
instruction, the linker (TLK) generates a table of destination addresses. Each
time a long branch instruction is encountered in the intermediate code, the
linker places the destination address (i.e. segment nimber and the address to
be branched to) in the long branch table.

The three byte destination address in the long branch instruction is replaced
by a one byte “index value’ which points to the destination address in the long
branch table. During execution of the application program the interpreter
refers to the long branch table for actual destination addresses.

. LOC 1s the displacement of each entry in the segment.

. DATA is the destination address and segment number.

IX ig the index of the entry in the table, and starts at the
first number after the last number for the same type of table
in segment zero; this applies to all tables.

SYMBOL is the first instruction in the module containing the
destination.

. DEFINED is the module containing the destinatiom.

11.10.6
October 1979



CREDIT PROGRAMMERS GUIDE

e CREDIT CODE LINKER REL 4.5 79Dz » ¢ 20

oc DATA Ix SymBLL  1ET LD

OE6A 00 0284 03
OEGE 00 OVEM  Oc

11.10.7
October 1979



CREDIT PROGRAMMERS GUIDE

11.10.4 Perform table

This table contains the address of each CREDIT subroutine which is called (PERF
or PERFI instructions) within this segment. It has the same layout as the long
branch table. Each time a perform to a CREDIT subroutine is encountered, in the
intermediate object code the subroutine name is replaced by an “index value’
which points to the subroutine address in the perform table.

LOC is the displacement of each entry in the segment.

. DATA is the destination address.

IX is the index of the entry in the table.

SYMBOL is the name of the subroutine.

DEFINED is the name of the module containing the subroutine.

11.10.8
October 1979



CREDIT PROGRAMMERS GUIDE

* CREDIT CODE LINKEI REL 4.) 790523 « LITERAL POOL SECHENT 00

Loc
003E
00N0

0042
004y

DATA

000A
0008
2030
2031

11.10.9
October 1979



CREDIT PROGRAMMERS GUIDE
11.10.5 Literal pool
The literal pool contains all the literals used in this segment. Each time a

literal is encountered in the intermediate code is replaced by an ‘index value
which points to the literal in the literal pool.

3

B IX is the index value of the entry (OL-FF or 4100-41FF).

. TYPE is BIN, BCD or STR.

. 10C is the displacement of the literal within the segment.
. DATA is the hexadecimal representation of the literal.

11.10. 10
October 1979



CREDIT PROGRAMMERS GUIDE

s CREDIT CODE LINKER REL 4.1 790523 @ PICTURE POOL SECRENT 00 s

-------- P L L T TP P T T T P L Y

1x TYPE LOC  DATA
10 PIC 004é 39397293919393939543939

11.10.11
October (979



CREDIT PROGRAMMERS GUIDE

11.10.6 Picture pool

The picture pool contains all picture strings used in this segment. Each time
a referance to a picture string 1is encountered in the intermediate code, it is
replaced by an ‘index value’ which points to the picture string in the pool.

. IX is the index value of the entry (01-FF or 5100-51FF).

. TYPE indicates that the entry is a picture string (PIC).

. LOC is the displacement within the segment.

. DATA is the hexadecimal representation of the picture string.

11.10.12
October 1979



CREDIT PROGRAMMERS GUIDE

¢ CREDIT CODE LINKER REL N.) 790523 & KEYTABLE POOL SECHMENT 00

- - - - " - = = = > . Y - = W S = - -

N TYPE LOC  DATA
30 KEY 00s1 0123

Th.1n. 13
October 1979



CREDIT FPROGEAMMERS LUI.

11.10.7 Reytable pool

The keytable pool contains all keytables used in
in segment zero. Each time a referance to a key
intermediate code, it is replaced by an ’ ;
keytable in the pool.

. IX is the index value of the =
. TYPE indicates the eatry is a

. I0C is the displacemeat of the
DATA is the hexadecimal repres

11.10. 1
Ocrober

w o



CREDIT PROGRAMMERS GUIDE

11.10.15
October 1979

21070202020202h53%55 4hGhTHhEOEI2TTIVICIAI02222SINNTINTS JNENENTHO0EIETTY) €SOO ICF] 0t
vivg o7 3dAL X1

e —- o - e - = = = . e > = =~ - = —

3%vd o 024062-31WQ ¢ - . 00  INJUIIS 004 LviNO4 » EZS06L T°h 13d YNNI 3002 »noumu .




CREDIT PROGRAMMERS GUIDE

11.10.8 Format pool

The format pool contains all format lists used in the segment.

Each time

referance to a format list is encountered in the intermediate code, it is
replaced by an “index value’ which points to the format list in the pool.

.

IX is the index value of the entry (00-FF or 7100-71FF).
TYPE is ™T for a Format list or FIB for a Format table.
LOC is the displacement withtin the segment.

DATA is the hexadecimal representation of the list or table.

11.10.16
October 1979



CREDIT PROGRAMMERS GUIDE

. CREDIT CODE LINKER REL 4.} 790523 & SEGMENT nAp

P IS PR SR e T T R -

SECHNENT NUNBER OF
NUMBER TYPE LENGTH  USAGE MODULES  ERRORS
00 C pY 14 b} 0

11.10.17

October 1979



CREDIT PROGRAMMERS GUIDE
11.10.9 Segment map

This map gives a listing of the number of se

8ments, the number of modules in
each segment, and the number of bytes per segment.

11.10.18
October 1979



CREDIT PROGRAMMERS GUIDE

. CRED!Y CODE LINKER REL §.} 790523 . CROSS REFERENCE LISTING

SYMROL TYPE VALUE SEC-DEF INED . REFERENCES

60A) $ 00 0000 00-EX?
TiEDUR € 00-EXx? 3)
TiNK1 [ 00-EX7? (2)

11.10.19
Qe tober 1879



CREDIT PROGRAMMERS GUIDE
11.10.10 Linker statistics per segment
The format of the linker statistics listing per segment, the contents of the
listing are self~explanatory.
11.10.11 Address cross reference listing

This listing provides cross reference between statement/subroutine iden:ifiers
in the PDIV, and the modules/segments in which they are referenced.

11.10. 20
October 1979



CREDIT PROGRAMMERS GUIDE

11.11 Linkage Editor listings

> 2 first page of this listing shows all the tables and routines used by the
laterpreter that are linked into the application, and their start addresses.

The second page of this listing shows all the symbols (in this case start
points) used within the routines listed on Page 1.

Example: T:NKI has an address within the range of T:I0, and is a star: point
within the Input/Output driver module.

11,11.1
October 1979



PTSLKS e
oooe Si5vas TSLKS - (790
00k%  Y:mAMD TR N, D MR .
0052 Ti5AsC TRa 6.5 s e .
04K  TriTaRR TRA M R :

P " e
80?2 U:giasg TER G o
0r~4  EsBTAB TEA %,3 s
OLrd 108G ¥ L IR A
0098 L:UBIO  Tea w,n o

Q0RE  P:inTRB
00E2 PPl
0x8% 1:iNTP
Dued I1:EVR

0730 1:AD5 2
0894 i:imp
0948 ltlra .
G4  1:rov 3
ugea  1:mul J
Gove  43D1LY

LieE  J.83F .
OFas  1:0D7Y ]

subi TRrIRU
=36
1A

T.RE
T.RELs¥ L oovo

Ja7h TiL



o

ciCh)0
131 CHK

JaDLT

11ECPY
1I1EDS
1:EFLA
ENL
11ER}2
1:ERD?
1:ER)C
13ERK3
LIERRS
_SERKD
[:EFRB
L tEVA3
HA2
H A1
LiHEX
sthOV
{INTPA
linla
cIKA
LT
i kR10
Vikrd0
LONE
1:FDSP
Tilee
1inl
T3LOFS
T1PAT
TiMWRI1TY
TC:RBT
TTiL0P
TTITON
TTIVON

007
3880
ua2
2340
JuSC
3002
3182
2890
2AN
1888
285N
28468
387¢
1168
DuuE
Q6EN
DFES8
89N
0994
030N
0256
2 YAN
DOEZ
Q0YA
puse
32bn
3474
kDS Y ]
30t 6
k7Y 1]
0320

JCER

aa)nza-xrzmzrnrmrznnmnxzzrzazz"azz’n

p:CRYO
ji1cnp
I'EBR
11ECTR
F1EDSK
11ECTE
11EO0R
11ERL3
11ERLS
11ERR
IVERRY
1:ERR®
I3ERRE
1IETXT
11EVAS
{:EU*N
tEVTO
11HEXB
1muL
LINTPR
1IRT2
1:TRAOD
PIEND
TiA1AB
T108C0
T1E0WF
Tifni
T1l93
TIKIAR
TILOPS
TsPIC
TiXSTA
TC1CHK
171156
TTITAP
UiBTAS

CREDIT PROGRAMMERS GUIDE

synsoL

00%A
0896
2430
1196
101E
1850
23C8
1894
28A8
188C
1858
386C
laao
1180
0458

23C8
06A2

188E
0BYA
OLFE
[T ]
179¢
ulsy
ag7o
Jh4Y4
3EBE
UsbU
323C
3e6C
34B¢E
0178
31AY
ABEC
AE?0
30 5C
0074

BV DBIDDDBDDIDAT DIV DIDDDDN DD DIIDIDIBTS

TABLE eoe

COAY

J:CPA

11EBRB
11ECM

11EDTY

11ECTD
1IEPIC
131ERMN
1:ERL9
1:ERRQ
1:ERRS
1:ERRA
13ERRF
1:EVRQ
1:EVAS
1:EUND
1:EX1T
1 HEXH
I:nve

1:NTR

1:5HML
1:TKE

P:inihB
1:8A1

1:05C)
TiEDWI
T:QULSP
Teloy

T:KIRC
T 5€¢C
TIREAD
T8:RBT
TC:ERR
TTiPRC
TT1TRS

11.11.3
Degober 197

00E2
0918
43y
3102
3050
INNE
3a02
1898
LAAC
pY11.)
185C
470
pY.YL]
OuEC
ous2
1448
1136
1894
0982
16F 6
oLy

TeC
OUAL
Gieo
3456
306
3490
3Jedl
366C
3670
3128
M BE
o2
ME6A
0042

PRDDDWDDITDODDDIDODDVDDD DD DOIRNDIBIOIDIDIRND

11ADD

LiCPY

13EBRI
1:€ECHC
1:EDW

ISEINH
13ERMO
1tERLS
1:ERJA
1:ERRY
11ERRS
1:ERRB
1:ESKI
1:EVAL
1:EVA?
1:EVS)
1:MFSN
1:INS

TINTFAR
1:PRT

1:SHLR
I:TRC

S:B1AB
T:CAT

1:05C2
T:LOWh
f:61CW
T:10RE
T:KIPR
T:MWAlL
T:STCH
TB:ENT
TC:ROC

TT15NO

TT1VER

0730
pY113
240y
1.0C
3056
138E
1848
189C
3880
384¢C
18460
87y

LU46

LR
0usC
1450
1110
1500
OF ok
181C
GF 50
[$ DYV
006
OLlA
Jkte
3240
35¢ey
Q%R
3340
33(A
34¢d
1f CA
MCFe
IC6E
111 ¥4

BOODODODDOTVETDIDODIDDDIDDODD D DOBODIDOIDIIIE

110VF
1101V
11EC8
11ED)
IsEFIL
LIEK]IH
11ERMD
11ERLG
1:ERMB
1:ERR2
1:ERR?
I:ERRC
J13ESL
1:1EVA2
1:EVB
J:1EVS2
1:FmL
linCH
1:NTP
1:RT0
115U
I:aCP
H:61AB
T:CSEe
T:Lbilo
T:(DS0
T1:10)
T:KEY
TiLlY
TINK]
T:WALT
TB:RDC
TTaOWY
171710
TTivhn-

pY Y]
006
3678
1084
3IE6
138€E
188C
3800
2884
3850
386N
1878
31A0
[{CLT
06F 6
3668
068C
Ny
0LF Y
0240
0736
155C
ouus
JoTH
d2fA
339
32N
01’C
0174
30FA
318y
2082
Moo
MEAC
(L1}

PHDOIBBDDIDDODOIDODDOD T OLOIDDOHDIDIDBDOIDIDBRIDDD



CREDIT PROGRAMMERS GUIDE

11.12 SYSLOD (Confipuration data)

Two items are required in addition to the application load module for the
execution of the program, these are:-

. The TOSS Monitor.

. Configuration data.

At system start, the Monitor is read into memory, followed by the application,
and then, before the application is started, the system configuration program
SYSLOD is executed. This performs the configuration of the system for the
specific enviromment in which the application is to run.

Keyword | Page in
| manual |
SYSLOD | MO4 3.4.1 |
| |

11.12.1
October 1979



