Table of Contents

Preface
Glassary of terms
PART | ASSEMBLY LANGUAGE

Intro
Symax R & w a o

Shapter s Foruseobsonien iptonionts
fiel

Chagter 2 Bunctional operation of instructions

tore instructior
Aiihmaii pisioon

External transfer instructions
Move table instructions - -

Chapter 3 Assembly dircetives -
Program framework -

IDENT G o 8

ENDL- o« oo .

Linkage control
ENTRY.

o<

RR&EEEEES

BEEE BRBE

BEEEE

AORG . .
RORG . .

Value definition . .
DATA
Area reservation . .
RESH I~

Listing control .
EJECT
ST © o s s

Symbol generation.
FORM . . E
XFORM. | | | .

GEN. .
List of predefined symbols

Chapter 4 Programming considerations .

Stand Alone or Monitor controlled programming. .

nterruptsystem L L
Systemstack . .

User stack . ool =
Trap action Pk |
Simulation routine

Adaptation of P855M software (o PAOOM software .

of RTN instructior
Stand Alone Inputand Gutpit Programming .

[

Glossary of terms

Absolute addressing

Assembler

Bootstrap

Breakpoint

Character

Cluster

blank common

Iabeled common

Debugging Package

Directive

Effective
memory address
Entry point

External reference

File code

addressing specific_ locations in memory (see also
relocatable addressing)

a system program which translates programs
written in Assembly Language into binary object
code

4 program provided for initial loading of the
system

ress at which execution of program stops to
allow further debugging

sight bits, representing an integer, letter or other
a set of data in object code

an are 10 which exerna rferences can be made

from one or more modul

a predefined external reference which can be used

in several modules

et R s K e o et

akpoints in ¢ load module and cll debugging

Ronctions before sxetion of pro

an instruction used for providing a framework for a

program or for guiding the assembly process
ddress in memory where the actual information

can be found

a label to which an external reference is made

a reference to an entry point
‘module

another program or

ons or o hexadecimal digis asociared with an
170 devi

Identifier
Internal symbol
PL

Label

Linkage Editor
Load Module
Location counter

Mnemonic

Module

Monitor

Object code

Operand

Pass

Real Time Clock

 charter or @ combimtion of charcters used to
label an instruction or a value which is to be
Teferred t by other nseuctions

identifier in a module

Initial Program Loader. A program to load the
monitor

max. six characters long, the first
— hemg aletier

processor used 1o link independent object
modlies betord execition

program output by the Linkage Editor containing
70 external references

counter used to assign 4 relative or absolute
‘address 1o program elements

abbreviation for an instruction, as used in the
operation code field of a source. statoment, o
indicate a machine instruction or directive

a part of a program, enclosed by an IDENT a
D diecige, which e b reoed ndepandants
of the rest of the program

& sysem program which supervses the londing.
procesang and excuton of uier programs surs

and supervises the operation of processers and
riiaines /0 aperations

rogram as translated by a Janguage translator and
e e i Linkage Editor

an_expression. indicating the address, value or
register operated upon by the machine
instruction

one program run
2 mechanism by means of Whlch ot of

mputer e dllocated 1o o pro red
.s..d & signal s given when that perio of time has

Relocatable addressing

Source statement

Stand Alone processor

Symbol

Update Package

sddresing In relaon o e begining of o
rogram, not (o specific locations in memory.
of the addresses is then done by (-

one line in 4 source program

procesor ot rnning under Mritor conirol It
contains its own 1/0 routin

r. used as an address value in the
cperand o ethes nrucians

processor which handles the additions and
PR

PART 1 ASSEMBLY LANGUAGE

Introduction

Thiepartconains description ofthe Assmbly Langusge In (i dseipion i
made clear how the prograr € his programs using the instructions of
the PROOM Insructon Set a5 woll ¢ the girecives which guide the e

. The instruction sets of the

process when the program is inpu to the Assem!

PS0OM series computers are upward compatible.
Programs for the POOM computers are written in 4 symbolic langusge dlosty

related (0 the machine code. Each statement (or linc) of the program relat

single machine instrction or (0 4 data em (o be taken imo accoun by an

instruction.

To write programs in the Assembly Language, the user should be familiar with
the syntax of the instructions, which are devided in the following main groups:

~ Load and Store instructions
= Al nscions
— Logical instruction

= Churacter hzndhng instructions

External Transfer instructions
= Move Table nsructions

Programming in Assembly Language requirs certain rules 1o be acceptable to
the Al

A source program may consist of one or more madlules it Wit sars
With an identification IDENT and terminates with an END (see s el The
whole source program must be terminated by an “End OF File” mark (:

NOTE: 11 a source program consists of several modules the pedilesnesinot
marks but by EOS marks (End Of

An :EOS mark at the end of a punched tape i el

end-of that tape when the program is punched on two tapes The

mark is not part of the Assembly Language.

The following figure shows various possibiliies of how programs can be
punched on tape.

In exampe A the progran s conained on one punched tape. Th

ape. The program
starts with an identification IDENT and is terminatcd by END which will cause
an EOS tobe e hen th B s ssemlec i P by an

IDENT IDENT IDENT
£OS END END
EOF EOF
IDENT
IDENT
END END
EOF EOF
requires LKE requires LKE
A B c D

d ait oDrdupcramr action. The second tape dnc: ot contain an [DENT and is
e ately after the first one. The second tape is terminated by an END

Example C consists
and g s i Lo modules on o, apes both beginnin with IDENT

14

ample D consiss of seversl modles pncied on one ape- Exch module
e it an TDENT and i terminated by END and ether a ark if
e ot falas his one or by :EOF wh:n b i e e
processed. Th

arger program which can be executed.

Each module of a program consists of a number of characters grouped into
lines and cach statement in a module is made up of the following characters:
Letters: A to Z inclusive

0109 inclusive

plus
minus
asterisk
equal
apostrophe
comma

blank

slash
Tef parenthesis
vight parenthesis
period

colon

Location counter

“The Assembler malntains a ocation counter which s 3 software couner yed
sign 2 relative or absolute memory address o program dlements. The

location counter sarts with a reatie value cqua 1o 7ero. or it st 1 an

sl ~iires dein by the ARG diesive at he begiomng. of o

asembly. The vlue of the couner is ncrementod by 2 or a mulipe of f

epending o the ind o insrucion given,

Tk ey counter is referred to by an » in the operand

eldleeiow) o Abselie postam cmlork. has n bacioe vale. 1 it

e he alue i inremented n the normal way an the value may be changed

bya RES G direct

The lncauon counter may fake nether a negaiive relaive value nor an odd

Symbols

‘A symbol is a character or a string of characters used 1o represent addresses or
values. Symbols may appear in the label field as well as in the operand field of
a statement.

Their syntax is the same as for the label (see under label field). Some symbols
are predefined and have a special meaning for the Assembler c.g. + indicatcs
O e o s ® wine et acion oo o

Syntax description

The following symbols are used to define the syntax of the PSOOM Assembly
puage.

< > 1o enclose syntactic items.

the vertical stroke has the meaning of or

is composed of

the syntactic items between these brackets may be omitted
select one of the items between these brackets

space

r
L

The following st contains the definition of all items used.

<statement> = [<label >] < operation
code >[< operand >1[< comments>]
< comments>]

<label> <identifier>

<operation code> <memonie>{S<cnd)]
[I<directive

<operand> [+_\<-=rm>mﬂ< term>

+l—]<e
<comments> el pcicny o s e
ntifier> letier>| <identifier > <letter>|

<identifier > < digit >| < dentifier >

<mnemonic> Sleters represening operation code>

<S> <store indicats

(Scnd>) Rl Sovditisn AR
<condition’ mnemonic >

<numerical

condition value > oj1i2palstel?

<condition

mnemonic> ZIPINIOJEIGILIAIUNA]
NRINZNFINEINGINLINN

<L> < load indicator>

e
<IDENT, END eic.> see chapter on
directives

<directive>

<DATA defined
hexa constant>
<module name>
<symbol>

< see DATA directive>
<symbol >

< characters representing address or value >

<max. of two defined symbols>

<predefined expression>
<identifier within reference module >

<entry poi
<extérnal =identifier defined in other module >
<common-fel

definition list> = <commen field definition >, <common field

definition
<common field name>[<common field
length>]

<common field definition>

entifier >
redefined bl expreson
mbol >, <internal - symbol >

<common field name >
<common field length>
<internal symbol list>

<internal symbol>
<field definition >

<fld engin
ld v defuion>

<ield value definition>

<field number >

<term>

<constant> <decimal constant > < hexadecimal

constant>| < character constant>

ecimal constant

S heaiocin) ot

Scharacter constant>

<letter>

IOIPIQIRISITIU|VIWIX|Y|Z

<d nzxaumsms\g
<delimiter> Il =H-0L:
<intege

18

1 Format of source statements

A source module consists of a sequence of statements, The Assembler

interprets cach line as it is presented.
Statements can be divided in the following fields

— tabel
- ﬂptrallon field
— operand field
— comments field
<statement > =[< label > | <operation code > <operand > 1w
[<comments>|
< comments>1

Each field_has 1o be separated from the other by one (or more) blank
character(s. Blanks may not appear in the fields themselves cxcept when
speified in o charate consan o in & commanis eld. tead of Hnks 8
backslash may be used for separation (sc e or more lanks i
e el P e e s et 5 b B

If there are more than ten blanks after the operation field all following

characters are considered to be belonging to the comments fiek

An » (asterisk) at the beginning of a statement identifies that line as a

comments line.

Statements punched on tape which are to be read by the ASR punched tape
be terminated by LE XOFF CR. which switches the reader of,

followed by a Null character, e Rubout, to allow for a proper reading and

processing of the next usable character.

LABEL FIELD

<identifier >

The ns. in most cases, 10 each label a word address value which
e namerica cqunvalent(absohute o relocitable of he label

The maximum number of characters in a label recognised by the Assembler is

Sin. The first of those must always be @ letter. A label, however. may contain
i six characters but the additional characters will not be taken into

account. IT the Tabel has already been allocated to another statement an error

message is output,

Period signs in a label are not significant. e.g:

LAB.EL, has the same meaning as LABEL

The value of a label is narmally regarded as relocatable. except when:

= an ol akdresy s quated by an EQU dicetve

 the label appears in an absolute program section (defined by the AO!

RG
irctive and which is o cquated by an EQU dirccive 4 label previously
defined as relocatabl),

OPERATION FIELD.

<operation code > = <mnemoriic =[S|(< end > [L1[+] < assembly
directive >

where:

<mnemonic >

e operaton i pormally coninsthe micmnic of 3 sandard insucion. I
i posi Bowver, o genrte o ovn seton moeoni by meas of e

FORM, an diecives (ony with the. monitor contrlled
Racabir)

s
Allowed aftcr the mnemorie of ceta

eseghter 18 gterand ey sl
bestored ina memory
S e e b oo s part

word (bit 15 of he insiruction is se o 1).In
ofthe et mne
CIR and CIRS mstrucions:‘are (o b considered g5 Wo ‘diferént
instructions.

NOTE: 1t s allowed 10 have the S preceded by a period sign though the
Assembler does not take this sign into dccount.
g ADSc. = ADS_.

{Send >} = <numerialcondion valoe>| <condiion mieronic >
<numica condiion value >:: = 0/1/

<condition mnemonic:
ZAPNIOIFIGILIATIUNAINRINZINPINEINGINLINN

‘This indicator specifies the condition under which a conditional branch
instruction is to be performed. The table below shows how in the Assembler the
conditional mnemonics and numerical condition values may be used.

Indicates the indirect addressing mode in a register o register or a memory
reference instruction.

OPERAND FIELD

The operand field may contain an address expression. a register expression or
constants associated with the current machine instruction or assembly directive
or a combination of those.
The srucure and meaning of the operand depends an he 57 of fnsircton
ex

and directive
‘Al aptrane expressons o ety e,

Expression

| “1<term>L+ | —}<term>[L+ | —)<term>T]

<expression=>1: = [+
= <constant>| <symbol >

WNOTE: s considered 0 be a symbol.

An expression may not refer to more than 2 symbols and may not refer to

More than one register name. n the later case it may not contain any other
erm
COND. REG fEDe)
CONTENTS
s GENERAL ARITHM. COMPARE 170
[} © @7ERO () EQUAL (4) ACCEPTED
1 I @) PoS, () GREATER (R) REFUSED
2 @ (N) NEG. DLESS o
3 o (0) OVERFL. = () UNKNOWN
NOT - CONDITION
“0 @ (NZ)NOT ZERO (NE) NOT EQUAL (NA)NOT ACCEPTED
21 ® (NP)NOT POS. (NG) NOT GREATER (NR) NOT REFUSED.
1z © (NN) NOT NEG. (NL) NOT LESS =
= 19) UNCONDITIONAL
n
Allowed atier
(b e the nstructon mncoric of & constant nstructon. 1 secis
ipat e operand is contined n 16 bits . that the mcion munt ba

ong” insirution.

112

Adress expression
‘The address specified in a memory reference instruction can be either absolute
or relocatable,

An absolute address is the actudl address in memory where the information the
user needs can be found.

A relocatable address is relative o the beginning of the program in which it
appears.

The address expression may contain' any of the following (erms or a
combination of them:

N asterisk, which is a predefined expression representing the
current value of the location counter. This counter i
incremented by (wo or a multiple of two depending on
the length of the instruction,

symbol used 10 refer to an instruction or data word with the
same identifier in its label field, The Assembler will
convert the symbol toa relative address,

displacement value which can be atiached 1o« or <symbol> 1o indicate &
word not labeled by an idenifier.

Predefined expression

A predefined expression is an expression consisting of not more than two
symbols each of which s defined i.c. has been assigned a value. Some symbols
are implicitely predefined in the Assembler (see page 149).

A cexpréssion may contain only one external reference. The remainder, if any,
O such an expression must have a predefined absolute value. The combinaims
of an external reference and a predefined absolute value may only be veed fur
specifying the Value of a 16:bit field. The table bolow shows the resuls of 3
combination of positive and negative absolute of relocatable yalues

2

where:
relocatable
absolute

erroncous

Register expression
Register expressions are regarded as predefined expressions and consist of one
or o characters. The register expressions recognised by the Asscrbler sre.

3 Prregister or instruction counter
Al A4 Registers 1 10 14 (general purpose registers)
Al5 Register 15 (stackpointer)

Constants
A variety of constant types may be specified in the operand of an instruction
or directive.

Sconstant>: = <decimal constant> | < hexadecimal constant> | < character
constant >

Decimal constants
<decimal constant >

<digit>

nteger >

The decimal constant is a digit or integer contained in an 8-bit character or 16,
bit word whose value may range from 0 1o 32767

Hexadecimal constants
<hexadecimal constant>

=/ <hexa infeger>[X’ <hexa ineger >

e hexadecimal constan is considered to be hexadecimal value or bit sting in
the range from 0 to /FFFF.

Character constants
<character constant>

< character > < character > |
A character constant is composed of a character siring enclosed in single

guotation marks. The siring is compased of the characters described i he
character set on page 1.5,

A characler constant can be used Witk o machine: instruction only if the
constant-consists of either one charactor (short Constant) or two. oharesion.
Uong constant Longer strings can be specifed in'a DATA direeiive. 4 sngre
uote mark (1) used @ character i spscified by 1w consecuig SEle st

COMMENT FIELD

Comments are only for the programmer’s benelit. They are included in the
assembly listing but not in the generated object program.

Aline is considercd (0 be a comment line when the first 10 characters of that
o ok e s i

INPUT OF SOURCE STATEMENTS AND CORRECTIONS

The user may wpe in the statements and comections from the operators
typewriter. He may do unting the number of characters to obtain a
ettt on e listing ok

Example:
Ist col 10th col 19th col 40th col
Tabel o opeode . operand .. comments

may be typed as follows:
Iabel\opcode\operand\comments

without having to count for he first colum of each fild.

xample:
DATAF\LDK\A4.4

ADDIT\LDK\A1,0\SET INDEX REGISTER FOR BUFFER.
\LDKA3,00FF\LOGICAL CONSTANT INTO A3

ADDRESSING MODES.

in Volume 1L we sce how addressing akes place from 4 hardware point of
view. The condition an instruction must fullil_to e regpieinens of
mples. with
source statements and explanation concerning the amhmmc nsirodions AD
and ADR are given (o show the operation within th

See for the hardware operation of those ‘metrictions Volame 1. The order in
‘which the examples are given is in accordance with the deseription on those
pages.

Direct addressing

AD AlLLABEL The contents of the memory location with
symbolic address LABEL are added 1o the
contents of register Al The result is placed in Al

ADS A1LABEL

The contenty of e memory location with address
El fed 10 the contents of register Al

e Fet s worad i LABEL

Indexed addressing

AD A2LABELAI0 The contnts of register AID are added 1o he

address LABEL. gives an_address
b S S Abd 10 s Cantens of AT

The result of the latter operation is placed in A2,

ADS AZLABELA10 e contents of register A0 are added 10 the
aaren ABEL The reslt gives.an_ adiress
whose contents are added o the contents of A2.

The result of the latter operation is stored in the
address: LABEL + contents of A10.

Indirect addressing

ADs A2LABEL The contents of LABEL point to an_ address
whose contents are added to the contents of

register A2, The result is placed in A2.

ADSs A2LABEL

The contents of LABEL point (o an address
whose contents are added to the contents of
register A2 The resultis placed in the contents of
LABEL.

Indexed Indi

et addressing
ADx A2LABELAI0 LABEL is added 1o the contents of register AI0.
The result points 1o an address whose contents
are added 1o the conents of register A3, The
result hereof s placed in register A2.

ADS« A2ZLABELAI0 LABEL is added 10 the contents of register A10.
he result points 1o an address whose contents
are added 1o, the contents of regiser A2, Th
result hercof is placed in the address obtained of
Al

Register to Register operation

ADR ALA2 The contents of A2 are added 1o the contents of
AL The result is placed in Al

Register addressing

ADRx AlA2 The sontops of the address pated o by A
acded 1 the conieate of Fogiier AL The result
plmxd in A
ADRS A1LAZ e somemot e Wlbespolened syt
e contents of e ot oved

in the address pointed to by A

of

LOAD AND STORE INSTRUCTIONS

Load Instructions
Before the programmer can perform an operation on the contents of a
memory locaion or . regse s contents must be placed in one of the
registers Al th
Two load et are provided, allowing o load a 16%it word from
where in memory or from any register into a specified register where the
‘Speration will take place, and one instruction to load constant into a register.

Store instructions

Companion to the load instruction is the store instruction which may store the
contents of a register, containing the result of an operation, inio a memory
location or a register.

AARITHMETIC INSTRUCTIONS

Arithmetic instructions perform the normal arithmetic functions such as add,
subtract. The instruction operand operates upon the contents of the specified
register.

LOGICAL INSTRUCTIONS.

instusionsdescribd undr i hesdin ar cale gl o bcause

o binary nformaten aceording 1o the e of loge. The frt
aperind which sy be s memory location, s regser 1 or R3) or s constant
2 compared with e second aperand. regiser R2. The resut s placed in o
e or posily in memors. I he nstucton sel cach ogiel mtrueion s
given a description in which way the contents of @ memory location is ANDed

CCHARACTER HANDLING INSTRUCFIONS

Character handling instructions operate on a character level. Characters may
be exchanged, compared or 8 bits of a constant may be placed in 8 bits of @
register.

BRANCH INSTRUCTIONS

These instructions cause a branch (o an address in memory cither when &
certain condition is fulfilled or unconditionally.

In branch instructions on condition the instruction mnemonic is followed by

number ranging from 1 thru 6, enclosed in brackets. When the number is (7) or

omitted, the branch is unconditionally.

‘These numbers are compared with the contents of the condition register set by

the previous insiruction.

“The condition number has the following meanings:

(© branch if CR. @branchiTCR #

I G -
%

o
1
2

@ ®
e (7 unconditional branch

Example:

‘The Assembler allows to use, instead of a number, a condition maemonic c.g. Z, E,
A lsee pay
Uncontitional branches are made by the following instructions:
solute branch instruction o relative branch instruction without a
condition indicator or when (7)is specified.
— CF, RTN, EX instructions.

Long format absolute branch e peuniic branch, forward as well as
backwards, to any address in the prog ort format absalute branch
instructions may only branch to locations 0000 16 0OFE. Relave Torward and
relaive backward instructions may not skip backwards. more han 127
locations and 128 locations forward,

e Assembler gives an error indication if the permissible branch range s
exceede

‘The address to which control is 1o pass may be indicated in various ways:

U i 3 symbolic address oxprssion
ABL(3)

By an absolte adres held i rgister:
ABR(7) A5 &

mynﬁmf @ constant 1o indicate an absolute memory. address (shor
AB

By means of a displacement value added o, o subiracted from the
instruction counter value (RB and RF instructions only). This
Gapcement value is computed by the Assembler Fom an’ address
expression used in the operand and may not exceed more than.128 words
forward or 127 backwards:

RB(O)

ot group of branch isuetions re he Call Function and Retrn from
Function instructions, The Call Function instruction provides a lnk to
ubroutine by branching (o the st insruction o the subroutine. To be sble 1o
sesume the execution of program after the subroutine has been
exccuted the contents of the Prregister and the Program Status Word are
stored in th stack, When the las nsrcion of the subrouine (RTN) i
excaued the contents of P and

A speial group within the branch instructions s formed by the instructions
EX.EXK

st mrwions allow to adires o memorylocaton of whih the contrts
the binary represer nother instruction. The latter instruction is
Ehecuied beore the program contncs with the next nsructon i sedence

Example:

LDKL A3CIO
LDKL A4SST

ALLTY
A4 EXECUTE SST
—2
A3 EXECUTE CIO
SST SST ALTY

=2

Tl Incicion may notrefer 0 other EX. EXK o EXR insr
or to Call Function, RTN or double format instructi

SHIFT INSTRUCTIONS'

it nsrucons operae on bi evel. These insiucion allow (o rotte the
contents of one of the registers Al thru A7 n positions in the dircction and
manner speciied n the insiuction,

CONTROL INSTRUCTIONS

These instructions perform the control of the program by allowing the prograr to
be interrupted or not, or to resct an internal interrupt. Except for the LKM
incrustion, ontrol be used in Stand

INH and ENB are two companion instructions. The program part between
these instructions is not interrupted as INH inhibits all interrupts, ENB sets the
machine status o permit interrupts,

Example:
IDENT TEST
our EQU
RORG OUT+ /600
START HLT
INH
LDK A50
LDKL Al1BUF
LDK. A20
AGAIN €0 A21,/30 program inhibited
RB(NA) AGAIN
A3BUFPTPAS
ENB

The RIT instruction is used to resct an internal interrupt which was previously
sel by an interrupt from the control panel, power failure/automatic restart,
real-ime clock or by a program error
¢ programmer may specify a 5-bit hexadecimal value in the operand of this
instruction to elcar specific interrupts
RIT /1B Reset the reaktime clock interrupt

1/0 INSTRUCTIONS

1/0 instructions handle the data transfer between the CPU and peripherals, the
operation of contol units for these peripherals and status control,

In_monitor controlled programs the 1/O functions, imitiated by these
instructions, are taken over by a general 1/0 routine which is callcd cach time
2 LKM instruction followed by s DATA directive is uscd.

The user need therefore not to write his own 1/ routines. When the
programmer is 1o write a Stand Alone program he has 1o write his own 1/0
routines.

EXTERNAL TRANSFER INSTRUCTIONS

Two of thesc instructions, WER and RER, may be used for programming the 1/0.
Processr by uddrsing in extenalrgiser. The uncion of these instructions is
described on pay i other instructions of this group are only useful when
working with the. oty Management Uni (MMU)onthe P857M and pernit o
load 16 registers on the MMU with 16 consecative memory locations, or o replace
ihase locations with he i o e e T 18 vt e csliod
segment tal

MOVE TABLE INSTRUCTIONS

i T
toan area highe o lower in memory or to move a table from a user t0 a system
area, and vice versa,

Assembly directives

Ditetis are s 10 provide (ramework for @ program and (o guide the
ssembly process. The directives i the program and are printed on the
Svembly sing i th liting ntion s spacied he Avembler opion message
sce page 2:5)
The two versions of the.
Asemblen orpart o the dirctvs o Alons Asserblen
which directives arc accepied by which

The table below gives a survey. of
Assembler.
Stand | Monitor
Alone | controlled
Dircetive]| Meaning ‘Assembler| Assembler| puge
TDENT [Progran denicaion | X X
END. ot of e X X
[ENTRY [Define entry w.m name| X X
EXTRN et serml X X
references
CoMN blocks | - X
STAB = X

Define internal symbol
ble

i SRl g

ssgn relative origin
Talse

true
nd of condition

XIF —
DATA_| Data generation X
EQU ate symbol to value | X
RES es ry area X
EJECT | Continue listing on new | —

page
Resume listing output

Generation directive

The directives can be divided in the following groups according to their
function:

— Program framework
— Linkage control

DENT,
erv Bren co
— Assembly control 1P

K STAR, AORG, RORG
EQ\). DATA
RE

NLIST, LIST, EJECT

~ Symbol generation = FORM, XFORM. GEN

PROGRAM FRAMEWORK

The dircctives IDENT and END form respectively the first and last statements
in the module, They are mandatory. The module punched on tape must be
followed by :EOS or :EO!
The TSENT drectve e for eniicron purposes and the END directive
generates the END cluster after which the assembly process is stopped and a
symbol table is printed.

program IDENTification

The IDENT diesive spocls the mame to be siven 10 the objee modle
output by the Ass sed for identification purposes in selective
louding or updaung«see et on Linkage o and Upratc Backage)

This diecite mus alvags be presen and must be' he s sutemen o8
source mox

Syntax
IDENT_. <module name >

where:

<module name> A symbol which is specified according 10 the rules for a
label,

ND of ssembly

This directive must be
assembly process by punching

t statement in a module and terminates the
0S mark.

Syntax
[<label > |.END_[< predefined expression>1[, <symbol>]
where:

<label > ‘The tabel i given a relative value equal to the length of
the relative section of the generated object program.
This length includes the length of the rConeTapnbol
table (see STAB directive, page 1
The valve 15 1 s e B bt

<predefined expression > This expression, if present, gives the address of the
first instruction (o be performed in the program
after loading

<symbol > This parameter gives an entry point name 10 the

internal symbol table of the generated objcet

program when the STAB. dircctive has been

assemble

LINKAGE CONTROL

Some modules which have 1o be grouped into one larger program contain
referenes o denifers defned n other modles

N the user is able to refer to
allows o earfer

By using a COMN the programmer can define one or more common blocks.
Each common block may be divided in a number of subfields of varying length,
cach having a symbolic name which can be referred 10 directly but only in the
module in which they are decla

COMN blocks may be labeled or blank: a COMN block s labeled if @ name is
attached

The Linkage Editor allocates a space to the blank common block at the end of
e rkload o kel run e Linkage Edor. Ths lck i plced ai the

of the entire proy
Tabeled commont re pliced af the end of the st module that refers to i

The ENTRY, EXTRN and COMN directives must always follow immediately
after the IDENT directive and in this order, though it is not necessary that the
ENTRY as well as EXTRN and COMN are specified.

So: IDENT, ENTRY, EXTRN, COMN or
IDENT, EXTRN, COMN or
IDENT, ENTRY, COMN ete.

ENTRY define ENTRY point name

e ENTRY dircetive is used 1o declare entry points. i, ¢. labels i e
R e e g e operands of another modul
The directive must follow, if present, the directive IDEN

Syntax
ENTRYo <entry point name >, L entry
ey +Senury point

where:

<entry point name > Can be referred to by an operand of an instruction in
another module The mimum number of entry points
which can be specified in one ENTRY dircetive is

detormined by he length of ane i,

Example see also EXTRN)

IDENT PROG
ENTRY NUMBI, NUMB2, NUMB 3

LDKL A3 LABEL

ST A6, REFER

CF Al4,EOS

define EXTeRNal references

The EXTRN directive is used to declare externals i.c. operands which are used
in the current module and defined as labels in another modulc.

“The directive must follow ENTRY, or IDENT when the directive ENTRY is not
prosent.

Syntax

_EXTRN <external name>[, <external name> ... <external name>]

where:

ol e Natis ST ex AL BlEkente (sl I ot oty The
xternal_names which be

e TR e s deiermined by the
length of one fine.

Example (see also ENTRY)
1D ASMPRO
EXTRN NUMB2

cF Al4,NUMB2

START

declare COMmoN block

The COMN directive Facilitates communication between modules written in
Assembly Language or FORTRAN, The dircctive is written as followe.

Syntax
[<label > |.COMNw < common field definition list >
where:

Zcommon field definition list>::= <common field definition>[,<common
field definition list>]

where:

Scommon field definition > = <common field name [<common field
length>]

where:

<common field name > >
<common fild length > = < predefincd absolute expression>

If the parameter <common fleld length> is omittcd the el v
assumed by the Assembler is 1. The field length must be given in word

Example
A—COMNFVALI (3), FVAL2 (3), INTGV (10)

Which defines a labeled common, named A, having the length

343410 = 16 words.

o defined as an external reference ‘and common block name. Either the
Sommon block name itself or the.subfield names may he referred 16 . he
same module. The sublield names are then considered to be equivalent 10:
eommon block name > + <absolute displacement >

S0,

IPAL PYAL2 s equivalent 1o LDLAL A + 6

132

and
STLAZ INTGY + 18 is equivalent 10 STLAZ, A + 30

displacements i this example are counted in characters. .
TR o e e R S e
operand field.

.COMN_VALI (3), VAL2 (4)
—COMNLVAL3 (9), VAL4 (10)

‘These directives define a blank common of 3 + 4 + 9 + 10 = 26 words,
VAL, for instance, may be used in symbolic expressions and is equivalent to:

<blank common *name”> + 6

ASSEMBLY CONTROL

neccessary to check whether a certain condition is satisfied before
et o s e 1 " may include he dircives IFT,
UFF and XIF, The asembly of he IDENT — END — XIF direcivesare ever
bypassed by IFT or

By means of the STAB directive the user may specify one or more internal
symbols which are (0 be used for Debugging purposes. All these symbols must
have been defined previously in the current module,

Common block names are handled as externals.

RORG and AORG directives are used to reset the location counter to a
R indicated in the operands of those two directives.

Conditional Assembly

IFT, IFF, XIF

Those directives are only used in combination with the directive XIF to
indicate that a_block of insiructions is to_be assembled only if a_certain
condition is fulflled. The assembly of the IDENT — END — XIF dircctives
are never bypasset

IFT (IF True)

“The IFT directive specifies that the Assembler has to assemble the next source
lines only if the condition stated by this directive is fulfilled.

Syntax
ZIFTL pression > = expression >
11 the frst parameter # second parameter the source line(s) following IFT up
10 the next XIF directive are not assembled.

IFF (IF False)

Syntax
FF.

= < predefined P
If the first parameter = the second parameter the source lines following IFF
will not be assembled.

Syntax

—XIFL

It diretive slows all subsequent sttements © b assembled uni 3 e IFT
or IFF statement is encountere

define internal Symbol TABle

The STA direcive ouputs at hs end of the relocatable program secion o the
dule ols

penrated m several internal symbol debuggin
irposcsincrnal ymbal it Addres ive 1 3 b 1 e o TS
asembly. All symbols mist have been declarcd preiously it current module

B must immediately precede the END dire

Symiax
LSTABL <internal symbol list>

where:

<internal symbol list>: = <internal symbol >[. <internal symbol list>]

If the STAB directive docs not contain a parameter in the operand field all
internal symbols of the module will be included. o
The programmer may not speciy catry poins, extermal rforence rames or

pab.]umm. <symbol > i specified which gives the same of the iniermar aymbo)

“This directives assigns an even absolute value (o the location counter.
Jocation counter receives that value by specifying < predefined e
expression>

From the fime AORG is Even snd onl iy RORG diesiv

ive is given the
Tocation counter is incremented s if it were relative, ie. by
incntimaais o 2 and 4 Qependivg o0 e enah o s straeon A ek o
el ol ane g abdoline e sy the are el 0%
predefitedrelaive vaue by an EQU dicetv

5 and RF patrosons o Sbs0loie ragrare cannoy réenoam address i
e program section as the place from where this section will be loaded
is not knowr

Syntax.

AORG._. < predefined absolute expression >

i Rl ORiGn

The KOG gl sy ik e 8 Bl o . oy

i

i vakue ey never Lecome negaive. I RORG. has 5
ot counitr B, aiven Beias) eloaisble. te I Hes
DSty recsived, This vabie s il 10 AbeTengi o el e il
at the time this directive is assembled.

Syntax

—RORG._[<predefined relocatable expression >]

VALUE DEFINITION

The dircctives DATA and EQU are used to define certain values in a module.

DATA generation

DATA directive is used (o assign 4 value to one or more words in the
module, for inclusion in the object module.

Syntax
T<label > 1L DATAL < data expression >
where:

<data expression>= = | <expression | = churacier siing>]
L <data expression
<label > refers (0.3 symbol in e cprand e ehehers in e

< expression may
=" a decimal or hexadceimal consant
- an xddmh s oxpresion
~ a_character string consisting of one to thirty-two
ASCII Lm\m.m enclosed by single quote marks, A
s generated. of two characters cach,
justified. When the number of
el e R odd the rightmost character of the last
word is a sp

he mmmon sy sontan @ mumber of paramciers wich, in toral. may
Ahl more than 16 words in memory.

DATA_ABC./0AOD, 1,/A. 2 DEF"

will generate the following words:

Example
Whéa the use wishes 16 wiake an ECE he may do o as fllows:

ECBLDATAL.1, BUF2,6,0,0,0,

Example
DATA.—0128, + 12./3AB,—/A, LABEL. ‘TEXT!

will generate the following:

EQUate symbol to vaiue

Menifirs are normally dfined by being ssigned memon i e
appear Inthe labe Teld of an nstruciion. The BQU Aoty ray b Mwmu{
o indenilier it mannir by smseag o 1 Ve Um
expression in the operand field. The symbol in thsTabe) ld cquivalent
to the value in that operand field. This value absolute or relocatable.

y an operand. The Assembler generates one code word cach time. this
mnemonic appears in the operand field.

Syntax
<label > LEQUL. < predefined expression >

Example
CT_ EQUoL/M1CH CT may now be used anywhere in the program
to represent the value /41C4.

cr
LDKL_AL CT

Bxample
VAL_ EQU_.10

LDK o AL VAL

Example
LAB.. EQUo+ LAB receives the vaue of the location counter.
(equal to: LAB RES 0)
Example: Each time the Assembler encounters C:1 or REG:3.
they are eplced by 25" and A3 respctivly.
AL Cil—
LDK REG3,1—-
LDK REG3, C:1

AREA RESERVATION

The directive RES can ce used 1o skip over an arca in memory. The RES
ditective saves @ e of 4 given length, specified in the operand.
O anting the Tocation counter by twice the number of words specificd

ReServ memry aen

The RES directive is used 1o reserve o number of memory words. The
y this number in the parameter. The location counter is
tive o negative value of
{hat perameter. If positive, a memory ares erved. If
negaie a memry aea f te spciled s bfor the plce identified by
< lab
Taaetios of the latr is not changed but the locaion counter is reset 103
lower value by subtracting twice the value specified.

[<1abel > 1RESw. < predefined absolute expression>
where:

<label> receives the address of the first word of
he reserved area.

< predefined absolute expression > specifies the length of the area to be
e

I < predefined absolute expression> is 0 the location counter is not updated
and,If <label > is specified, the statement is cquivalent 1o

<label > LEQUws

Examples:
RES_4 Reserve 4 words
LABI_ RES_2 Reserve 2 words before LABI
INS. RES0 INS receives the value of the location counter;

Eramples of sk ssevation
STACK RES STACK—
BASE EQU -2

BASEs-2—

LISTING CONTROL
The Assembler normally produces In gutput lising for cach assembly. By

means of the directives EJECT, NLIST and LIST the programmer
determine which parts of the modu\es do not need to be listed. e e

Continue listing on new page

“This directive causes the remainder of the current
e e e s of e v i
paper (0 be lft blank and the lstin 10 be continued at the top of nex! page.

Syntax
EJECT.

Suspend listing

The NLIST directive causes the Assembler listing 10 be suspended from the

foimt where this dircctive is given until cither the END directive or 5 LIST
irective.

Lines which contain errors will continue to be printed during this phase.

Syntax
NLIST..

Resume listing

‘e LIST directive causes the A

ssembler 10 resume the lsting after it has bee
e By A NLIST dinsgtive, e e I8 afer i hasbeen

Syntax
CLISTL

142

SYMBOL GENERATION
'nu:: dirctives alow the user 10 make. 8 number. of specia ntrucions for o

Pt il e e i
specal instruction.

I two FORM-defined instructions are to be specified which differ only in the
contents of certain fields the programmer may use the XFORM dircctive.

N dietive allows 1o include the instrctons, defited by FORM and
XFORM, i the exising Assmblr by xtending the Assemble’s symbol table
A parlvculnr S B o e) s

o be generated by a FORM dircctve n every

Symbol gencration is only possible with the monitor controlled ussembler

This distve i used to define the format of 2 word or a goup of up o 8
y ifer which can be used truction mnemonic

FORMat definition

later in the pre
“Th e 1 wrlted S5 Tl

Syntax.
<label > LFORM._. <field definition >, <field defi
<Feld dotniion’ -..< fcld doiniiona 1 < 61 number st>1

where:

1d definition > == <field length definition>f| = :ffield value defi
< feld number st =~ <ield number >, < ield rumber lst]

and

<field number- decimal integer >

<field length definition > specifies the number of bits to be allocated 10 a
field of the word and may range from 1 through 16. If several fields are defined
inside a word the sum of the field lengths must be 16. The maximum number of
consecutive words defincd by a single FORM directive is .

<field value definition> can be used to pla:t a value in the fied to which it 00000 IDENT FORM
refers when the value is preceded by an equal s doo0t INOUT FORM 8 =/07.8.16= /80A0.16,16= /2804
If the value is preceded by 4 colon (3 the value indicates the addrss of o word 00002 0000 BUFFER RES
in relation to the first word of the expansion defined. by M. The value 00003 0014 0008 DECB DATA 8BUFFER20000
defton sl my e o redeingd epresson. an el 0016 0000 R
isplacement or . predefined absolute or relocatable expreason. It 0018 0014
| ,mucm.r el has not recerend 3 value dcrmuon the eld wit be filled wit 001A 0000
1 zeroes. 001C 0000
Q0IE 000
labet> cfns the insucion mnemoric. The operand ldofte dirccive oo (020 0782 START INOUT /azDECB
st then contain values 10 be placed in any non-predefined fields. The tast 0022 BOAO
non-predefined value is defznh value. 0024 0014 R
0026 2804
0028 0001
Example 00005 002A 2804 LKM
MNEM_FORM...16= /85A0.16:14,16= /8141,16=INST, 16, 15, 16 00006 002C 0003 DATA 3
00007 END START
SYMBOL TABLE

—arithmeic or logical valuc

BUFFER 0000 R DECB 0014 R START 0020 R
ERR. 00000

~address of word following this block FOF

~arithmetic or logical value By

~eidenifcr
From now on the programmer may use INOUT_./82, DECB insiead of

LDKAT,

3 words containing zeroes Field number list

I the programner wishes o put the values of the operand ied of the FORM

defined mnemonic in an order different from that of the non-predefined feld
ey 8t 15 451Dy, o I Tho neh e 1 Gt th 4oueS ho B A of the

The parameter 16 13 ndiates o word addressseven wordsform (he begming wwdcﬂnm] ficlds, he must use the field number list parameter in

of the expansion

FORM. The programmer has o spectly thi diee
Sdres h Lo e words e o oope. P PR
Each field that is generated is given @ number, beginning with 0 for the fist
fild. 1 or the sccond field. n1 for the nih field (n may not exceed 13,

mple
::‘::I::iﬂe!r'l’n:cﬂows how the programmer may make an ECB if not all The field number list must be preceded by a / (slash) and be placed after the last

nown. By using the FORM dircetve he oo nts ave (oo ficld definition of the FORM dircetive

the insiruction sequence; & o refmed Tl specfed n the e oo it s ko e i
in the field
A R e e A eI

I 4 field number list is specified after a FORM directive. the operand
ECB xpresons Tllowing the pseade-mncmoric will ocupy the s spectied n
the feld m Ui the given order. In this way. the contents of predefined
s iy b aoned whte Bk 6145 ey b et Blank

Example: eXtension of a FORM directive
Suppose the user has specified in his program. by means of a FORM directive,

a 16-bit word of the following format:

5=2__ o=y q=y 8=2 Symtax
[F00 010 T To00000 10] <label > XFORM._. < FORM-defined pseudo-mnemonic >, <field list >
fieldno 0 12 3 XFORM may be used each time two FORM-defined pseudo-mnemonics
mvt to be deﬂntd which do not differ in the format but only in the vaiues of
”

5 223150 nemonic and the contonts of is e
(0010l 0100000057 ?‘n, field length definitons must be the same as those of the FORM-direciive
referred 1o and appear in the same order.

He wishes (o have this word changed in:

fieldno 0 [} 3

o
He may do 50 by using the ollowing instucton sequence i s program using e
U e e e g NS e e
IDENT: (EXAM The XFORM directive combines the two and generates an INST2 instruction
- as follows:

FORM

INST2_.XFORMINST1 8=/334,4.16
WORD

END
. A.wr:mblcr will now. shange the fclds as ollows
ield o 2 (1= 1) will be.

will be changed to contain the value 1
et 1o (35 il keep the value 2

orerand, expressions Tollowing & pseudo-mnemonic are positional
parameters. If one parameter is omitted (other than the rightmost one), its
Posiion must be indieated by co

If & FORM

defined. mncrmonic s identical with o standard. instructio
mnemonic, the - gt ten

pseudo-mnemonic s given priority.

List of predefined symbols
[o] GENeration directive
The GEN directive allows 1o extend the Assembler symbol table 0 that it
recognizes and assembles a number of non:standard symbols in any program in NAME | MEANING PREDEFINED | INTERNAL
| which they are uset VALUE VALUE
Syntax P Instruction Counter | 0 Q
Al Regiser | 1 2
GENw a2 r 2 2 4
A1 3 6
Restrictions v Reerd 4 8
| e GEN directive may only be used in the source program in which it appears A5 Register 5 5 10
T st following conditions: A6 Register 6 6 2
A Register 7 7 1
— GEN must immediately precede A8 Register 8 8 1
= anly the FORM, XFORML FQU and EXTRN directives are allowed in this A9 Register & 9 3
progra. At0 Register 10 10 H
Al Register 1 1 7
The Assembler daes not verify if those conditions are fulfiled. It checks only Ai2 12 9
if: A13 R:glslcr 13 13 1
Al Register 14 14 13
— object code i produced Als stack pointer is 15
— assembly errors have occurred.
i 2. A3 only be used to call the regisiers. I they are
i IoENT_soRM e e e b A,
| INOUT... FORM_8 = /07,8,16 = /80A0,16,16 = /2804,16 = 1 used for other purposes an error messag
! GEN
| END
i The following procedure must be followed (6 include the features provided by
it GEN:
B
‘ — load Assembler
— Place on the reader the user source module with GEN directive

il = ssembl this module 10 produce object output
i ~ load Linkage Editor
= place = e the 1
Editor
I = pla lhenh,c
= next Termina

reader and have it processed by the Linkage

ct user program in the reader and have it processed (P)
e (1),

‘The punched output of ihis lnk i

is the original Asseml nded wi
Ons b e i of i ting is the original Assembler extended with

148

Programming considerations

D s between input/output devices and the ceniral processor are
mmm\lnd h)' e conuol s exch of which iy heve

s attached 10 it. depending o
gt kel e nucn‘uu(or break line. by
and othr signal lincs which are sed by the computer to o b
data transfer can be performed
o kA ———— purpose B, The
actual programming of the data transfers may be on a character or
hre cach wordor chaacier i programmed and transfrred ndonduly o
ihe Programmed Chanmel or th may program blocks of words or
Charictors i the 170 rocessor, In the J(or case external registens may be
adiressed

Stand Alone or Monitor controlled programming
The busic diflerence. hemeen S Alae. progiamming and. Moritor
by the fact that in Stand Alone
vite his own input/output routines whercas in
led programiming the user may call Gotan monor functions
by ieas o ks b ohlor WG SxSonts 1he b outpet

For information on programming in either mode refer 10 the PROOM Softsire

Training Manual (Pub. No 5122 991 1243) and 10 page 155 of this manual.

Interruptsystem

When working in ntereupt mode cah iterrupt program may be comeeied 0
o oo evel A oot o o Mooy Isioes e Bt accessing
of the iterrupt loves iart address fram its hardwarc imterrupt location, (he
contents of this location must have heen previously loaded with the: correet
address.

The start addresses loaded in these locations are not fixed and must be defined
by the programmer

interropt fevel hardware interrupt focation
010 62 70000 10 /007C

where level 0 hus the highest priority and 62 the lowest. The levels are defined
GEN i b Vo,

Svstem stack
To save the contents of registers when an interrupt is made into the main
program. the hardware interrupt routine automatically uses regisier A15. This

151

SAREAL
SAREA2

regtcr addrese the sack whih s (o hold the ontens of
the Program Staws Word at the tim rogram s inertupid:
et s Mty o v st pbee L e it o resteh
TS with s siartaddress. This may be done by using the ’lllpmprvmc asscmbly
directives and by defining the start address \yy negns of an e start
s o T AghAT nelias seeved ck s flled from the high
towards the lower addresses.

B il

Apart from the contents of the Pregister and PSW, the stack may be used to
ave the cor

e of steeigidenimre el oy e pom, These registers
1 for each regisien. Before returning
ricions are required (0 rs(ore the contents of

inhibited. If the user wishes 1o allow.the specifie routine to be interrupted he
must give an ENB instruction.

User stack
We have seen that with the A15 stack the P-register, the PSW and any other
regsers are saved with Siore insrctons in i sack towards the lower
addresses. Now, i 4 user calls 2 subroutine with a CF insirction the contents
O the Pregicer and the PSW are automatially stored i a Stk he nas st up
previously, for example s follows:

RES 20
STB EQU x2
LDKL A14STB

then the subroutine is called:
CF AI4SUBR
90 8 a7 RS o stored i (e

e mgmcri may also be used
as a stackpointer)

For example, for @ program with two subroutines, one subroutine calling
another one, the saving may be done as follows:

IDENT MAIN SUBR SUBR2
REy ST ALSAREAL ST Ausarear

i ST A2SAREAI+2 [ST AZSAREA2+2
3 ST ASSAREAI+8/ ST A3SAREA244.
cF A4SUBR
0 CF Al4SUBR2 ST A4SAREAZ+
END. = - i

LD ALSAREAI LD ALSAREA?

LD A2SAREA1+205 1D
LD A3SAREAI+4 YLD

LD A4SAREA2+6

Al4
Al

0]

— Al

PSW (MAIN)

P (MAN)

“The following save operations take place in this example:

SAREAL
AT (MAIN)

A3 (MAIN)

Stored automatically

©]

Stored by user-written instruction

SAREAZ

PSW (SUBRT)

P (SUBRI)

PSW (MAIN)

Al

GUBRD

A4 (SUBRN

>

(MAIN)

Stored automatically

SAREA2

®

Stored by user-written instruction

—Al4

PSW (MAIN)

P (MAIN)|

Registers restored for SUBRI

SAREAT

Registers restored for MAIN

P and PSW restored for SUBR1

— Al

P and PSW restored for MAIN

\| s possible to return from SUBR? dircetly o the min program but n such a
se he wser st update the A14 regiser content . the sackpeinter himself
ot 4, s oo

Trap action.

to the P8OOM comp and decoded by the CPU'S

Hardwar
1F an nexccutable instruction is encountered 3. trap action s stared which
consists of a hardware and software operation. The hardware operation of the.
irap consits of the Folloving actons:
A doss matalempk (e ot e rsiosion
Z inerrupts ar inhbited

formation whic efrs (0 th insirucion'saddress and procesor status (P
and PSW) are
— 20 Idineo branch s made 1o locaton /7E (startof trap rouine).

“The stware peraon o e e coniof
in P

) A woond wcrd if any
— activate the Simulation routine (see below), if

Simul:
The :lmulalmn
cti

routine allows the P852M user to simulate the following

ehiply double shift
ivide multiple load
double add multiple siore
double subtract

“This routin. which is activated each time an illegal instruction code is met in
the instruction scquence, consists of two parts. One part analyzing the bit
pattern sved by the trp routine and one part exccuing & the msiruction listed

Tm i Ay e
Appendix G for Stand e a— Package

‘Adaptation of P8S5M software to PBOOM software
When P55M programs are 0 be adspid und run on he PRGOM compate he

following pinis mist be aken nfo
the sequence INH..
NB

in the P333M software permits @ v the

Ay et b e o
lummy instruction must be included after ENB 1o allow for an

“The sequence may be altered in ... ENB/RF, +2 /INH
2 in the PBOOM a stack overflow interrupt is given s long 45 the regisier A1S
contents remains < /100, For the PB5SM 4 stack overflow intcrrupt is
generated when the contents of register A15 = /100,

Use of the RTN instruction
Operation of the RTN instruction is slightly different for the P852M on one hand
nd the PA56M an PESTM on theother hand, The RTN instructionon the P35z

o i pointed 10 by register
'AT5 and (he user sack by o of theregisters A1 through A4 (h conients o the
P fegiser nd the PSW us sved when (e iisrupt routine or subrouting was

o.. e P856M and PBSTM the etun i o Follows:

one of the registers Al through A14 s specified, the P register and the CR
o e PSW i e wr s avionded. When register A15 s used asa stack
pointer, the P registe, bits 0 through 7, bit 9 and bit 15 are reloaded from the
system Stack.

Stand Alone Input and Output Programming

Programmed Channel

To control the data transfer between the device and the CPU the following
instructions ar, in general, available:

CIO Start Start input or out
CIO Stop Stop the input or output
INR

Input one character
utput one character

SST Send status of the control unit

TST Test if the control unit s busy

sy

Tefsghir rox end I he €10 ot RN e il

information for the control unit c.g. input, output, parity, echo cic. Which

ket st be ot Gan Bu vl 1 the Folyam. Hardoare i

deivered with he s

i N or O instruction. When the last character is tranferred a CIO Stop.
instruction

which givs the stas ofth rfevantcontrl uni and may rse an interruptand

switch a control unit to the Inactive Sta

1/0 Processor
The 110 procesor allows the high specd rasfr of varible eng or facd
length data blocks between a sutable control unit and the processor.

1/ processors may be connected to the General Purpose Bus
cach of which may control up to eight control units via eight subcharincls.
Each 1/0 processor has implemented (wo working registers which are used to

155

ffctreiser 1o regiser exchunges with the CPU inernal reglers,
Before 2 data tramfer can be reah the user has 10 s two control
B o it cxtornal registers, These external regsters are addressed by 2
R noruerioms in which the address part must be composed as follows:

poase v
u i

78 9 101 12 13 1415

) control unit address

where processor and subchannel address are determined at system installation
\ime. Both addresses, which may range from 0 thru 7, form together the
attached control unit address. Bit 15 determines which control word is sent:
bit15= 0 It control wor
2nd control word

Format of control words
The format of the first control word is:

exchange s in word mode

1
0 gxth:mgc is in character m
| bith= 1 rom memory 10 contral unit (output)
[cxchang: isfrom control unit & memory Gnput)
biiz= 0
bit3= 0

bits 4 thru 15 specify the number of characters or words to be transferred.
The format of the second control word s:

0 starting address 15

e sperating in word mode the 13t word of the block is always even (bit

T R 1, the right hand character is addressed (odd
address). When bit 15 = 0 the left hand character s addressed (cven address)

156

Example:

LDKL AL/8032 ord mode, input 30 words

LDKL A2BUF Saring adress of bloc

WER AL/A i (1500010 an 1001 1)
WER /B

clo AdL/O! start input (address: 000001)

The RER insrucion may now be used (0 fead 3 tansier’s effective length
after termination of the 1/0 oper

Wi e chohane fs compleie an SST instuction should chec the st of
the control unit und set it 1 the inactive state. The control unit may now
initialised for a new transfer.

Input/Output Programming on Programmed Channel
a) without interrupts

) withiverrupt handing

ERROR

ERROR

ERSEE B e T T R
Progamoing on 110 Processor Resser oo orr 1 e resny o

SauNTER 108 N o CramAETERS
LoAD 15t
contral werd e mlbis 8
LOAD 200
conrol word

Soure progeam clling # subeoutine in FORTRAN lirary
‘When writing a program in Assembly Language it may be useful to have a cortain
cperalion pRslorined by s Subradtim whidh bt béca specifedll scohuded T the

‘The subroutine in the library contains the following relevant items:

IDENT FRTLIB

FORTRAN library to exceute such a function. ENTRY FRM
in his program, in the following way: =
Suppose the uscr wishes to multiply two floating point numbers. The FORTRAN -
sy subrouting, which execlcs i malipication, has FARM s entry point. -
th details, is written
as follows: RTN Al

IDENT ASMPRO
EXTRN ~ FRM

i rthe return,
When values ar to be returned (o the main prograim anintger ik
At and a real value (o the registers Al to A3 inclusive (mantissa in Al, A2 and the
FLNUMI DATA - =xpo||cm inA3).
DATA —
DATA —

Th
and the FORTRAN library.
FINUM2 DATA —
DATA —
DATA -

The Linkage Editor sclects those modules required for program exceution.

LDKL AI3, PARLIS
CF Al4, FRM

PARLIS ~ DATA FLNUMI
DATA FLNUM2

Before the CF instruction is executed, register A13 must contain the address of a
parameter . Th Tand the
ress of floating point number 2.

A13 parameter list st parameter

E——

Tnd parameter

