PHILIPS

PTS 6800 TERMINAL SYSTEM

User Library

PTS 6800 DATA MANAGEMENT

Module MO7

{PHILIPS: Data
E\‘ Systems
&

Date : May 1978

Copyright : Philips Data System B.,V.
Apeldoorn, The Netherlands

Code : 5122 993 45131

MANUAL STATUS SURVEY

Module M07 "PTS 6800 DATA MANAGEMENT”

This issue comprises following updates :

— U1.45131.0479 {April 1979, Release 9.1)

PTS 6800 DATA MANAGEMENT

PREFACE

This Manual is intended for programmers who have knowledge of the Assembler or
CREDIT programming languages.

It describes the system of Data Management used by the PTS 6800 Terminal System in
terms that apply to both Assembler and CREDIT. For the detailed information relating to
the use of Data Management in either of these languages the reader is referred to the
janguage reference manuals after reading this manual. These manuals are respectively MO8,
The Assembler Programmer’s Reference Manual, and M04, The CREDIT Programmer’s
Reference Manual. In addition, the reader w.Il need ta refer to manual M08, the TOSS
Utilities Reference Manual for detailed instructions on creating files and setting up file
structures. This data management manual shows how the various utilities are used as steps
in the process of creating file structures while MO8 defines the precise operating instructions
for each utility program.

0.0.0
May 1978

PTS 6800 DATA MANAGEMENT

1. INTRODUCTION

The PTS 6800 System provides a means of handling transactions at the time they are
performed, and processing the required information immediately. It is an ‘on-line system’
and as such demands high standards of handling and processing data. On a batch system
time can be taken to correct data errors, but for on-tine working the source of the data,
the transaction at the workstation, cannot always be recalled to repeat the transaction.
Data files are mostly required for immediate on-line access and the program must be able
to find the required information in as short a time as possible. The same file may be
accessed by more than ane application at the same time, and each application may be
making its own changes to the file,

To ease the programmer’s task of manipulating data for different purposes, the PTS 6800
system has been supplied with a system of data management. This manual describes this
data management system, how to set up the file structures for various purposes, and how to
access the data in those files.

This manual has been written for both the Assembler programmer and the CREDIT
programmer and does not contain information specific to those languages — it describes
data management as seen by both languages.

Chapters 2 and 3 describe the general aspects and requirements of any system of managing
data and may be familiar to the programmer experienced in the field of on-line processing.
Nevertheless readers are advised to read these chapters first in order to understand the
PTS viewpoint on familiar subjects like files, volume organisation, record handling, and
security aspects.

Chapter 4 et seq. give a detailed explanation of the different kinds of file, how to create
them and what instructions can be used for handling records in those files,

The detailed format of instructions in Assembler or CREDIT are explaingd in manuals
MO6. Assembler Pragrammmer’s Reference Manual and MG4, CREDIT Programmer’s
Reference Manual. For the detailed instructions on operating each of the TOSS utility
programs used in this Manual, the reader is referred to MO8, the TOSS Utilities Reference
Manual, or, in the case of certain utilities, to M11, the DOS6800 Reference Manual
{TOSSUT utility).

Lot
April 1979

PTS 6800 DATA MANAGEMENT

2. PRINCIPAL ASPECTS OF DATA MANAGEMENT

This chapter describes the characteristics of data and files as seen by the system. Although
much of this will be familiar to the experienced programmer he should nevertheless read
this chapter before using the rest of the manual in order to understand how the terminology
and concepts of data and files are used on the PTS system.

21 Files

When using the word fi/e it is assumed that the data collected in a file is recorded in such

a way that it can be read by a machine. This restriction places a file within the field of
automatic data processing, within the limits of a computer program.

Thus, a file is a machine-accessible collection of data which should be organized logically
according to the accessibility requirements of the separate data elements and the overall
collection.

A file consists of a number of records, each record giving infarmation on a specific subject.
1n an account file each record describes one account. A record consists of a number of data
items. The current balance, for example, is one of the data items in an account record,

In a program the data items of a record can be given names so that they can be referred to
and processed.

recard
key aumber
DOE 2
JANSEN 3
fite JONES 5
index
MANN 4
REILLY 5
data items ¥ Jaesen SMITH 1
name F. St vecord 6
sddress —————{ 26 Any Suset record §
Anytown I
recart
accaunt
509023231 4 file
womber rocord 3
balance 203.75-

racord 2

rend 1

Figure 1.1 Composition of a file (with an optional index)

2.1.1 Use of data files

Data processing, at least in business applications, is very often a matter of routine.

Files give a permanent description ol some aspect of the business environment. As fong as
the information system manages to keep this description up-to-date, efficient processing
may be done on the basis of this description.

Some processing only uses data stored in permanent files. If a user wants to know the
current balance of an account holder, it is sufficient to select the amount from the relevant
file, assuming that the tile has been kept up-to-date. Keeping fites up-to-date implies that
changes must be made as a rosult of some calculation {an amount paid in is added to the
account bhalance), or to some permanent item (the account holder’s address).

217
May 1978

Thus two types of data may be distinguished:

— input data

— permanent data (note: the existence of such a data item is permanent; the value of the
item may be changed).

The new data could be input to the system in one of two ways:

— it could be gathered into input files from one or more sources and presented to the
system as a batch of changes to be processed at one time {(batch processing).

— it could be input via a terminal during the actual transaction that generates the change
(on-fine transaction processing).

2.1.2 Retrieving data

When processsing a file, data will be retrieved from the file, i.e. specific units of data are
separated from the file and considered by the processing system. Hf necessary, the data is
modified and rewritten to the file. For instance, when updating an account record it wilt
be retrieved from the file and, after modification, be rewritten. Sometimes several data
items of the same record must be considered and if necessary, updated at the same time,
e.g. a woman account holder gets married and changes her surname and address.

When serving a customer, his account record will be required. Since the correct account
record must be located, the record must have some identification in the form of a unigue
name or number which can be reffered to during the transaction.

For this purpose “'keys” are used. When the key is known, the corresponding record can
be retrieved from the file. The account number could be the key to the customer’s account
{this item is also a data item of the record required). Such an item is called the record key.
Another example of a record key is the account holder’s name.

The kind of key used is important when considering the methods of accessing the record
in the file and possibly the organisation of the file.

In the case of a numeric data item such as the account number, the file can be constructed
in such an erder as to ensure that the last few digits of the number represent the record’s
actual position in the file. Account number 80803237 could be the 3237th record relative
to the beginning of the file. This record key is called the ‘logical record number’.

However, if the file is ordered according to the alphabetic order of account holders’ names
some other kind of key must be used because there can be no numerical relationship
between alphabetic data items. The record key must be cross-referenced by an index to
give the logical position of the record on the file.

Thus it can be seen that two kinds of record key exist:

— the logica! record number that permits direct access to the record

— an index that provides a cross-reference to the record on the disk.

2.1.3 Accessibility of Files

The main made of operation of the PTS 6800 terminal system is ‘on-line processing’. This
means that most accesses to files will be as a direct result of a request from one of the work
positions. One work position should be servicing on account hoider’s transaction {deposit or
withdrawal of cash) and another work position coutd want reports on the current status of
account. In this mode of operation it is probable that more than one task wants access to
the same file at the same time. Each of these tasks can treat the data in an entirely

different way.

Consider the following file composed of 10 accounts.

Llefsfefelslr]o o]

212
May 1978

PTS 6800 DATA MANAGEMENT

Task AQ wants only the data relevant to the present customer. Customers come into the
office at random, so the data accesses would be random, for example the following sequence
might occur:
7,5,8,34,6.2...
Task BO wants a report on the present balance of each account, so would access the file
sequentially in account number order:
1,2,3,4,56,7,8,2 10
Task GO wants the present status of certain accounts accessed with the account halder’s
name. In this example, the system must have a cross-reference index between the name and
the account record. Accesses for task C would appear thus:

F. Smith J. Doe J. Jansen A. Mann — index
1 4 1 b
8 7 9 3 — record

The access is randam (the order of requirements cannot be predetermined) and via an index.
Physically the data file is the same for all tasks. The system itseif only sees one kind of file.
However, each task sees a different logical relationship between records and as a file is
organised according to the logical relationship between records, each task ‘sees’ a different
file arganisatior.
It is important to note the distinction between access methods and types of file. There are
only two methods of accessing a record:
— direct access (either the ‘next’ record Irom the current position or via a logical record
nember)
indirect access (via an index)
File organisation is a logical concept ihat describes the relationship between record accesses
as seen by the lask. There are three kinds of logical file:

- sequential {as ssen by task BO)
— random {as seen by task AD)
— indexed random (as seen by task CD)

Each kind is described in more detail in section 2.1.7 and chapters 4, 5 and 6.

2.1.4 Fife turnover and growth

During the normal course of business, some accounts are closed and some are opened and the
corresponding data in the accounts will be changed. Data is deleted and new data is inserted.
These activities are called "file turnover’. There may be no mare data in the file than there
was before. The file did not grow but part of it was deleted and somewhere else a compara-
ble set of data was inserted.
File turnover places certain reguirements on the construction of a file. For example, new
records cannot be inserted in the free space left by the old records, although items within
the record can be replaced by new values. Differunt tasks can use different rules to deter-
mine the validity of new data. A file of accounts arganized by account holder’s name could
have problems if there are two account holders by the same name { like father and son, or
coincidences with comman names}.
Associated with the problerns of file turnover is that of file growth. The number of records
must be specified at the time the file is created. Allowance must be made for an increase in
the user’s business by specifving enough empty records for the file 1o grow without needing
re-arganizing. The factors 1o be balanced are:
— availability of disk space for ‘empty records’
— rate of growth of the file {especially in the initial set up of the installation when data is
being transferred onto the systemi

213
May 19/8

PTS 6800 DATA MANAGEMENT

— time available for re-organising files (busy installations cannot afford to waste time on
frequent ‘housekeeping’ jobs).

— nuisance factor to the operator (if files are constructed without enough room for growth,
they may cause overflows requiring frequent re-organization).

2.1.6 File Organization

The PTS system recognizes three kinds of file organization:

— standard files (type $)

— library files (type L}

— non-standard files (type X}

A standard file is one that has been formatted under the TOSS system for use by an
application that operates under TOSS. All the files described in this manual, are ‘standard
files’ and all these files are understood to contain data, or index records.

Alibrary file is one that contains program coding in one form or another, i.e. as source,
intermediate object or loadable form. This kind of file is outside of the scope of this manual
and the reader should refer to manuel M11, the DOS System Reference Manual, or M08,
the TOSS Utifities Reference Manual.

A non-standard file is one that is either unformatted, or from a computer system that uses
different labelling and formatting standards. This kind of file is outside the scope of this
manual and the reader should refer to manual M11, the DOS System Reference Manual,
or M08, the TOSS Utilities Reference Manual, in order to process this kind of file.

2.1.6 File categories
All files used by the Data Management instructions can be divided into the following ‘file
categories’:

a. Data files — these contain information that is processed by the tasks and could contain
records about accounts, account holder’s etc. A data file on its own can be used for
sequential or random requests.

h. Index files — these contain a list of symbolic keys that are used to reference records in
data files. The use of an index file considerably reduces search time for a record,
especially if the record can be referenced by more than one key. Index files can be
treated as a data file for updating purposes {sequential requests) or used as the index to
a data file (indexed random requests).

c. Master index fifes — this is a 'summary’ of the index file that is produced after the index

file has been created. It reduces the time required to search an index file and is used by
the system in conjunction with indexed random requests. The master index fife is held
in memory after its relevant index file has been assigned to a task.
With indexed requests, these different files are refated by pointers. A data file can be
associated with more than one set of index/master index files but these latter cannot exist
without a data file. A set of data, index and master files constitute a ‘file structure’. A file
structure can only contain one data file.

2.1.7 Data File Organization

Data files can be organized in one of three ways:

. sequential — the file is created and accessed in such a way that records are processed
serially.

. random — there is no relationship between records and they are required randomly. Each
record is accessed by its position relative to the beginning of the file via its logical record
number.
indexed random — records are accessed via a key that is contained in an ‘index file”.

»

=3

o

214
May 1978

PTS 6800 DATA MANAGEMENT

The kind of organization used depends basically on the use of the file. A sequential file is
used where actions are always carried out in a sequential order, for example list processing,
reporting on the state of accounts, logging various activities on-line as they occur.
Sequential files are more often seen in batch processing, but could be used for on-line
processing in some circumstances. ‘or example log files, see chapter 3.2.

A random file is used when the accesses are happening at random times and to randomly
required records. This kind uf file organization is mare often seen in on-line pracessing
where the accesses are coming from any number of terminals dealing with randomiy
occurring events, for example, customers walking into a bank to deposit or withdraw cash
from their accounts. |t would be nonsense to expect the customers to visit the back in
alphabetical order so the files must be organised to allow records to be accessed directly —
one of the data items in the record must be used to indicate the record’s position in the file
relative to the start of the file.

The usefulness of a random file is limited if records are to be accessed by a choice of items,
for example, an account file could be accessed by either the account number or the
account-holder’s name. If this is the case then all the items used for access (the keys) must
be set up in a cross-reference file (the index) that gives the logical record number related to
all the keys. This method of organizati:.ir. i data file with an inclzx, is called indexed
randem. '

Each kind of data file organization is described in the following chapters.

215
May 1978

PTS 6800 DATA MANAGEMENT

22 Volume Organization

A volume is a single physical unit capable of holding information.
For the purpose of this manual this is understood to be:

— aremovable disk cartridge

— a fixed disk

— a flexible disk

2.21 Disk Structure

Each disk volume is divided into cylinders, each cylinder into tracks, and each track into
sectors. The user program does not use this structure as it only addresses records within a
file. The programmer must be aware of this structure when constructing files as it could
affect the blocking factor of records within blocks, number of file extents in the volume,
or number of volumes required for one large file. The structure of the PTS 6875/76 disk is
shown in the figure below.

I 4 (205/408)

volume ; ;
cylinders
eylinder t \: (2 tracks)
track I T T T T T T (16 sectors)
sector } | 401 bytes)

Figure 1.3 Disk Structure, PTS 6875/76

Each sector can be subdivided into records according to the program’s requirements. The
number of records stored in each sector is called the blocking factor and (record size X
the blocking factor) should never exceed 401 bytes. The largest record allowed is 400
bytes + 1 status byte used by the system. Every record in the file has one byte reserved for
system purposes so a record of 80 data bytes must be created as a record with the length
81. When accessing the record, the program uses the length ‘80". Thus only four records
couid be blocked onto one sector (5 x 81 = 405, is too farge}. If the record length could
be reduced to 79 data bytes + 1 status byte then five records could be blocked onto

one sector, making more efficient use of disk space.

volume — | (77 tracks)

track — (S'/z sectors DM format
26 sectors IBM format
1 | {401 bytes DM format)

sector t 1
128 bytes IBM tormat

Figure 1.4 Flexible Disk Structure

221
May 1978

PTS 6800 DATA MANAGEMENT

P, B . N bytes per
dskmoger | Crinders | Tracksper [Sectors o/ aitapte
P) . per rac to the user

PT8 203 2 ; 16 401
2x2%M
PTS 6876 406 16 401
2x5M
PTS 6879 - [401
(flexible disk} DM format

26 128

18M farmat

Table 1.1 Disk Capacity Available to User Programs

Some of the space on both disks and flexible disks is reserved for system use and so can
never he accessed by user programs, see the rabic below.

disk moie/ ?}/ em-reserved areas Purpose
PTS 8875 | fevlinder 00, rack 00, or D0 | Valume Label

PTS6876 | i|cvlinder 00, track 00, Sector 01 | Initial Program Loader (IPL)

PTS 6875 cylinder 200 203 system use

PTS 6876 ‘ cylinder 406 407 systern use

flexible disk | track 00, Sectors 01-04 (128 byte

(PTS 6879) sectors Volume Label
track 00, Sectors 05-08 {128 byte

sectors 1PL

Tahie 2 Rescrved Areas

Note that both disks and flexible disks will have variable amounts of space allocated ta the
Volume Table of Contents {VTOC) depending upon the number of file extents.

The VTOC contains one record of 41 bytes for every tile extent on the volume, VTOC
records are blocked 9 per sector so simply divide the number of file extents by @ to find the
number of reserved sectors.

The VTOC is accessible only through Assembly routines, so the reader is referred to the
Assembler Programmer’s Reference Manual.

22,2 Creating 3 volume

A disk volume cannot be used on the PTSB800 system until it has been initialized and for-
matted by the Create Volume utility {CRV), A full description is available in the Utilities
Reference Manual, MOB an in M11 DOSE800 Reference Manual (TOSSUT Utility}, butis
mentioned briefly here, CRY writes a volume label and an empty VTCC, then writes
cylinder identifiers in all sectors. This identifier is outside of the area of the sector thatis
available 1o the user. CRV also performs a quality test on cach sector by writing then
reading back. If any defective sectors are found CRV creates a dummy file called 'BADSPOT
and assigns all unusable sectors to that file, IPL is written 16 the disk and CRY terminates
The valume is then svailable for use, unless any adspots are located in the arca reserved for
the volume label on 1PL.
222
April 1270

PTS 680C AT A MANAGEMEN "

23 Recoid handlin;

2.3.1 Ixclusive access

Dava files may be shared by a number of tasks, so simultanuous updating of records must be

, veverted. Exclusive access is a function which is used to prevent simultaneous updating or

rac- -ds. "he exclusive access function for use by the user program is included at system
sneration time, but is superfluous when only one task exists using data management.

However, the user still has the possibiiity to allow exclusive access setting for a record as an
stion ic the instruction {assuming that exclusive access was inciuded at system generation

nnw)

Fxclusive access is controlled on -ecord level, which means that individual records can be

neld under exclusive access {no other task can get these records) but not the whole file.

tn this way a task may have in one file more than one record under exclusive access and the

task can have rezords under exclusive access in different files.

In one file different records can be under exclusive access for different tasks.

Example 1

FILE 1 Rt R2 R3 R4 R5 R6 R7 R8 RS9 RI0OR11R12R13 R14
—t b b

| 4
F L

R = Recard Records 3, 6 and 10 under
exclusive access for task “AQ0".
Fxample 2
R1 R2 R3 R4 R5 R6 R7 R8 RO RIOR11 R1ZRi13 R14
FILE1 +—tpmt—t+—t—+—+—————t——+—

FILE? b

FILE3 } t t \ 1 t + + + + g t t t 1

Record 2 in FILE 1, Record 4 in FILE 2 and Record 2 in FILE 3
under exclusive access for task “BO"".

Example 3
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10R11 R12 R13 R14
b4 : ey

FILE1 bt —

Record 2 Record 5 Record 9
under exclusive under exclusive under exclusive
access task AD Access task B1 access task A2

237
May 1978

PTS 6800 DATA MANAGEMENT

Exclusive access is not used for index files, only for data files.

A record can be set under exclusive access, after an unsuccessful read operation. Exclusive access
is released after a {rehwrite, delete or release exclusive access operation of the record has

been performed.

When a record is accessed which is .ready under exclusive access by anather task, a status

is returned indicating '‘record protected’’.

2.3.2 Current record number

Data rmangement has an internal handling of Current Record Number (CRN). For each file
structure (files consisting of one data file and possibly index and master index files) an area
is reserved per task in the system by data management, in which the CRN from the last
request on this file is stored for each task.

Some instructions use this CRN value before execution to obtain the next record. After
execution of the instructions the CRN may be updated by data management, depending
on the type of instruction (see table 2.3 below). This current record number can be
obtained by the user with the command “get currency index’ or ‘get currency data’. In this
case the last accessed record of the index and data files, respectively, is returned to the
user for this task.

CAN used for execution of the CRN-updated after execution of
Instriction instruction. Affected on file the instruction. Affected on file
! type: type:
| — } E— ;
i Sequential Read Data file Data file
Sequential Write — -
Random Read - Data file
Random Write - Data file
‘ Random Deiet - -
I Indexed Read - Data file + Index file
‘3 (ndexed Rewrite Data file
‘ Intfexed Delete -
Indexed !nsert H— Data file + Index file
tndexed Read Nioxt Index file Data file + Index file

Tahle 2.3 Current record number handling

2.3.3 Last record number

Data management holds per file {nat per task) a last record number pointer (LRN} indicating
until which record the file is filled. The user cannot access this peinter, but can be informed
by means of an error return code, or via the contral word after a sequential write.

When a file is created by the utility Create File, the last record number painter is always set
to the beginning of that file. After u sequential write the pointer is updated every time a
record is written. The sequential write and Indexed Insert instructions will influence the
updating of the last record number pointer. However, the LRN is not put onto the disk

until the file has been closed.

232
May 1978

FILE 1 4 F 4
LRN (after a create file).

R1 R2 R3
FILET FH—t t t {

N
LRN (after 3 records have been written by a sequential write
and the file has been closed).

8y the indexed and random instructions the user is able to read or write records focated
after the last record number pointer, However, an error code is returned indicating an
"End of Fite”” condition, but the /O operation is not aborted. It is up to the user to decide
whether an action has to be taken or not, When a sequential read results in an error code
with the “End of file” bit set, the I/O operation wilf be aborted. Note that, when a file is
being processed a difference in the value of the last record number pointer may exist
between the one on disk and the one updated in memory. After the file is closed this
updated |ast record number pointer is saved on disk.

233

May 1978

PTS 6800 DATA MANGEMENT

3 FILE INTEGRITY AND SECURITY

All the subjects and techniques described in this manual assume that processing is proceeding
without any interruption or errors. This of course is an ideal situation and one that will
hopetfully continue. it is also an untealistic situation because at some time, no matter how
infrequently, an error may occur that could corrupt one or mare items of data, possibly the
whole file. The programmer must therefore write his application to ensure that the integrity
of a fite is maintsined under alt circumstances, regardless of the source of the error. File
integrity means that the file contains valid, meaningful, and usable data. If the application
is bateh processing the file then the effects are only damaging in the sense that time can

be taken to reconstruct the file before it is required again. To achieve this reconstruction
can be relatively simple. If the application is using the file for on-line processing then the
problems of an error become far more serious. A file is required to be available immediately
and one or rnore work tlations are thereby prevented by the error from performing any
transactions.

From this it can be seen that there are two areas of file use that must be supported in the
event of corruption:

— tiles used for batch processing applications

- files used for on-line processing.
The latter includes files used for batch and on-line processing. To maintain the integrity of
a file, it must be made secure. As previously stated in this manual, a file is a logical concept
in that it is a hody of information used during the processing of an application. The
physical representation of that information is not important from the paint of view of the
application that uses it. If the medium on which the file is held is irrecoverably damaged it
does not matter ta the application as fong as an exact copy of that fife is available. A file
can be made physically secure by ensuring that a copy exists, either an the same storage
medium or on an afternative medium if the file can be easily copied to the origina! mediurm.
An on-line file requires actions to be taken within the application.

The different aspects of {ue security, and file integrity, are described in this chapter for
both batch and on-line files. Note that the subject of data security is considered to be
campletely application dependant — the pragram must check that all date handled is valid
and must seciire the confidentiality of data according to the requirements of that application.

201
May 1978

PTS 6800 DATA MANAGEMENT

3.1 Securing batch files

Security of files used for batch processing is simple to achieve if the following system is

adopted. The major requirement far any security system is ta ensure that a complete copy

of a file is available if the working copy is corrupted ar destroyed. [t would be expensive to

duplicate all disk files on other disks so cassette, magnetic tape, or flexible disk can be used

as a back-up volume,

Suppose we have a file called DKFILE on disk that we wish to secure (see figure 3.1). After

the file has been set up {stage 1) we make a copy ot the file (stage 2a — this process is

usuaily called 'dumping’ the file.). DKFILE is now available for the batch application.

At stage 3 DKFILE is required by the application. There are two main sources of damage to

DKFILE that we can consider:

— internal, i.e. damage that occurs as a result of the application, system error, hardware
faults, operator errors.

— external, i.e. damage to the medium away from the computer such as mishandling by the
operator or environmental damage (fire, left in direct sunlight, or magnetic fields).

When the damage has been discovered, copy the file from the security volume (stage 4) onto

the same disk or onto another disk of the original was damaged physically. !f the damage

was environmental, it is possible that the security copy has been damaged as well. To avoid

this, the security copy should be stored apart fram the working copy, or make another copy

(stage 2b) and store this in another room or buiiding.

O file set up on disk

@ COPY DKFILE)
= security
% - o

l to cassette/tape/flexible disk l @ make

another
security copy
F -] and store
@ use hy application I separately

damage to
disk fite |

COPY DKFILE = security
— copy
W onto disk from

back up valume

@ use by application

Figure 3.1 Simple security system for batch files

211
May 1978

PTS 6800 DATA MANAGEMENT

This is of course a very simple situation because (apart from listing, reporting or statistical
applications) the application will probably change some of the data in the file. If this is the
case, then the security copy will no longer represent a true copy of the disk file. Every time
there is a change to DKFILE (stage 5), a copy must be made, see figure 3.2.

new
data

changes by
application

(23) Copy DKFILE = security

{new version (35) Make

another

copy
Figure 3.2 Updating the file and its security copy

't would appear that the disk file 15 now completely secure against corruption or damage
because a copy of the latest version is always available. There is stifl a source of corruption
that has not been allowed for, and that is the new data itself. If one or more of the updating
records were wrong it might not be discovered until the updated records on DKFILE were
used in later processing. This could be prevented by keeping generations of the fife. For alf
practical purposes it is only necessary to keep three generations of the file {including the
latast) pius the changes that updated each generation into the next. This methad of file
security is known conventionally as 'grandfather, father, and son’, or gfs, and is maintained
as follows, (refer also to figure 3.3):

1. DKFILE has been set up (version 1) and a security copy exists {one or twa copies as
required, A1 and B respectively)

During the next run of the application, changes are made to existing records, new
records are added, or old records defeted (C1). The security copies no longer represent
the latest version {version2} of DKFILE so new security copies must be made, A2 and
81. It is debatable whether a new B level volume is required, so three A level votumes
plus one B level will give adequite levels of security. 1f a large number of changes are
made frequently there is a case for using three B level volumes. For the purpose of this
discussron only cne B level is shown.

DKFILE can be reconstructed on disk by copying from A2 {or B11 1f the changes were
proven 1o be corrupt lwrong records deleted or changes) then DKFILE could be recon-
structed by copying version 1 to disk from volume A1 and running the application with
the correct changes. There is still the remote chance that the latest version on disk was
copied incorrectly to A2. 1f DKFILE were then to be corrupted it could be reconstructed
by copying the previous version to disk from A1 then updating the disk file from C1

to make the latest version of the file. When the provious generation and i1s associsted

N

©w

212
April 1979

PTS 6800 DATA MANAGEMENT

changes must be saved. This will ensure against practically all sources of
corruption.

. To achieve three generations of security, the process of copying is continued at each
stage until there are three A level {and B level if required) volumes.

. When the fourth version of DKFILE is generated (with changes C3) the new version (4}
is capied to A1, or ta a new volume A4 (and A1 then released). Thus we have 3 genera-
tions of security, or two in the remote event of corruption oceurring during the process
of generating Ad.

>

o

Once set up, this system becomes completely automatic and can be performed either
thraugh the application or as part of the operator’s *housekeeping’ jobs on the system. The
decision to "secure’ any particular file must be made at the system design stage of the
application. If DKFILE were only a transient file to be passed to another part of the
application, or between applications, it would be unnecessary to maintain this kind of
security.

313
May 1978

PTS 6800 DATA MANAGEMENT

Changes Main file Security copies
make
security
1. Al —F Bl
KFILE version 1 copy

A1 = latest generation = son

application

2.

A2 —» Bt

A2 = latest generation = son
A1 = previous generaton = father

- ——» A3 ———» Bl

DKFITE version 3

A3 = latest generation = son

A2 = previous generation = father
A1 = oldest generation = grandfather

@ —p Al » Bl

{or A4 and
discard A1)

A4 or A1 = latest generation = son
A3 = previous generation = fatcher
A2 = oldest generation = grandfather

repeat from step 2

Note: C1+ A1 = version2=A2
€2 + A2 = version 3= A3
C3 + A3 = version 4 = Ad or Al

Figure 3.3 Full security system for batch files

314
May 1978

PTS 6800 DATA MANAGEMENT

3.2 Securing on-line files

Files that are being used by an on-line application present a more difficult situation from
the viewpaint of security. The files are required to be available all the time the application
is running. If the work stations and the application are providing 2 service to the public, like
a bank, tax office, or local authority office, we can hardly expect peopie to come back later
when a corrupted file has been reconstituted. The application must be able to provide the
same service in as short a time as possible after an interruption.

Consider the situation where an application is providing a service at a number of work
stations, see figure 3.4. All work stations have access to the file DKFILE through the appli-
cation-records can be accessed for information, for changing, for addition to the file or for

deletion.
- work stations

application

solid line
represents data flow

Figure 3.4 Multiple access to an on-line file

The first consideration when an on-line file is corrupted is 10 ensure a continuation of the
service. A copy of the file must be available in as short a time as possible. Note that the
ariginal on-lire file may have been updated only seconds before the corruption occurred or
was discovered. How do we ensure that those changes exist on the back-up copy of the file?

3.2.1 Duplicated on-fine files

If the installation had a limitless budget allocation one could afford the luxury of two disk
units with identical files mounted — a change to one would be duplicated on the other.

For most situations this is not possible although it does feature in systems where the
immediate availibility of information is absolutely critical, see Figure 3.5, If the application
detects corruption of some kind in one copy of the file it still has access to the ather and
can continue providing a service at the work stations. Where an alternative volume is
mounted, the application could activate a subordinate task to create a file with the name of
the corrupted file (in this example DKFLE 1} then copy from the uncorrupted version. This
would provide an uninterrupted service and only the operator at the computer would know
that anything untoward had happened.

321
May 1978

PTS 6800 DATA MANAGEMENT

- work stations

<DKFLE1> = <DKFLE2>

Figure 3.5 Duplicated on-line files

3.2.2 Logging the changes

Duplicating on-line files is an expensive solution ta the problem of maintaining the
availibility of information. There is a cheaper way of doing this that is similar to the method
of securing batch files. It features both a back-up of the disk file and a file contaning the
changes to the disk file since it was ‘dumped’. The difference is that the changes to the file
are recorded as they are made, that is, all changes are sent to a log file on cassette, magnetic
tape, or flexible disk. It is not necessary to have one log file for every disk file as each record
copied to the log could have an indicator or identifier attached to it showing which disk file
it belonged ta.

At certain intervals, decided at the system design stage, the on-line file is dumped to a
security volume. The decision to dump a file could be taken at every 1 000th update, every
hour or the end of the day depending upon the requirements of the application. The
security volumes can be kept in the same way as those for batch files, that is, using three
generations in a rotating gfs system. Figure 3.6 itlustrates this situation.

work stations

log file application

of
changes

security generation
make security A3 = son

> A2 = father
copy atregular A1 = grandfather
intervals

322
May 1978

PTS 6800 DATA MANAGEMENT

in the event of corruption to DKFILE, it could be reconstituted by a subordinate task
which copies from the latest generation security volume and merges this with the records
belonging to DKFILE that have been logged to the log file. The result is a new copy of
DKFILE complete with all the latest changes. The application could then be back on-line
within minutes of the corruption being discovered.

3.2.3 ‘Graceful degration”

From the point of view of the wark stations, is there any reason why the application should
go ‘off-the-air’ at ali? If the installation is giving a service to the public, is it right to make
people wait because some part of the system has sustained damage? !f the corruption is due
to physical damage to a disk unit it could be sometime before full service can be restored.
The fact that we are recording changes to the file on the log file implies that we can indeed
continue to give a restricted version of the service. The application could continue to
accept changes as a result of the individual transactions and send these changes to the log
file. If any transaction wanted an inquiry only it would not be possible, because the disk
file is unavailable due to corruption. This is all a matter for system design of course, but
there is no reason why the application should not provide an alternative to the log file if
that device should fail too. The important factor is the integrity of the file DKFILE and
changes to the information that that file represents could be accepted as long as there is
still a device operating at the central computer that can accept those changes. This method
of offering a restricted service in the event of device malfunction or file corruption is
known as ‘letting the user down gently’ or ‘graceful degradation”.

323
May 1978

PTS 6800 DATA MANAGEMENT

4, SEQUENTIAL FILES

4.1 Description

A sequential file is ane that is processed serially from the first record in file through to the
last. All files can be processed sequentially regardless of any other use. A file that is used as
an indexed random file could be used as a sequential file in another task for listing,
reporting or statistical purposes. A log file containing changes to an on-line file is both
generated and accessed later as a purely sequential file. This chapter discusses the charac-
teristics and handling of ‘sequential files” without regard to any other way of using them.

R1 [R2 [R3 | R4 | RS I R6 1 R7 Rg |R10 [R11 R13|R14
4 FREE | FREE | FREE FREE { FREE

CRN LRN
Figure 4.1 A sequential file

Consider the file shown in figure 4.1. For sequential processing all accesses to this file should
be serial. When the file is opened the CRN is zero, and the LRN is R8, the fast used record
in the file. The sequential read instruction is issued and the first record in the file is read
into the user’s buffer. The CRN is 0 before the instruction and set to 1 after the instructicn,
thus pointing to the current record being processed. The next time a sequential read is
issued, record R2 is read into the user’s buffer and the CRN is updated to 2. The instruction
makes no reference to a record number or to any particular record, it can only access the
record after the one pointed to by the CRN.
The sequential write instruction acts in a slightly different manner. |f a new record was
being added to the file, it would be placed after R8 and the LRN would be updated in
memory ta R9, and so on for as many new records were being added to the file. The CRN
is not used or updated by the sequential write instruction
Suppose the file was to be updated and that the change was to record R6. The sequence of
instructions for this are shown below:
Assign the file (CRN = 0, LRN = 8).
Read sequential unti! the relevant record is formed (CRN now = 6).
Process the data in the required record.
Sequential write the changed record. This will go to position 9 and the LRN is updated
in memory to 9.
5. The ‘ald’ version of the record still exists and will have to be deleted — "get currency

data file' is the instruction to access the CRN for the user program.
6. Random delete using the CRN as the Jogical record number. R6 is now set to FREE.
7. Close the file. The LRN will be updated on disk to 9
If the file being processed is normally used as a random file or indexed random file, then
great care must be taken to ensure that the order of records is not changed. Problems could
arise in later processing when the record is being accessed by its logical record number.

R8 R12

FREE

PUn =

1.1
May 1978

PTS6800 DATA MANAGEMENT

4.2, Creating a sequential file

The rest aof this chapter assumes that the file is being created specifically for the purpose of
sequential processing. If it is to be used for random or indexed random processing refer to

the tollowing chapters,

The file can only be created on a TOSS farmatted disk, i.e. one that has been created by the
utility Create Volume. The creation of the file must be performed in two stages. Firstly, the
file space is set up by the utility program Create File (CRF]; see the Utiiities Reference Manual,
W08, or .he TOSSUT utifity in M11 DOS6800 Reference Manual, for a detailed description.
Secondly, the actuz! records must be written to the file, A sequential file could contain

records that are present in a predetermined sequence and any operations on the file should
preferably be performed in a sequential manner.

st Stage

The sequence of operations for CRF is as follows:

1. Call CRF utility under the TOSS utilities Monitor, or as a subroutine by the appli-
cation, or via the DOS utility TOSSUT.

2. CRF requests a number of parameters. Most parameters can be given as required but
for a sequential file, two parameters are obligatary.
To ‘File organization’ reply ‘S’, and to ‘Number of index files’ reply ‘0".

3. CRF searches the volume(s) for free extents farge enough to hold the stated file size.
4. The file is set up with the required number of records, all of which cantain space

characters. Each record is set to 'FREE" status. The LRN is set to zero for this file.
2nd Stage

The actual records must be written to the file. For a purely sequential file, the records may
be required in an order determined by the value of one of the data items. If the records
have been prepared off-line on punched cards, or cassette, it is possible they may not be in
the ‘correct’ order, so the input file must be sorted according to the required key before

the file is released for use, for details of the SORT utility see the Utilities Reference Manual,
A0S,

When the file is available for use, it can be processed with the sequential instructions or with
the random instructions presuming that the record key used for random access can be
directly related to the record’s position in the file. The sequence of records in the file could
be determined alphabetically like a name and address file but this key could not be reduced
to a numerical value to give a logical record number. If the file is required to be accessed by
a task using the indexed random file, it must be set up according to the instructions
described in Chapter 4. After set up, the file can then be used for sequential processes as
well,

427
Aprit 1979

PTS 6800 DATA MANAGEMENT

4.3 Instructions

A definitive description of these instructions is contained in the relevant language reference
manuals, either Assembler Programmer’s Reference Manual, MO6, or CREDIT Programmer’s
Reference Manual, M04

These instructions are briefly:

ASSIGNING THE FiLE

When the file is “assigned’, the file name is linked to a file code declared in the same task. If
the file is to be used only by that task it must be assigned with the TC parameter = 1, or if
the file is to be accessible by more than cne task it must be assigned as a common file,
with TC=0.

After successful assignment, the file is available to the assigning task.

SEQUENTIAL READ

After the file has been assigned, the CRN fur this file in this task is set to zero. Whenever
this instruction is used the CRN is updated by one and that record number is read. it is not
possible to specify a particular record or a previous record. The current record can be put
under exclusive access if required. If the record is already under exclusive access 1o another
task it will not be read.

SEQUENTIAL WRITE

The record will be written to the file immediately after the record pointed to by LAN. The
LRN will be incremented by one to the last record written by sequential write,

If a system crash occurs during the run of this task, the new LRN will be lost but the new
records still exist. These records could be read with a random read, deleted, then rewritten
with a sequential write. The LRN wiil then be correct.

{f the record status is “free’ it wili be set to ‘used”. If it is 'used’ sequential write is not
allowed. Random delete, see chapter 3 will have to be used to delete a "used’ record.

The CRN is not changed by sequential write.

CLOSING THE FILE

A “close file” instruction is used to indicate that the file is no longer required by that task,
the LRN is updated and saved on the volume. The close action applies only to the task that
issued it, and the file is still available to other tasks that are using it at that time, unless the
file was assigned as cammon, in which case the file is no longer available to any tasks,

437
April 1979

PTS 6800 DATA MANAGEMENT

5. RANDOM FILES

5.1 Description

It has already been stated that a ‘random’ file comprises records that can be required at
random — there is no way of predetermining the next recard to be accessed from the last
record accessed. The system needs some kind of reference to each recard so that the record
can be found and read when the user requires it. For this purpose, a ‘logical record number’
is used that identifies the record’s pusitior: relative to the beginning ot the file. This implies
that the file is normally created as & sequenrial file with sequence determined by the value
of one item in the record. The last few digits af an account number, for example, could be
used as a logical record number as long as there is a direct relationship between the value of
that part of the field and the position of the record relative to the beginning of the file
{account number 0132, imust be the 132nd record in the file).

An example sequence of avents could be as follows:

1. Afile is created using the CRF utility {see manual MO8, The Utilities Reference Manuai or

the TOSSUT utility in M11 DOS6800 Reference Manual) to contain records about accounts.

Account records are written 1o the file sequentially in account-number order.

When the system is an-line the keyboard operator inputs an account number.

The program decodes the account number to produce a ‘logical record number’.

The ‘random read’ instruction is executed and the Data Management routine takes the
logical record number and calvulates the physical position of the record on the disk.
(11 ¥.nows the address of the first sector in the file and the blocking factor so it can
find the relevant sector by dividing the logical record number by the blocking factor).
6. The record is read directly {and placed under exclusive access) and made available to
the task.

N

Nate that when the file is assigned, the CRN is always set to zero. After Subsequent accesses,
the CRN s st to the last record that was accessed.

It is possibte that records do not contain an item that is increasing by one for each record in
the file. This does not matter as fong as there is a direct numerical relationship between the
item and the record’s pusition in the file.

It a file is required that contains no numerical relationship between records then the
programmer has the chaice of inventing a new field in the record that can contain a [ogical
record number, or better, 1o use the indexed random method described in chapter 6.

EXa
Aprii 1979

PTS 6800 DATA MANAGEMENT

5.2 Creating a Random File

The file can only be created on a TOSS formatted disk, i.e. one that has been created by the
utifity Create Volume {(CRV). The creation of the file must be performed in two stages,
firstly, the file space is set up by th= ut:iity program Create File (CRF); see the Utilities
Reference Manual, MO8, or the TOSSUT utitity in M11 DOSE800 Reference Manual for a
detailed description, then the actual records must be written to the file.

1st Stage

“he sequence of operations for CRF is as follows:

1. Call ©RF utility under the TOSS utilities Monitor, or as a subroutine if required by the
application, or via the TOSSUT utility under DOS

2. CRF requests a number of parameiers. Most parameters can be given as required, but
for a random file, two parameters are obligatoiry. To ‘Fiie Organisation’ give 'S’, and
to ‘Number of index files’ give ‘0.

3.. CRF searches the volume({s) for free extents large encugh to hold the stated file size.
4. The file is created with the required number of records, all of which contain space
characters.
Each record is set to ‘FREE’ status. The LRN is set to zero for this file.
2nd Stage

It is possible to write records with random write instructions at this point but on a sub-
sequent read instruction the LRN will still be zero and an error will be returned stating
End-of-File. The actual records must be written to the file using the sequential write instruc-
tion so that the LRN wilt then be set to the iast used record in the file. The operations for
this second stage depend upon the source of the records. If the records already exist, for
example a bank putting its account records onto the computer, then the records could be
copied into the ‘empty’ file on the disk. {f it is a new system, then the account numbers
could be written to predetermined positions on each record. Each account record could
then have the rest of the information set up at the time account numbers are allocated to
customers,

Remember when setting up the records that the logical record number will be related to the
record’s position on the file. The records must be written, therefore, in the order determined
by the relationship between the record key to be used and the logical record number.
{Account Numbers allocated as 1, 2, 3, 4, etc. should be set up as the 1st, 2nd, 3rd, 4th, etc.
records in the ifle. f account number are allocated by tens, i.e. 10, 20, 30, 40 etc. these

will still be logical record numbers 1, 2, 3, 4 etc. so provision must be made in the using task
to reduce the input key to the relevant logical record number.)

The fife can now be used as a random file, see the instructions in the following paragraphs,
or as a sequential file, see Chapter 2. I another task is going to use this file as an indexed
random file, then this file should be created according to the instructions in Chapter 4.
After set up, the file can be used for random, as well as indexed random, processes.

521
April 1979

PTS 6800 DATA MANAGEMENT

5.3 Instructions

A definitive description of these instructions is contained in the relavant language reference
manuals, either Assembler Programmer's Reference Mznual, MOB, or CREDIT Programmer’s
Reference Manual, M04.

These instructions are, briefly

ASSIGNING THE FILE

When the file is ‘assigned’, the filename is linked to a file code declared in the same task. If
the file is ta be used only by that task it must be assigned with TC = 1. If the file is to be
accessible by more than one task, it must be assigned as a common file, with TC = 0.

After successful assignment, the file is available to the assigning task for random read,
random write and random delete, the record being accessed by its logical record number,
see section 3.2,

RANDOM READ

This instruction will allow the task to access the record by its logical récord number, and to
put the record under exclusive access. The CRN will be updated to the last record that was
accessed.

RANDOM WRITE

The record 1o be written is specified by its logical record number and the CRN is updated to
this record after a suceessful write. If the record on the file is ‘free’ it will be set to ‘used’
but if it is already ‘used’ it can only be written 1f the record is under exclusive access. This
implies that if an item in a record is being changed, the record must be read by random read
first. Exclusive access is released after a random write.

RANDOM DELETE

This instructian can only be used on a record, specitied by its logical record number, that is
under exclusive access. [t sets the status character to'free’ then releases exclusive access. Note
that in CREDIT, this instruction is effected through the Data Set Control 1 statement (DSC1).

CLOSING THE FILE

A “close file’ instruction 1s used to indicate that the file is no longer required by that task.
The LRN is updated and saved on the volume. The close action applies only to the task that
issues it, and the file is still available to other tasks that are using it at that time.

531
May 1978

PTS 6800 DATA MANAGEMENT

6. INDEXED RANDOM FILES

6.1 Description

Random files as dascribed in the previous section are simple to set up and use. The limi-
tations become apparent when records are referenced by non-seriat items such as names, or
the user wants to access the record via a number of different items such as name as well as
account number.

in this case, an index must be created that provides a cross-reference between the item
provided as the reference {the symbolic key) and the relevant record, These keys can be
alphabetic such as names, alphanumeric such as encoded charge numbers, or numeric such
as account numbers. Up to four keys can be used to reference the record. When a record is
required, the instruction is supplied with the key and the system looks up the fogical recard
number associated with the key. The symbolic keys are all held in a sequential fite called an
‘index file’. A summary of this file is created in order to reduce the search time for a
record. This summary of the index file is called the ‘master index’, which is also a sequential
file. The data file, index file and master index file constitute a 'file structure’.

8.1.1 File structure

The basic component of a file structure is a data file. Each file structure can contain onfy
one data file. For every record in the data file, at least one item has been nominated as a
key. The keys are gathered inte an index file that has been sorted acrording to the pure
binary form of the key and into ascending order. The index file is thus a sequential file.
Each key in the index file is given the logical record number of the record it belongs to in
the data file. The record key in an index file is called the ‘symbolic key'.

The number of symbolic keys in the index file is obwiously the same as the number of
records in the data file. To search through the index could take a lot of time for a large file so
the system divides the index into purtitions. The highest value key in each partition is
copied into a ‘master index” with the lowest record number of that partition. This master
index is also a sequential file. When a symbolic key is input at runtime, the master index is
searched sequentially until there is a match or unti! the next highest value key is found. In
either case the master index paints to the partition that contains the symbolic key and
hence the logical record number of the required record. Note that the master index is
stored in memory while the index file is assigned.

The relationship between the data file, the index file and master index is shown in the
following diagrarm,

6.1.1
May 1975

PTS 6800 DATA MANAGEMENT

MASTER

symbolic
key

Consider two examples of record access from a key supplied via the keyboard. First, key
AG is supplied, then AL.

Exampie 1:

The operator inputs AG.

1.
2.

3.
4.

5.
Exal
1

2.
3.
4.

5.

INDEX

logical

record

number

of index

record
v

AD

AG

AM

1]
5]
9]

INDEX FIL

symbolic
key

1 AA

E

Logical
record
number
of data
regord

4| AD

|
:

partiti

ion AF
8

51 AE

£

partition
AL
12[Am |

9] AJ

Figure 6.1 File Structure

DATA FILE

record
key

|

[T

AH !

AG

logical
record

nu$ber

AK

AJ

AC

AD

AA

WNDO D WN -

AF

©

AB

=}

AM

AL

N

A sequential search is made of the master index until a match occurs, or the next

highest value is found.

A match occurs stating that symbolic key AG is in the partition that starts with
record B,

A sequential search of partition 2 of the index file until a match occurs — this gives

the logical record number 3 in the data file.
The record is accessed directly.

mple 2:
The operator inputs AL.

A sequential search is made of the master index until a match occurs or the next

highest value is found.

AL does not exist in the master index but a higher value is encountered, i.e. AM,
which gives the partition that starts with record 9.
A sequential search is made of partition 3 of the index file until a match occurs — this
gives the logical record number 12 in the data file.
The record is accessed directly.

Thus the use of a master index as a summary of the index file, and the division of the index
into partitions, gives cansiderable savings of time when searching for a record.

Any data item in the record can he used as the key and it is possible to use mare than one
data item for accessing the record. If a second (or third or fourth) item is required as a key

then more index files must be created {and master index files), see figure 6.2 below.

6.1.2
May 1978

PTS 6600 DATA MANAGEMENT

MASTER INDEX FILE 1 DATA FILE
INDEX FiLE 1
highest Togical symbolic logical record data
symbolic record key record keys file
key in aumber number logical
the of first of data record
partition index record number
record in
the par-
tition
v
partition AA 3 AL |B8 1
1 AB 5 AF | B2 2
i AC 23 AA-{B5 3
: partiton | AD 8 [az[B7 | 4
2 AE 17 AB [B4 5
AF 2 AL |B9 6
! (. AS |B1 7
: [AD |B6 8
\ ' 1
A
MASTER
INDEX FILE2 INDEX FILE?
partition 81 7]
1 B2 2
B3 19
B4 9
partition B5 3
2 BG 8

Figure 6.2 Data file with Two Sets or Index Files

613
May 1978

PTS 6800 DATA MANAGEMENT

6.1.2 The Index file

The index file is a sequential file and contains one symbofic key for each record in the data
file and the logical record number of the data file record. [t also contains a status indication
for the record and an indication of duplicate characters in a set of symbolic keys.
Allowance must be made far the file to grow without the need for frequent rearganization.
Just as a number of empty records are allowed for when creating the data file, so should
empty records be present in the index file. The ratio of used to empty records is called the
‘load factor’ and is a parameter required for the Re-organize Index utility (R1X} which is
fully described in the Utilities Reference Manual, MO8. The number of empty records in the
index file shouid be the same as that in the data file, but the empty records are put at the
end of each block {i.e. sector) in the stated proportion. Consider an example data file of
100 records spaces. It is expected to grow to this size quickly but when the records are set
up, only 60 data records are available. The index file is created with symbolic keys pointing
10 the existing records and not the empty ones. However, provisian must be made in the
index file for the data file to grow, so the index is created with a load tactor 50%. in the
data file, the empty records are positioned logically at the end of the file. The index is a
sequential file and new symbolic keys must be inserted in the correct sequence so the spare
index records are placed in each sector. The new key is inserted in the carrect position and
the following records in that sector are shifted along. Figure 6.3 summarizes this situation.

record number 50 record number 100
data file
{on 100 sectors)
V V
‘used’ records free records

Figure 6.3a Iliustration of L oad factor-Data File
There is 50% utilization of record spaces after initialisation of the file, so the index is

created with a load factor of 50%. A new record, lugical record number 51 is placed at the
end of the used area and the LRN updated.

index file 74
(on,say,5 E;Zj Ezéj é;a //.
sectors) /
‘used’ ‘free’
index = [/ ree.
records recards

Figure 6.3b lllustration of Load factor-Index File

The index record for record 51 in the data file is placed in the correct position according to
the symbolic key and the keys following in the same sector are shifted atong. If the records
overflow into the next sector, the records already contained in that sector are shifted along.

614
May 1978

PTS 6800 DATA MANAGEMENT

The format of the index record is as follows

field length
1. Symboiic key 1-n characters
2. Dummy 2 characters
3. Duplicate key 1 character
3. Logical record number 3 characters

where:

‘symbolic key' is the data item contained in the data file record that is used for identification
of the record. It is left ajusted and padded with blanks if n is greater than the key used.
‘Dummy’ 1s not used.

‘Duplicate key' is the binary value of the minimum number of leading characters in the key
that is identical with the next symbolic key in the index fife.

‘Logical record number” is that of the record in the data file that is referred to.

Remember when calculating the blocking factor that one byte must be added to the record
length for the status byte,

6.1.3 The Master lndex file

The master index is used to reduce the time required to search the index file. This is created
by the system during the utility Re organize index (RtX). The size ot the master index file is
decided by the user and this will aetermine the number of partitions, and henee the number
of master index file entries.

The master index file must reside on the same volume as the index and there can be a maximum
of 16 master indexes in the system at the same time. When the index file is assigned to the data
file by the application, the master index is completely read into memory. The size of the master
index memory area has to be specified during system generation, and must be able to contain
all master index files required simultanecusly plus three words,

The optimum size for partitions should be related to the physical starage of the index file

on the disk. That is, the master index file should be constructed to minimize disk head
movements when searching for index records, The system reads a whole sector at a time

even through only vre record is being accessed. |f the index file occupies, for example,

5 sectors then the master index file could be created with 5 records. Each master index

entry would describe one sector {= 1 partition}. The key value is the last record in the sector/
partition {highest key value} and the lowest record number is the first record in the sector/
partition. Thus onfy one disk head movement is required to access all the index records in
the partition. Figure 6.2 above illustrates this relationship.

For very large data files this could result in a large master index. A data file with 4 000
records would tave ar index file with 4 000 entries. |f these latter were blocked 20 per
sector then the index file would nccupy 200 sectors with 200 entries in the master index

file. Thus could result in refativeiy fary search times for recards with high key values. Time
could be saved by creating the master index tiles with enough records for 1 entry per track
(number of sectors = 163, Thus the disk huad only needs Lo move once to the refevant track
and have access to any index record in that partitionftrack within one revelution/track of
starting the search.

Itis difficult to give axact values for the time required to find a particular record in a file
structure because of the number of variables involved. Nevertheless, the programmer should
keep these points in mind when creating a file structure and balance these to give a reasan-
able partition size Tor each circumstance. The variables 1o be considered are:

a. number of index file records

b, hlocking tactor of index file

¢ load factor of index file

d. amount of memory available to hold the master index.

6.15
Aprit 1979

PTS 6800 DATA MANAGEMENT

If "a’ is high and 'b" and ‘c’ fow, then 1 track to & partition could be better than 1 sector
to a partition. If ‘a’ is low then 1 sector to a partition could be better. However, with
limited amounts of memory available the master index would have to be small and the
partitions arranged to represent a {arge number of index records.

6.1.6
May 1978

PTS 6800 DATA MANAGEMENT

6.2 Creating the files

The files can only be created on a TOSS formatted disk, i.e. one that has been created by
the utility Create Volume (CRV).
The creation of the files must be performed on 8 stages:

1 The data file is set up by using the utility Create File (CRF)

2. The actual records must be written to the file.

3. Theindex file and master index file must be created using the utility CRF,

4. Before the index files can be built, the utilities used in this process must have two
intermediate files. These are created at this stage and for the purpose of this explana-
tion are calted IFILE1 and IFILE2,

5. The utility Build Index File (BIX} is next. It takes the data file as input file and builds a
file of records that contain the key and the logical record numbers of the data records.
This output file is the intermediate file IFILET.

6. The recards on IFILE T must be sorted according to the pure binary form of the key
and into ascending order. Qutput is to intermediate file IFILE2.

7. Thesorted file IFILE2 is used as input to the utility Re-organise ndex file {RIX). tt
takes the sorted records from IFILE2 and writes them in index record format onto the
index file created al stage 3. The master index file is generated by R1X at the same
time using the file created at stage 3.

8. Thedata file, index file and master index file are now available for use by the appli-
cation. IFILE1 and IFILE2 can be deleted.

This process is summarized in figure 4.4.

6.2.1
May 1978

43onas 8fiy e dn bunias g anbi4

PTS 6800 DATA MANAGEMENT

[4RIE]
Bty
ajeIpawalu|

uoneotddy g

ERIF]
X3aNI (X14)
HILSVIN SpJoval ajl
Xapu|
3714 astuebiosy
X3aNI

1

(1LYS)

$p10das __.m.__u_
yoput 3leIpawLalu|
1iog :

ERIE!
viva

$pI0DAI EYED
dn jeg

{440)
s3lly
210310

622
May 1978

PTS 6800 DATA MANAGEMENT

Stage 1

The data file must be created using the utility CRF.

1. Call CRF utility under the TOSS utilities Monitor, or as a subroutine from the
application, or via the DOS utlity TOSSUT.

2. CRF requests a number of parametars. Most parameters can be given as required, but
for an indexed random file, two parameters are obligatory. To ‘File organization’ give
*S’, and to ‘Number of index files’ give 'n’ where n is the number of index files required
{1-4)

3. CRF searches the volumel(s) for free extents large enough to hold the stated file size.

4, The file is created with the required number of records, all of which contain space
characters.

Each record is set to ‘FREE’ status. The LRN is set to zero for this file.

Stage 2

The actual records must be written 1o the data file using sequential operations otherwise the
L AN will nut be updated and will stiil be set to zero the first time that the file is used. The
operations for this stage depend upon the source of the records. If the records already exist,
far axamplie a bank branch putting its account records onte the PTS system then the records
could be copied into the ‘empty’ file on the disk. If it is a new system it would save time
during the next stage if the records could be written into the file in the ascending sequence
of the key data item.

Stage 3

The index file and master index files must be created using the utility CRF. The number of
index files must be given as ‘0" in both cases.
The record lengths must he

for index file = key length + 6
for master index file = key length +3.
Stage 4

Create the intermediate files using the utility CRF. Any file names can be used, but the
example shown in figure 4.4 uses IFILLEY and IFILE2. The number of index files must be
given as ‘0’ in both cases.

The record lengths must be:

for intermediate file 1 = key length + 6

for intermediate file 2 = key length + 8,

Stage 5

Next, the utility BIX must be performed as follows:

1. Cal! BiX utility under the TOSS utilities Monitor.

2. BI(X requests a numbier ot paramerers via the cansale typewriter. Most parameters are
input as required. The data item that is to be used as the index is specified by two
parameters. These are "Key Address in Record” — give the address of the first character
of the key relative the start of the record, v decimal; ‘Key Length” — give the tength
of the required key, in decimal.

3. BIX then scans the data file and copies the required keys to IFiLET. The index records
are written sequentially to the fiiz without any regard to the value of the key. For this
reason the next stage {sorting} must he performed.

2

Aprii 1979

PTS 6800 DATA MANAGEMENT

Stage 6

IFILE1 at this point contains the requ:red number of symbolic keys but they are unsorted.

The following sequence of operations must be performed.

1. Call utility SORT under the TOSS utilities Monitor, or as a subroutine from the
application.

2. SORT requires a nuraber o/ pa @mete 5L Jt ihas process is a standard sort and requires
no special parameters.

3. Thesorted records are output to IFILEZ

Stage 7

{FILE2 consists of a set of symbolic keys {with logical record number referring to the data

file) that are sorted into ascending order. The index records must now be formatted onto

the index file and a master index file built. The ma-..r index is structured and formatted by
the same utility, Reorganize Index File, ard req 'ires o parameters from the user. This
master index is stored on the same volume as the index and is assigned at the same time.

The sequence of operations for this last stage is as follows:

1. Call RIX utility under the TOSS utilities Monitor, or as a subroutine.

2. RIX requests a number of parameters via the console typewriter. Most parameters are
input as required but the reader should note that a value is required for ‘Load Factor’
which was discussed in section 6.1.2, The Index File. This parameter is the percentage
of ‘used’ records to be written to each sector and should reflect the percentage of
‘used’ records in the data ifle. The RiX utility will use this factor to construct the
partitions and to build the master index file.

3. Index records will be read out from the input file and written in the required format
for an index record with the required number of free records at the end of each sector.
Records are written to the master index file sequentially during the run. RIX performs
a check on the record sequence and an error is set if a key sequence error is detected.

4. Atcompletion, the index is properly structured and formatted and R1X has constructed
the relavant master index file.

Stage 8

The file structure is now available for use as an indexed sequential file, see the instructions
in the following paragraphs. It is possible to use this data file as a sequential file (for copying
or generating reports) or as an ordinary random file {but only if a record key can be input
which is related to the record's logical record number). However, no pracess shouid be
allowed to take place on the data file that is going to disturb the order, or position, of
records without also updating the index file.

Note

It is also possible to start with an ‘empty’ data file, LRN = ‘0’, and hence empty index and
master index files. Indexed-insert can be performed until performance considerations

require index reorganization with RIX. This would probably be the case for a new application
where data is generated and collected as the application goes live (a new branch office, for
example, taking on new accounts}.

6.24
May 1978

PTS 6800 DATA MANAGEMENT

6.3 Instructions

A definitive description of these instructions is contained in the relevant language reference
manuals, either. Assembler Programmer’s Reference Manual, MOB, or CREDIT Programmer’s
Reference Manual, M04. Before these instructions can be used, both the data file and the
index file must be assigned othervrise an error will be returned.

These instructions are, briefly:

ASSIGN THE FILES

An indexed random file must be assigned in two steps.

— the data file is assigned 1o a (ile code as accessibie by all tasks or only accessible by one
task, that is with TC = Q for common files, TC = 1 for this task only.

— the index file is assigned using the index file assign instruction. The associated master
index file is assigned implicitly and read into memory. If more than one index/master
index is to be used, they must all be assigned separately.

On this data file recurds may be retrieved, deleted, stared, inserted, or retrieved sequential

from a certain point by using the commands indexed random read, indexed delete, indexed

rewrite, indexed insert, or indexed read next. The record to be fetched is indicated by means
of a symbolic key.

11 is allowed to assign an index-file as a data file, in this case the user is able to process this file

as an ordinary data file and can create his own index records. It is not allowed to assign an

index file as both a data file and index file at the same time.

An indexed rewrite, indexed delete or indexed insert may be performed when all index-files

corresponding to the data file are assigned,

Assigning a file code to a data file or an index file on flexible disk results in the door of the

corresponding Hexible disk drive being locked.

INDEXED RANDOM READ

The task must supply @ symbolic key with this instruction. Data Management searches the
master index first until a matching or first highest key is found. This will point to the
relevant partition in the index file and cause a search in that partition until a match occurs.
This will give a logical record number and the record will then be accessed directly. The
recard can then be put under exclusive access if required. The CRNs for both the index file
and data file will be updated.

INGEXED REWRITE

The data record st first be read and exclusive acress set (1f it has been specified during
system generation before this instruction is used). The record is replaced by the new record,
except the symbolic key which remains unchanged, and exclusive acces released. The CRN
for 1he data file will be updated to this record number and set to zero for the index file.
Note that in CREDIT this instruction is effected through the DSC1 statement.

INDEXED DELETE ! { _—r

This instruction will delete the data record and the entries in the index file, The task must
supply the logical record number of 1he data record which must be under exclusive asccess
{if this has been specified during system yeneration). The data record is read and the index
cntry is deleted only after a successful read. The data record is set to ‘free” and exclusive
access is released. The CRN is not affected

6.3.7
May 1978

PTS 6800 DATA MANAGEMENT

INDEXED INSERT

This instruction allows the 1ask to insert an new data record into the data file and create a
new index record. The data record is added to the end of the file and the LRN is updated
in memory. Tha symbetic koy is inserted in the carrect place in the index file according to
its pure binary walue and the d5 Tallowing the news index record in same disk sector
shifted along inio the free area. If ani index record d\readv exists with the same symbolic
key, the riew i insered ront of the cld. Exclusive access is riot set and the CRN in the
data file and ' be set s tha va ot the riew record and its index.

INDEXED READ NEXT
This performs e same function as indexed random read except that no symbolic key is
supplied. The data record that is read is the one that i< referrerd to by the index record
follawing the cuirrent index record nernber. This imnlies that the ‘read next’ is the next
highest symiby At ats to. 18 the CRN i¢ zero then the first key
in the index fire is usedt, The Cf tie and index fiie will be set 10 the new
values.

This instruction can ohiy be used

vecard it p
Ns i tne data

vy o

after

d. indexad rarctom rear]
b. naexe:t insery
¢, oranother mdexed read next

CLOSING THE 7
A ctose fils
fite i3 no lonuer
corresponding
noionger valte

" the index files 10 indicate that the
o nile ihe LRN innthe volume tadle of the
ume. The previously assigned file code is

At il e closed implicity

during the lime the file structure was in use, it is
sdex and master index files. This will ensure
ra of the index Tie

e o

iz with L File with pack’ utility program

celyot
el

{CFFiuiter s

PTS 6800 DATA MANAGEMENT

CONTENTS

Date

PREFACE ... B Y

1. INTRODUCTION vieeen April
2. PRINCIPAL ASPECTS OF DATA MANAGEMENT
2.1. Files -« veeeseseenanea May
May
May
May
May
2.2. Volume Organization, ceeereranean terteencseresearasas, May
Apri
2.3, Record handling +........ D 1
May
May
3. FILE INTEGRITY AND SECURITY fetsisnansasasererneaes May
3.1, Securing batch files ,...... e eiieieasieisaienesaa.. May
Apri
May
May
3.2. Securing on-line files P +vo May
May
May
4. SEQUENTIAL FILES
4.1, Description sevessiaaacans
4.2, Creatinga sequentlal file
4.3, InStructions ..eoeueon.n

5. RANDOM FILES
5.1, Description ., , ..o, vuvensensns
5.2. Creating a random ﬁle P,
5.3, INSLrUCLIONS s vveravvonsscusaranesas
6. INDEXED RANDOM FILES
6.1, Description +.vvuvessrnrnrarnrons Crerivsseesisieaisaasaess May
May
May
May
Apri
May
6.2. Creatingthefilesovnvivivivinnans seeeitsressienaesss May
May
April
May
6.3. Instructions ,........ PP e . May
May

0.01
Aprif 1979

1978
1978

1978
1978
1978
1978
1978
1978
1979
1978
1978
1978
1978
1978
1979
1978
1978
1978
1978
1978

1978
1979
1979

1979
1979
1978

1978
1978
1978
1878
1879
1978
1878
1878
1979
1978
1878
1978

Page
0.0.0

PRWRLEE W NNNNNNONPD NN
RN VIR % SRS VA LN TV

;oo Fe ol
W= W

e huvobobwios

on ooanononon
wWw NN oL D

