Title:

B-UET

IE‘ s REGNECENTRALEN RCSL No: 21-v032

Edition: September 1977

Author: Edith Rosenberg
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

g

Keywords: RC4000, RC8000, SYSTEM80, database, SODA, DBMS, PRIMULA,
SYSDOK, programming language, interpreter, structured

programming,

Abstract: mp s manual describes the DUET system, which comprises a

programming language, a compiler, and an interpreter for
execution of the compiled program. The programming language
DUET is primarily intended for administrative applications
especially transaction processing. It covers DBMS operations
as well as the reading of input and the printing of output.

English edition: 215 pages

Users of this manual are cauticned that the spacifications
contained herein are subject to change by RC at any time
without pricr notice. RC is not responsible for typographi-

: : 7 cal or arithmetic errors whicn may appear in this manual
Printed 2 A/ 5 ReQnecenfMIen’ Copenhugen and shall not be responsible for any damages caused by

reliance on any of the materials presented.

Copyright © A/S Regnecentralen, 1976
PY

FR

Skt bl el b

bt i

-3-
Table of Contents Page
1. Introduction 6
2. System Outline 8
3. Duet language 11
3.1 Duet Program Structure 12
3.1.1 Duet Head 17
3.1.2 Duet Blocks 18
3.1.3 Duet Instructions 24
3.1.4 Duet Operands 26
3.2 Duet Operations 32
3.2.1 Execute 33
3.2.2 Modify 39
3.2.3 Compute 49
3.2.4 Assign - of 51
3.2.5 If - then 54
3.2.6 Case - of 55
3.2.7 Action - of 56
3.2.8 For - do 58
3.2.9 While - do 59
3.2.10 Getline 60
3.2.11 Read 62
3.2.12 Print 70
3.2.13 DB-operations 80
3.2.14 Select 85
3.2.15 Exit 90
3.2.16 Algol 91
5.3 Maciwn Liwiiks wn cliefopenafin
4. The Duet Compiler 93
4.1 Program Text and Listing 94

Activation of the Compiler 97

Resource Demands
Duet Log

4.5 Error messages

109
112
114

Table of Contents

5.

The Duet System in a Control Program

5.1 Duet Texts & Algol Block Structure

Initialization & Termination

5.2.1 Init duet?
5.2.2 Init duet?2
5.2.3 1Init duet maskine

5.2.4 Close duet

(93]
w

Error Procedures

5.3.1 Duet Data Errors
5.3.2 Duet Programming Errors

5.3.3 Duet System Errors
5.4 Algol Special Actions
5.5 Reserved Algol Names

5.5.1 Application = Known Algol Names
5.5.2 1Inaccessible Algol Names

Appendix A. Syntax Description of the Duet Language

Index

Page

133

134
138

139
141
143
146

147

148
152
161

167
170

171
180

185

198

References

1. RCSL 21-V031:

2. RCSL 21-V019:

3. RCSL 21-v018:

4. RCSL 21-D005:

5. RCSL 21-V024:

6. RCSL 21-T006:

7. RCSL 28-D017:

Database80

SODA

DES80~SODA~LD
(Danish edition)

Connected Files System

DES80 - Consultant Guide
(Danish edition)

Teledata

Informal

1. Introduction

Duet System The Duet system is a general datamatic tool for
implementing programs on RC4000/8000, e.g. for
SYSTEM8O.

The Duet System Comprises

Duetabler - a compiler, DUETABLER, which compiles programs
written in the DUET language, and

- an interpreter, DUET INTERPRETER, which - being
copied into the user's control program -

executes the Duet program

Duet Language The Duet language involves special facilities for
read in control of data, which makes it considerably
easier to write read in checking programs in Duet
than in Algol.

Printing Furthermore, printing of results is especially easy
to implement in the Duet language, where the
printing system is based on the Primula procedures

(which are alsoc applied in GENIUS).

SODA-dbms Access to the database records is achieved by means
of the Soda-dbms (ref. 2), and therefore the Duet
language is closely connected with the ld-description

Soda-1d of the Soda System, Soda-1d.

The Duet language has been described in detail in

section 3, and the compiler in section 4.

Duet Inter- The Duet interpreter is the interpreter which

preter executes the Duet program. It is unable to work alone,
Control and has to be copied into the user's control program
Program which takes care of the starting and the termination

of the run.

SYSTEMS80

Independent
Systems

1. Introduction

At present two such completed control programs are
available in SYSTEM80:

- the 'Telescop' of the data entry system
(DES80) and

- the 'Teleop' of the Teledata System.

DES80 (ref. 3 and 5) only needs coding of pure Duet
programs whereas for Teledata (ref. 6) user

adaptions programmed in Duet can be produced and
incorporated into the existing Skeleton Duet program.
At this point the Duet programs must obey the rules
determined by the control program and the Skeleton

program.

It is, however, possible to make perfectly new
application systems by means of the Duet System
with an independent Duet program and a control
program. Section 5 concerns directions for the

establishment of a control program.

System Qutline

This section gives an outline of the Duet system

and its connection with other tool systems:

@&

description
/______/
database 80 ILd-
compiler description
Soda~-1d duetprogram
compiler text
duetabler
Controlprogram
DB - Soda-dbms —
output,

if any

Figure 2.7: Outline of the Duet system's relations to

its surroundings.

Database80
db-descrip-
tion

Soda-1d:
ld~-descrip-

tion

Duetabler:

Duet program

Duet inter-
preter
Soda-dbms

Duetblocks

Duetarray

2. System outline

Figure 2.1 shows the Duet system with its
necessary surroundings. A complete application
system comprises a control program with the

respective ld-file and Duet file.

The first step in establishing such an application
system is making a data description of the actual
database by means of 'database80'. (ref. 1).

Then the relevant subset of the data base must be
described in a local data description, which is
compiled by the 'soda-1d' into an 1ld-file (ref. 2).

The Duet compiler 'Duetabler' reads a Duet program
together with the respective ld-file. The Duet
program is checked for syntactical and semantical
errors and in case there are no errors a binary Duet

program, a Duet file, is generated.

This translated Duet program can be executed by a
control program, which comprises the interpreter:
'Duet interpreter' and the Soda-dbms. It requires
access to the ld-file as well as to the Duet file

during the run.

The Duet program consists of smaller units: Duet
blocks. These are read, when needed by the Duet
interpreter into a virtual store: Duet array, the
size of which is decided by the control program. A
Duet block is referred to from another Duet block by
indicating the block number and an entrypoint, which
defines the wanted part of the Duet block.

There are several advantages by this division of the

Duet program into blocks:

Variable

d-array

Duet

Instruction

Execute list

-10-

2. System Outline

- It becomes very easy to implement user
adaptions. The adaption point of the Duet
skeleton program is merely a reference to some
entrypoint in a particular adaption block where

the user adaption is programmed.

- The control program may run in a smaller
process as it is not necessary to have space
in the core for the entire Duet program at the

same time.

- The Duetabler compiler is able to compile Duet
blocks one by one and connect with an existing
Duet file. This facility reduces the compile
time when changes are wanted in the Duet

program or new user adaptions are to be inserted.

The Duet program can access all the variables
declared in the variable section of the 1ld-
description and they may be referred to either by

their name or number.

The variables exist in a mutual array: the d-array,
in which the variable addresses have been allocated
by the Soda-ld compiler. Since the Duet program uses
these addresses, in every variable reference, it is
necessary to re-compile the entire Duet program after
any changes in the variable section of the 1d-

description.

Each Duet block in a Duet program consists of a
number of named Duet instructions. The principle
regarding how to execute these instructions by
means of so-called execute lists, has been explained

in detail in section 3.1.

-11-

The Duet Language

This section describes the syntax and semantics of
the Duet language. The description is based on
examples, whereas a formal description of syntax
is to be found in appendix A.

-12-

*aangonms ureiboxd

jong sip

JO SUTTINO OTIRULBYDS :|°f 2Inbrg

UOTIONIJSUT 3anp

¥OOTq 3enp uexboxd jonp

uotrjeaado 3snp 3seT

uoTieIado j3anp pucoss

uoT3eISdo 39np ISIAT]

e

puS 300Tq

HOOTq Fomp

UOT3ONIJSUT 3anp

300Tq 38np

sweu janp

UOTIONIISUT 320p

O0Tq 3enp

pesy 3enp

Duet Program Structure

pesy jenp

()

Duet
Instruction

Duet opera-

tion
Duet Name

Execute List

-13-

3.1 Duet Program Structure

Figure 3.1 shows the schematic structure of a Duet
program as consisting of a Duet head and one or

more Duet blocks.

Each Duet block consists of a bleock head, a number

of Duet instructions and a block end.

Finally a Duet instruction consists of a Duet name
and one or more Duet operations. The Duet name
which consists of the letter 'd' followed by an
integer, identifies the instruction within the
current block. The name is used when the duet
instruction is to be executed, analagous to the way
in which a procedure identifier is used when a

procedure is called from an Algol program

The sequence of the Duet instructions inside a Duet
block is arbitrary, analogous to the order of
procedure declarations in an Algol block. However,
when a Duet instruction is activated, the operations
are always executed in the same order as they appear
in the instruction, Jjust like the statements in an

algol procedure body.

The Duet instructions are executed in a sequence,
which is defined dynamically during the run of the
program. This is done by the execution of a special

operation, called an execute list, which contains a

list of Duet names (local for the current block).
The Duet instructions, mentioned in the list, will

be executed in the same sequence as they appear.

Duet
Operator
Duet
Operand

Duet Stop

-14-

3.1 Duet Program Structure

S
d315: execute d12 ; exXecute list
d240
d316
s
> modify v_name := 'screws' ; variable assign
number :+ 1
s
> compute v33(index) := v45 * (v12 + v16)
S
> print <1 1 t6> : 'balance' ; print
<10 n5.2> : balance T
S
> if balance>1000.00 then d318 ; conditional
; Operation
Figure 3.2: example of Duet instruction
Figure 3.2 shows an example of a Duet instruction
consisting of five operations.
Every Duet operation is headed by a Duet operator
which designates the following format. After this,
follows one or more Duet operands seperated by

appropriate delimiters keywords, or numerical

operators.

Some Duet operators demand a fixed format with a
specific set of Duet operands, whereas other

operators can contain a variable number of operands.

In the latter case the operands are organized in a
list, the elements of which are normally separamted by
line feed. Such a list is always terminated with a
separate line with the terminator 's' - the so-called
Duet Stop.

Comment

Execution
of Duet

Program

-15-

3.1 Duet Program Structure

All lines in a Duet program may be terminated by

a semicolon and a comment text which ends at the
line feed. In the printing from the Duetabler
compiler, such comments will be edited in a coloumn
(see section 4.3). Empty lines may be inserted

(perhaps with a comment) anywhere in the program.

The execution of the instructions within one block
as well as within the entire Duet program is
performed in a number of dynamically defined levels.
Whenever an execution of a Duet instruction is
ordered from an execute list, the control is
transferred to a new level - in practice a pointer
is stacked at the current point in the execute list,
which makes it possible later, when the referred

instruction is executed, to continue in the list.

When the last instruction of an execute list has
been executed, return inversely to the previous
level and when the basic level is reached, i.e.

the fictive level where you were before starting;
the execution of the program, alternatively the
block is terminated. Therefore the execute list is
the most fundamental element in the Duet language
and the understanding of the function of the execute
list is consequently basic in order to sense the

possibilities of the Duet.

Figure 3.3 illustrates the principle of the level
oriented execution of a Duet block. We suppose that
the instruction d1 has just been activated from a
position called 'p'. To the left is the Duet program
which is executed and the scheme rightmost shows

how the Duet instructions are scanned.

-16-

Duet Program Structure

)

*lp uT burjaeds ‘ueabord jeng Jo 909Td B JO UOTINOSXT :ftf admbTJg

3.1

S
S
I =% €a AJTPOW :8p
8P
7P uad Q=¢A JT :9€p
9Ep 2ANOBX® Ep
€p
S
IS)
L = ga AgTpOw :gp
8P
LLA €3 pesx :7zp
ZZp uSUd 0=€4 IT 19gp
9P S3NOSXS 1gp
£p
ZL Tobte :gZP
6P
Lin &3 peax :zzp
Z7p 93NOOXe 1gLp

gLp 2INODKD

=

0 =3 €a AJTpQU

AN

P

ZZp U9 O=th

L

LLA €3

P
aep
Zcp

8LP

T

10612

peax

S alaer)c]

[SAN e) (]

IINODKD

ArTpow

‘9Lp

Lraas

Blp

™M

e

-

Duet program
number and

= name

17

Duet Head

A Duet program consists, as shown in figure 3.1,

of a Duet head and one or more Duet blocks.

The Duet head contains information for identifying
the Duet program; used both when compiling and when

running the compiled Duet program.

duet program 25/'teledata online'

localdata 23

Figure 3.4: Duet head

Figure 3.4 shows the Duet head for a Duet program
number = 25 and Duet program name = 'teledata online';
and this Duet program makes use of the local

description no. 23. The Duet program name must not

exceed 17 characters.

Block

number

Entrypoint

-18-

Duet Blocks

The Duet blocks have been introduced for two
reasons. Partly to permit a local naming of the
Duet instructions and partly as the basis of a
user-/program controlled segmentation, which might
be necessary if the program exceeds the 500 - 1000
Duet operations (2048 words of compiled program)
which a Duet program, consisting of a single block,

can contain.

All the Duet blocks in a program have a block
number, which identifies the block unambiguously.
This block number is used by references from an
execute list to non local Duet instructions, that

is, instructions in another block.

As it is possible to compile each block seperately
and as the Duet names are local within a block,
such references to non local instructions are made
by symbolic entrypoints, which are defined in the
head of each block.

Each Duet block contains a block head, a number of

Duet instructions, and a block end (cf. figure 3.1).

-19-~

3.1.2 Duet Blocks

begin 4: user 35 ; block no. 4 belongs to
; user 35

-> 1 = d3

-> 3 = d50

-> 10 = deé

duet instructions

end 4 ; same no. as in the
; block head

Figure 3.5: block head and block end.

In figure 3.5 you can see a block head and a block
end for a Duet block with 3 entrypoints. Each
entrypoint defines an entry number corresponding to
a definite Duet name which must exist within this
block.

The following value intervals apply to block number,
user number, and entry number:

S
/ .
1 <= Dblock number <# 255)

\

11

0 <= user number <¥ 127)

1 <= entry number < \iiﬂfj/
\

The definition of the user number (user <user number>)

can be left out if the user number = 0.

More entry numbers can point to the same Duet
instruction. Entry number 0 is always implicitly
the first Duet instruction in the block and cannot

be redefined.

-20-

3.1.2 Duet Blocks

Activation When a Duet block is activated it is done, as
of the Duet mentioned above, by reference from an execute list
block in another block. The reference contains two pieces of

information: a block number and an entry number.
The Duet interpreter now investigates whether the
indicated Duet block is already available in the

core storage.

If the block is in the core storage, the Duet
instruction, belonging to the indicated entry
number, is activated at once. In this case, the
activation of a Duet block does not take much more
time than the activation of a local Duet instruction

in the original block.

Duet array If, however, the block is not present in the core
storage it is automatically fetched from the Duet
file to a Duet array the size of which has been

defined by the control program.

If there are one or more sufficiently large, free

sections in this array, the block is placed at the
beginning of the smallest of these sections. Then

everything proceeds as if the block had been there
all the time.

If there, however, is no free section, the system
must provide it by overwriting old Duet blocks in
the array. All block references are counted in a
blockcounter, which becomes the measurement of how
desirable it is to avoid an overwriting. In the
placing it is also attempted to keep the amount of
these free minor places as low as possible in order

to avoid an actual 'garbage collection'.

Check of
block

number

Check of
user

number

-21-

3.1.2 Duet Blocks

If the wanted block does not exist in the Duet file,
the system will react with a Duet programming error

(see section 5.3.2).

Before starting the execution of a Duet block, the
Duet system checks whether the user number in the

new block is legal compared to the old block:

From a block with user number 0 the program can
activate any block, but once a block with user
number <> 0 has been activated, this is stored

as a user number for checking. After this, there
are only allowed references to blocks with the same

user number or with user number 0. The user number

for checking can be neutralized (reset to zero) by

letting the control program call the initialization
procedure 'init duetmaskine' (see section 5.2),
after which it will be possible to process another

user's blocks.

The purpose of this checking is to prevent a user

adaption from executing another user's program.

Figure 3.6 illustrates this checking.

-22-
DUET 21-v032

3.1.2 Duet Blocks

begin 1:

user 0

> execute

> execut\1
i
AN

e

N\

AN

begin 3: user 72
> execute

> execute

> modify block \no:= 17

begin 4: user 35

> execute .

> modifyzﬁlock_no:=

e
e
s

6

\

I

begin 10:

user 0

> execute @ D

> executef b(block no)) !

s

T

|\}
K
LA

begin 17: user 72

begin 6: user 35

—_—— — — R—

block reference for user 35

block reference for user 72

illegal block reference for user 72

| o

Figure 3.6: Checking user number in block

references.

In the example, block 1 is a program block, common

to all users. Block 10 is a common adaption block

while the other blocks are individual user adaptions.
It is not allowed to activate block 4 from block 3.
It is legal to jump to block 6 from block 10 if block
10 has originally been called from block 3.

1.4.78

@

Return

-23-

3.1.2 Duet Blocks

When the selected Duet instruction in a block
reference has been completed, the program will
return to the previous block where it continues

the processing of the execute list.

When a Duet program is activated the entry will be

to the first Duet instructiqp_ip the block with

- T
—

the lowest number.
‘W.m——o——w""h—-:-» s e

Duet name

Duet

operation

—-24 -

Duet Instructions

The format of a Duet instruction is shown rightmost

in figure 3.1.

The Duet instruction is identified by a Duet name
which can be referenced from Duet operations in

other instructions.

The Duet name is declared at the beginning of the
first Duet operation in an instruction by the letter
'd', followed by an integer, and a colon (see figure
3.7).

d32: execute d33

d17
s
> get s 2
> if soda result > 0 then d99

Figure 3.7: an example of a Duet instruction
A Duet name must be declared in the interval

d1 <= duetname <5 d1023 /
and the compiler checks that the Duet names are

unigue within each block.

After the Duet name follows the Duet operation(s)
that are included in the instruction. Each Duet
operation must be terminated with a line feed and
the start of the next operation is to be marked with
the character '>'. An arbitrary number of Duet
operations may be included in an instruction; in
principle, it is possible to let the whole block

consist of one long Duet instruction.

-25-

3.1.3 Duet Instructions

Each Duet operation consists of a Duet operator and
one or more Duet operands, dependent on the type of
the operation. The Duet operations are described
systematically in section 3.2 and the possible
operand types are described in the following section.

Variable

references

Variable

name

Variable

number

Subscripted

variable

-26-

Duet Operands

The Duet operations may include different types of
operands: variable references, constants, and Duet

names which have all been described in this section.

Furthermore, references for record sets and record
types are used by db operations, as it has been

described in section 3.2.13.

The Duet program recognizes and can refer to all the
variables that are declared in their associated

local data description (see references 2 and 3)
without necessitating that field variable declarations

have been generated for them.

Variables can be referenced indiscriminately by name
or by number. For a reference by name is used the
full variable identifier from the variable
declaration (note especially that also underlined
Space is important as distinct from what applies to

the Algol programs).

To a variable reference by number you only write the
letter 'v' followed by the number of the variable.
This method of reference can, however, not be used
in Duet programs that are based on a data entry local
data description where the variable numbers are

anonymous.

If a variable is declared as an array, a subscription
in the variable reference is usually required, as

shown in figure 3.8.

-

Simple

variable

Variable

type

27‘

3.1.4 Duet Operands

variable references by name:
price_index
item price (price_index)
variable references by variable number
v1 ; simple variable
v25(2) ; subscribed variable with
constant index
v25(v1) ; subscribed variable with

; variable index

-e

v28(v25(v1)); subscription at several levels

e -

Figure 3.8: variable references.

The subscript may be constant or a variable, which
again may be subscripted in an arbitrary number of
levels. If the subscript is a constant, an index check
is executed during the compilation. When the subscript
is a variable, the index check cannot be executed be-
fore the run time but the compiler checks the all index

variables are declared without decimals.

A variable without an array specification is called
a simple variable. Certain Duet operations demand

that the referring variable is simple.

Many Duet operations make demands on the variable
type of a variable reference. In this manual, the
following designations for variables with type

restrictions are used, as shown in figure 3.9, below.

-28=

3.1.4 Duet Operands

variable designation

legal variable types

text var

numerical var

text

word, long, real, date,

(numvar) result
word var word, date, result
Ihteser ver yord var without decimal
denotatian
bit var bits
rec no var recno, result recno

Figure 3.9: variable designations

Constants The other type of Duet operands are constants in which
the Duet language distinguishes between numerical

constants, character constants, and text constants.

Numerical Numerical constants are ordinary integers or decimal

constants numbers. Decimal numbers can be stored by the
compiler either as a floating point number (real) or
as an integer with implicit decimals, dependent on

the context in which the constant occurs.

Automatic The running Duet system will always provide automatic

normalization normalization, i.e. it will take into account the
differences in the number of decimals between the
operands to the left and right of an operator, cf.

figure 3.10.

-20-

—
3.1.4 Duet Operands
> if v17 = 100 then
> if v17 = 100.000 then ..
Figure 3.10: automatic normalization
The two conditions in the figure are the same
whether v17 is defined with 0, 1 or with 2 decimals.
M spill However, in principle the Duet system does not check
whether spill arises by variable assignment, or not.
So users who want such a check, must compile the
Duet system with spill.yes (cf. section 5).
Character Character constants - or the so called short texts -
constants are written as one, two or three characters enclosed
in decimal points, as shown in figure 3.11. The
characters may be letters, digits or special characters,
but not decimal peoints. These characters are packed
with their ISO values in 24 bits, right justified with
possible zeroes to the left.
—
.a. =[0] 0 | 97 |
.ab. = 0] 97 [98 |
.abc. =[97 | 98 | 99 |
2. =1 0| 0 | 63 |
J1x:. =149 | 120 | 58 |
| e————
8 bits 8 bits 8 bits

Figure 3.11: character constants.

Text

constants

Duet names

30

3.1.4 Duet Operands

A character constant is per definition numerical and
it can be used in all situations where numerical
constants are permitted. The numerical constants
mentioned in the manual include both numbers and

character constants.

Text constants are written as a text and bracketed
by apostrophes, as shown in figure 3.12. Such a
string can be empty and the upper limit of the

amount of characters is only determined by how much

a line can comprise.

It is stored like in Algol, i.e. justified left and

terminated with as least one zero character.

'long text with special character?'
'short!

v ; empty text

Figure 3.12: text constants.

All constants, referenced in a block, are stored.
tqgethe;_with the compiled Duet instructions so
that the constanté bnly také up space in the core
storage as long as the current block is present in

the Duet array (cf. section 3.1.2).

Duet names make up the third type of Duet operands.
The declaration of Duet names has been described in
section 3.1.3, here it only concerns references to

Duet names.

Value

elements

Numerical

value element

Text value

element

_31...

3.1.4 Duet Operands

A Duet operation can refer to another Duet
instruction in the same block by indicating its

Duet name.

> execute di17
d32
s
> if v35 = 1 then d0 else d33

Figure 3.13: Duet reference

The Duetabler compiler checks that all the

referenced Duet names are declared within the block.

Apart from the declared Duet names there is a

standard Duet instruction called d0. This is an

R

empty instruction: nothing is executed when referring

e A A W

to do0..

PRI

Finally; in the Duet language the concept, value
element, exists which covers a combination of the

mentioned types of operands.

A numerical value element is thus either a numerical
constant, a character constant, or a numerical

variable (simple or array element).

A text value element is either a text constant or a

text variable (simple or array element).

32...

Duet Operations

In the following section,

the separate possible

Duet operations are described systematically.

Below is an outline of all the Duet operations,

classified according to their functions:

Executing operation

Variable assignment

Conditional operations

Repeating operations

Reading operations

Printing operations

Database operations

Other operations

execute

modify
compute

assign

if-then-else
case-of

action-of

for-do
while-do

getline

read
print

get
next
lockup
Create
put
delete

newset
select
exit

algol

Local Duet

reference

33

Execute

The fundamental executing Duet operation is the
execute list whose function has been described in

section 3.1.

d7: execute di123 ; local duetreferernce

a8, d3e, dis
b (16,5) ; block reference
b (adp block,2) ; - , var.blockno
b (v15,v16) ; - , var.blockno

; ; and entryno
b (l§), d4 ; - , without entrymno

-+ ! e, j Xl dia 7y ide -fﬁ.‘m;' _ y

Figure 3.14: Execute list

In figure 3.14 the format of an execute list is
shown. It is initiated with the operator 'execute'
and terminated with a Duet stop; the character 's'.
Between these, an arbitrary number of action
references can be placed; either more in one line,
separated by commas or one in each line without any

comma .

An action reference can either be a local Duet

reference or a block reference.

A local Duet reference is only a Duet name ('4d’
followed by an integer), i.e. a reference to
another Duet instruction in the same block (see

section 3.1.3).

When executing the execute list, a local Duet
reference will cause a temporary transfer of the

control to the referred Duet instruction.

Block

reference

-34 -~

3.2.1 Execute

But the position in the current execute list is

stored and when the instruction has been executed,

the control is returned, so that the next reference

in the list can be executed.

A block reference is used for execution of a Duet

instruction in another block. A block reference

is indicated with a 'b', followed by a block number

and an entry number in brackets. Both the block

number and the entry number can be indicated as an

integer constant or a variable reference. In the

latter case, the contents of the indicated variable

S’

at the run time, determines which block/entry is

being activated.

The entry number can be left out in the block

reference; in that case the first Duet instruction

in the block is implicit.

Note, that the block reference only can occur in

an execute list. All other Duet operations can only

refer to local Duet names.

The compiler cannot check whether a block reference —_

is legal or not. Partly because the single blocks

are compiled independent of each other so that no

checks are executed across the block limits.

Consequently, the block reference must be checked

by the Duet system at the run time, as it has been

described in section 3.1.2.

When reaching the Duet stop in the execution of an

execute list, this is finished. It is then investigated

whether there are more operations in the
instruction and if that is the case, the
these are continued. If not, a return to
level in the dynamic execution hierarchy

(cf. section 3.1).

current
execution of
the previous

is performed

-35=-

3.2.1.2 Program Points

A Goto operation cannot be expressed in Duet. It
contradicts the hierarchical execution of the Duet
program's execute lists, whose principle is that
when an instruction has been executed in its outmost
consequence, the program will return to the

previous level. The execution of an instruction may
include transfer of the control to new levels but

if the program does not end in an infinite loop it
will, sooner or later, return to the original

instruction.

In certain situations, however, one may need to
short-circuit the execution and return directly to
one of the previocus levels, e.g. by data errors; or
to exit from a program loop before its stopvalue has

been reached.

This can be done by the exit operation in connection

with a program point in the execute list.

> execute d3
ds
d13
p2: d13, d22
d36

S

Figure 3.14: Execute list with a program point.

Program A program point is declared at the beginning of a
point line in an execute list with the letter 'p'
declaration followed by an integer in the interval 1-9, and a

colon.

-36-

3.2.1.2 Program Points

When an execute list is executed and a line with

a program point declaration is to be processed, a

marking of the specified program point is stacked

together with the pointer for the current position
Active pro- in the list. This makes it an active program point.
gram point

At any time there can thus be several active program

points and there can, at one and the same time, be

several (program points) with the same number. To

each active program point a level is attached,

which corresponds to the dynamic level in the

program at which the corresponding execute list has

been activated (corresponding to its current position

in the stack).

Returning from the last instruction in the line, to
which a program point has been attached, this is
made passive again in connection with the unstacking.
In the example, p2, at the current level, will only
be active as long as d13 or d22 or instructions

activated from them are being executed.

If d13 is activated from somewhere else, p2 will not
become active (unless p2 has also been declared a

program point in the activating operation).

Exit The exit operation (described in section 3.2.15) can
refer to a program point. When the exit is performed,
the Duet program will return to the nearest active

program point (relative to the current level).

From this point, the next line of the execute list is
continued without any regard to whether the previous
line or the execute lists activated on the intermediate

levels have been concluded or not.

Select

mMm3.2.1.3

Suppression

specification

-37=-

3.2.1.2 Program Points

If there is no active program point with the stated
number, the interpreter returns to the basic level,

i.e. the Duet program is terminated.

The operator 'select' (see section 3.2.14) can define
an automatic exit to a program point when data errors,
programming errors and/or system errors occur.

Different kinds of program points can be selected for

different kinds of errors.

Conditional Compilation

The execute list can be supplied with a suppression

specification which causes a conditional compilation.

> execute d35
t1 p7: d123, d8, b(18)
d3z
di3
t2 b (block_no, entry no)
s

Figure 3.16: Execute list with suppressicn

specifications.

A suppression specification is indicated by the
letter 't' (for test) followed by an integer in the

interval 1-9.

In a normal compilation such a line will be suppressed
and so it is not included in the compiled program.

But if an 'include' parameter is specified for the
compilation of the Duet program (cf. section 4.2) the
line will be compiled if the t-value in the line is

less than the suppress value of the include parameter.

-38~

3.2.1.3 Conditional Compilation

As shown in the example, you can also suppress a
line where a program point has been declared. In

this case the program point will never become active.

Neither the suppression specification nor the program
point declaration can be written in the same line as
the execute operation. If these are wanted for the
first reference in the execute list, this reference
must be specified on a new line, as shown in figure

3.17.

> execute
p8: d32
d33

Figure 3.17: Program point at the 1 st Duet

reference.

Ve

Left side:

var.ref.

~

Vg4

-39-

Modify

The modify operation can assign variables of all
kinds by a simple transfer of a value to a variable.
Furthermore, the operation can be used for
accumulation in numerical variables. However, no
execution of calculations can take place, and
assignment is performed without the use of working
locations, thus making modify the fastest kind of

assignment.

The format of the modify operation is a list with
a variable length, terminated with a Duet stop.

Figure 3.18 shows some of the possibilities in a

modify list. i , P
* { ¢ ;.' ot) ? ey { * ,f"‘_&g de ' LE A ‘!'
' L . i SWis1Exe
> modify index := 3
arrayvar (index) := simple word

counter :+ 1

saldo :— payment
textvar := 'text constant'
arrayZ2 := array]l

array =0

S

Figure 3.18: Modify list

Each line consists of a left side, an assign operator,

and a right side.

The left side is normally a reference to a simple
variable or to an element of an array variable. In
the latter case the index must be an integer constant

or a simple integer variable (cf. section 3.1.4).

Assign

operator

Right side:
value

element

-40-

3.2.2 Modify

Consequently, subscription is not possible in more

than one level at the left side.

The assign operator can be := for ordinary assign

and :+ or :- for accumulation.

The right side must be a value element, i.e. a
constant or a variable reference. At the right side
one may subscribe at several levels and a sequence
of épecial operators are available, which have been

described in the following subsections.

The right side must correspond to the left side, as
regards types. In this way a numerical value element
can only be assigned to a numerical variable and a

text element only to a text variable.

The following detailled description of the modify
Ooperator can be divided into groups according to the
kind of the right side:

1. numerical assign
2. text assign

3. anonymous assign
4

. special assign

—

3.2.2.1

Digits

-4 1=

Numerical Assign

Figure 3.19 shows the possible kinds of numerical

assign.

>modify index := 3

counter :+ 1

saldo 1= payment

array (index) := simple var

code := .Xy. _

item group := digi£;>(6,4) of item no
rest := item no/ mod)item group

kind := item no ;7'item_group

s

Figure 3.19: Numerical assigns

For numerical assign, all three assign operators can

be used with the following meaning:

:= numvar := ritht side
s+ numvar := numvar + right side
] numvar := numvar - right side

The left side must be a numerical variable reference,
i.e. a reference to a simple variable or an array
element of the type: word, long, real, date or

result.

The right side may be a numerical constant, a

character constant or a numerical variable reference.

Furthermore, the operator 'digits' can be used at
the right side. Its function is illustrated in

figure 3.20.

-4 27—

3.2.2.1 Numerical Assign

item no = 72531124

+-——--digj_ts (6,4) of item no

Figure 3.20: digits

The digits operator extracts a group of digits from
a variable. The variable is regarded as a decimal
number, in which the digits are numbered from the
right so that the least significant digit gets the

number 1. The result of
wmnesr 1.

digits (a,b) of c
where a>=b, is an integer consisting of the digits
from the digit position 'a' to the digit position
'b' (both included). The result of the operation in

figure 3.20 is thus 253.

Not?: nc regards are taken to implicit decimals in

the variable on which 'digits' operates.
The result of
digits (2,1) of balance

where balance is declared with 2 decimals will then

be these decimals.

Integer Finally the right side can be supplied with an
devision, operator for integer division (//) or rest calcula-
mod _tion {mod). These binary operators can operate on

integer constants and/or integer variables and they
also demand the left side variable to be of integer
type ('word' or 'long' without any decimal indica-

tion), see figure 3.20b.

-4 3_

3.2.2.1 Numerical Assign

>modify rest := 12 mod index
day := date mod 100
year := date // 10000
s

Figure 3.20b: mod and //

Automatic Numerical assign provide for automatic normalization,
é’ normaliza- i,e. differences in the number of decimals between
tion the left side and the resultant right side and

differences in type are automatically taken care of,
[

(except for integer division and modulo calculation).

>modify w_2 dec = 123.4
w_integer := 123.4
w_var = 1 var
w_var := r_var
S

Figure 3.21

In the example, figure 3.21, w 2 dec (declared with
2 decimals) will, after the operation, have the
value 12340 (which means 123.40) while the w_integer

contains 123.

It is allowed to assign a 'long value' or a 'real
value' to a word variable but the interpreter does
not check whether the variable can contain the value

or not (cf. section 3.1.4).

-44 -

3.2.2.2 Text Assign

'falkoner alle 90!

txtvar(1)

Il

>modify address :

I

txtvar (2)

il

var name name (v17)

var name := name {var(var_no))

pe——

S

Figure 3.22: Text assign

For a text assign only the assign operator := can
be used and the left side must be a reference to a
variable of the type 'text' (simple or array

element) .

The right side in the text assign can either be a

text constant or a reference to a text variable.

nane Furthermore, the operator 'name' can be used at
the right side. This operator delivers, as a result,
the name of the specified variable in accordance
with the language code used for the ld=-compilation.

This variable can be specified directly as in

name (v17)

which gives the name of the variable v17.

name (var) The variable can also be specified indirectly by the

var'. e.q.

operator

name (var (v32))

Here, v32 contains the variable number of the variable

whOose name is wanted.

=45-

3.2.2.2 Text Assign

The comEiler checks that the left side variable is
large enough to contain the resulting text at the

right side.

3.2.2.3

var

-4 6=

Anonymous Assign /4.8y

.
_

>modify sort crit := var (user key)

P
S

Figure 3.23: Anonymous assign

The anonymous assign can be executed by means of
'var' specified as the first operator at the right
side. In the example, figure 3.23, the variable
'user key' must contain a variable numer which

indicates the variable to be assigned to 'sort crit'. &

The left side must be numerical (and should be a
'long'). As the compiler cannot check the type of
the resulting right side, the following conventions

apply to the assignment:

result.right side

word are delivered as a numerical

long value with regard to the

real receiving variable's type -
date Jand number of decimals

text 6 first characters|) are delivered

bits 4 first bytes as a bit

» pattern without

recno 2 bytes any decimal

) conversion

If the appointed right side variable is an array

variable, its first element is used according to the
e e .
same rules. '

3.2.2.4

~ Transfer of

array

-47-

Special Assign

Special assign means an assign to something which is

not a single numerical variable or a text variable

That concerns

- a transfer of a complete array
a reset to zero of a complete numerical array
- an assign to a bit variable and

= an assign to a recnoc variable

>modify array_1 = array_?2
key aggr := record_ key
saved_recno := recno_result
array_ 2 := 0
S

Figure 3.24: Special assign

The assign operator in special assign can only be :=.

For transfer of a whole array you must write an array
identifier at both sides of the assign operator,

without any indication of the subscript.

In this type of moving, an absolute type correspon-

. dence between the left - and right side is demanded.

For numerical values it is also necessary that the
two arrays have been declared with the same number
of decimals, whereas it is required that the length
of the single elements are identical in both arrays,

concerning arrays of the type text/bits.

The numerical
array reset

to zero

Assign bit

variables

-48

3.2.2.4 Special Assign

If the arrays have different lengths only as many

elemen as defined by the shortest array are
i, —""‘"‘"‘““w’""""“"""m-_____. g

[

transferred. Finally no more than 2047 words can

T
be transferred altogether.

The resetting to zero of a complete array can be
done by writing an array identifier without a
subscript at the left side and the number 0 at the
right side. However, this possibility only concerns

numerical arrays.
\'\-_

et

A bit wvariable can be transferred to another bit
variable if the two variables are of the same
length.

B e o

Assign recno

variables

Ve

Finally a variable of the type recno can be

assigned either with the value of another recno
—_—

variable or with the number =zero.

o

’ 4 " ‘ .
mer; O olicy O conde ACAO

-490-—

3.2.3 Compute

The compute operator can be used for the assignment
to numerical variables of the value of general
numerical expressions employing the ordinary

numerical operators and brackets.

The value of such a numerical expression can be
assigned to several variables, as in Algol. However,

'compute' cannot be used for text assign.

The format of the compute operation is a list of

variable length terminated with Duet stop (the

character 's'}), see figure 3.25.
>compute v1 := v12(3) := 5
saldo := balance - payment(ser no)
price(price code+2) := 22*(v13(v1)+v17)
s

Figure 3.25: Compute list.

Each line, which constitutes an assign in itself,
consists of a left side, an assign symbol (:=) and

a numerical expression at the right side.

Left side: The left side is a reference to one or more simple
general numerical variables or to elements of numerical
var.ref. arrays. The subscript of an array element can here -

as the only place in the Duet language - be a
general numerical expression according to the same
rules that apply to the right side. If more variable
references appear on the left side, these are

seperated by the assign symbol.

Right side:
numerical

expression

-

50

3.2.3 Compute “

The right side is a numerical expression.
References to numerical variables (simple or array
elements, as on the left side), numerical constants
(integers and decimal numbers) and character

ettt g e AT
constants can appear as operands. The operands are
Bttt

s,

Real
working

register

separated by the usual numerical operators,
+ - * /
and by brackets.
The right side may degenerate into one numerical

variable or constant but in these cases it is

All calculations in a compute list are performed by

means of a real working register with usual regard
———

\
|
normally cheaper to use the modify operation.

to possible decimals in the operands. However, if

any of the operands are long values with more N

significant digits than 36 bits can contain, the

computation will cause a loss of accuracy.

Priorities

The calculation of an expression in the compute list
is carried out according to the following (normal) ﬁa

priority rules:

1) subexpressions in brackets before the
surrcunding expressions

2) operations with * and / before operations
with + and -

3) from left to right.

-51-

3.2.4 Assign - of
Selective This operation, called selective assign, is used to
assign assign a simple integer variable governed by the

value of a test variable.

Y

>

V}f{ X >assign value code := test var of
[A Mt €
- 1w, A2 / !
Xv. ¢ 3 OO, Ln AL CY € ¢
973 : code '
v32 : .abc.
s
Figure 3.26: Selective assign
Assign list The operation contains a (variable length) assign
list of test values (to the left of :) and their
corresponding assign values, see figure 3.26. Both
test values may be simple integer variables, integer
constants or character constants but none of them
must exceed 24 bits.
Assign The variable that is to be assigned must be a simple
variable integer variable. The test variable, however, may be

an arbitrary numerical variable, simple or array .
element; only it must not be of théH£ypé"real' or
ﬁ;ve a decimal indication. The assign variable and
the test variable may be the same variable.

The assign list may either be terminated with Duet
stop (as in figure 3.26) or with an alternative
value or an alternative action (figures 3.27 and
3.28).

-52-

3.2.4 Assign - of

>assign v2 := v1 of
1 : 100
2 : 0
else w35

Figure 3.27: Selective assign with an

alternative value

>assign type := code of
.ov. : 1 .
.ok. 2 /4
.0k2.: 2
else a9 ; error action

Figure 3.28: selective assign with an

alternative action

The operation works in the following way: The value
of the test variable is successively compared with
the test values in the list. When meeting a test
value which is equal to the value of the test
variable the comparisons are stopped and the assign

variable is given the corresponding assign value.

If none of the test values apply to the testvariable,
the reaction depends on whether the assign list is
terminated with a Duet stop, an alternative value or

an alternative action.

Alternative

value

Alternative

action

™ Duet stop

-53-

3.2.4 Assign - of

An alternative value is stated with 'else' followed
by a simple integer variable, an integer constant or
a character constant; and this value is always

assigned to the assign variable if none of the test

values fitted.

If an alternative action is stated, i.e. 'else'
followed by a Duet name, this Duet instruction will

be executed if no test value was found.

Finally, the Duet stop can be stated. This corres-
ponds to an empty alternative action like 'else d0'.

In this case nothing is executed.

~-54 -

3.2.5 I1f - then “

A conditional execution of a Duet instruction can
be effectuated by the if - then operation, whose

format is shown in the examples in figure 3.29.

>if v32(v14(2)) <>0 then d19 else d20

>if balance < credit maximum then d930

>if code = .t13. then d14 else 365

Figure 3.29: if - then operations.

Numerical Between 'if' and 'then' a single numerical relation
relation must be stated, in which the symbols below can be

used as relation operators:

< : smaller than
> greater than
= : equal to

<>: different from

No compound symbols can be used (i.e. <=) neither ‘i
any compound relations (i.e. 'and' and 'or'). The

left side of a relation must be a numerical variable
reference (simple or array element). The right side

may furthermore be a numerical constant or a character

constant; that is, a usual numerical value element.

If the condition is fulfilled (the relation is true),
the Duet instruction stated after 'then' is executed.
If the condition is not fulfilled, the Duet instruction

stated after 'else' is executed.

If 'else' is left out, nothing is executed in the 'else‘i

situation, corresponding to 'else 40'.

-55-

Case - of

The case branching in Duet resembles, in its functions,

the Algol case statement.

> case test_var of

1: d32
d318
do
4: d32
else d27

Figure 3.30: case operaticn

The format of a case operation is shown in figure
3.30. The numbers in front of the Duet names are
redundant comments. They can be left out but if a
number is stated, the compiler checks whether it fits

its location in the list.

The test variable can be an arbitrary numerical
variable, simg;e oY array-elemeni; only it‘myst

neither be of type 'real' nor be declared with

decimals.

In the execution of a case operation the Duet
instruction is activated, whose location in the list
of Duet names corresponds to the value of the test

variable.

If the value of the test variable is less than 1 or
larger than the amount of Duet names in the list,

the instruction after 'else' is always executed.

The case list may be terminated with the Duet stop
('s') instead of 'else', which corresponds to 'else
do'.

3.2.7

Selective

branching

*ﬂ{\\f

LJ[” JA:Z:- ?,

Action - of 0

This operation, called selective branching, resembles,
in principle, the selective assign (section 3.2.4).
It causes an execution of a Duet instruction,

conditioned by the value of a test variable.

Where the range of the case branching (cf. section

3.2.6) is limited to a sequence of consegutive

positive integers from one and upwards, then the

range in selective branching is almost unlimited.
However, a search must be made in a list of the

single relevant values. The current situation must ‘w
then determine which, o©Z these two possibilities,

is the most advantageous.

> action text var of
XV : di9
973 : d318
v12 : do
else dz27

Figure 3.31: selective branching.

The operation contains a (variable length} action list
of testvalues and corresponding Duet actions. The
list is terminated with Duet stop ('s') or an alterna-

tive action (as in figure 3.31).

The test variable can be an arbitrary numerical
variable, simple or array element, only it must not
be of the type 'real' or be declared with decimals.
Simple integer variables, integer constants and
character constants can be used as test values. The

test values must not exceed 24 bits.

~57 =

3.2.7. Action - of

In the execution of an action-operation, the test
variable is compared successively with the test
values of the list. If a test value is found which
equals the value of the test variable, the
comparisons are stopped and the corresponding Duet

instruction is activated.

I1f none of the test values match the test variable,
the operation is ineffective unless an alternative
action has been stated with 'else'. In this case the

instruction, stated there, is executed.

-58~

For - do A

Program loops are made in the Duet language by the
"for - do' operation or by the 'while' operation
(section 3.2.9).

> for control var := start, stop do d32

> for v17 := 3,5 do 4100

Figure 3.32: for - do operations

The format of a for - loop is shown by the examples
in figure 3.32.
The control variable must be a simple integer variable
while the start - and stop value may be integer
numerical value elements.
The operation is executed in the same way as the
Algol sentence
[7
for control var := start stepijjhntll stop do....; ~

>

- -

T

only with the difference: that in Duet, the stop
value is computed once and for all before starting
the loop. It is thus not possible to interrupt the
loop from within by changing the value of the stop
element.

An interruption of the loop from within can, however,
be caused by changing the value of the control variable
or by the exit operation (see section 3.2.1.2 and
3.2.15).

59

While - do

A while - loop in the Duet has the format, shown in

figure 3.33.

> while testvar <>0 do d313

Figure 3.33: while operation

A numerical relation must be indicated between 'while’
and 'do' and it must fulfil the same syntactical
demands as the relation in the if - then operation

(cf. section 3.2.5).

The operation works in the following way:
’ & s

If the relation is true, the stated Duet ihstruction

S

is executed and the relation is re-tested. When the
relation gives the result: false, the Duet instruction

is not executed and this terminates the operation.

3.2.10

read general

End of string

o

..60_

Getline

The 'getline' operation causes a call of the reading
procedure 'read general' which reads a text string
from the zone 'readz'. (This zone must be opened by

the control program to the input text area).

> getline textvar

Figure 3.34 getline

The parameter to the getline operation is a text
variable in which all of the read text string is
delivered. Furthermore, the text is separated into
fields to be used by the reading operation 'read'
(cf. section 3.2.11).

Getline terminates the reading when meeting a
character in the input, which, in the system's
character set table has been defined as an 'end of
string' character (see section 3.2.11). This is
normally the characters line feed (ISO value 10, nl)

and end medium (ISO value 25, em) .

If there is no 'end of string' character the reading
will terminate after 150 characters, corresponding to

the longest line 'read general' can read.

If the text variable stated as parameter for 'getline'
is too. small to contain the whole 1nput llne,_only
part of it will be transfefred to themvarlable. Yet
the whole line is always avallable for interpretation

by the Duet operation 'read’'.

61—

3.2.10 Getline

In certain program types it is more appropriate to
let the application program activate the reading of
text strings by calling the 'read general’ procedure.
In this case, the corresponding Duet program must

not use the getline operation.

- L " &
Floovdl e G ein ar[»Cé{\{,y L an Mﬂ

3.2.11

3.2.11.1

Character
set table

-62-

Read

A text string delivered by the getline operation or
'read_general' can be looked upon as a sequence of
fields which can be recognized successively by the

Duet operation ‘'read’'.
The read operation can
- read a field from the input string
(numerical field, text field or
character field) and
- perform a value check of the field.
or

- assign a field's standard value.

Classification of fields

The interpretation of a line is controlled by a
character set table which is defined by the Duet
system's initialization procedure iiﬂiﬁ_gggggL,
(but may be redefined by the control program). For
each ISO value the table determines a character

class and an internal character value.

The internal character value is equal to the ISO
value in the standard table, except for capital
letters (ISO value 65 - 93) which are altered to
small letters (97 - 125).

The character class is used for determining the
termination of the text string, as well as the
limits between the fields and the kind of the fields
in the test string. Figure 3.35 shows the existing

character classes and their standard initialization.

Comment
field

Text fields

Numerical
field

Character
field

-63—

3.2.171.1 Classification of fields

order | meaning character

<9 illegal

9 blind

10 end of string nl em (new line/end medium)
11 text delimiter ! (apostrophe)

12 comment delimiter " (quotation marks)

13 digit 0123456789

14 ordinary delimiter sp + (space and coma)

15 sign/standard mark - (minus)

16 decimal point . (point)
>16 other characters letters, special characters

Figure 3.35:

character classes

A comment field is a number of characters given

between two comment delimiters

(quotation marks) .

'Read’' always skips any comment fields.

A text field is a number of characters stated between

two text delimiters

(apostrophes) .

A numerical field consists of digits, possibly with

a decimal point and/or a prepositioned minus character.

A post positioned minus character cannot be read.

A character field consists of at most three single

characters

by letters,

(a letter or a special character followed

special characters and/or digits). These

characters are packed as a character constant by

'read'.

end of string

Ordinary

delimiter

3.2.11.2

Read mode

-64 -

3.2.11.1 Classification of fields

The end of string character (nl/em) cannot be
included in any field. This means that if the
terminating text-/comment delimiter is missing,
the text/comment is terminated by an end of string

character.
Ordinary delimiters (sp/,) may be included in text
fields and comment fields but they terminate

numerical fields and character fields.

Read Specifications

The 'read' operation is controlled by a read
specification which contains a read mode and a
reading variable. For each call of 'read', one
field of the input string is interpreted and the
value of this field is transferred to the reading

variable if it matches the stated read mode.

> read n2 customer no ; read numerically
> read t1 address ; read text
> read c¢13 code ; read character group

g
read mode—J T-—————reading variable

term.code

no. of characters

Figure 3.36: read

The read mode indicates the nature of the expected
field and the way in which it is to be read and be

represented in the reading variable.

-65-—-

3.2.11.2 Read Specifications

n n indicates the reading of a numerical field,

numerical i.e. an integer or a decimal number with a sign,
if any. The reading variable must be numerical
and the value is delivered in accordance with

the variable type and number of decimals.

t t stands for the reading of a text field with

text surrounding text delimiters (apostrophes). In
the reading variable, which must be of the type
'text', the characters between the two text

— delimiters are delivered in a normal text form.

C ¢ indicates the reading of a character field

chars (chars). For this purpose, the maximum number
of characters allowed in the field, must be
specified (1, 2 or 3). The reading variable must
be an integer variable (word) in which the
characters are represented in the same way as a
character constant in the Duet program (see
section 3.1.4). A field starting with a digit

cannot be read as a character field.

Terminator The terminator code defines which type of delimiter
——
code is allowed as terminator for the current field. The

following codes apply:

0: the terminator is not read and is not
checked.

1: the terminator must be an ordinary delimiter

(char.class 14) .

2: the terminator must be an end of string

delimiter (char.class 10).

3: the terminator may be an ordinary - or an end

of string delimiter.

66

3.2.11.2 Read Specifications 4
Resultvar After the reading operation the result variable
readterm 'result.readterm' states which terminator was

read:

result.readterm = no terminator read

0:
> 0: ISO value for terminator.

If the terminator is read, all the coherent terminators
are read up to the next field or perhaps up to the end
of string. In this case only the last terminator is

stored and checked.

Several Several read specifications can be stated in one
read spec 'read' operation; by which is meant that several
different kinds are allowed for the current input
field, see figure 3.37.
> read nl text no, t1 text, c13 code
Figure 3.37: 'read' operation with several
read specifications

In the execution of a read operation it is checked
if the input field fulfils the syntactical demands,
which corresponds to the read mode in the first

read specification. If this is not the case, a
reading is attempted in accordance with a possible
additional read specification in the current
operation. 'Read' continues in this way, until the
field has been found syntactically correct, or

there are no more read specifications. In the latter
case an error reaction is activated by calling the

procedure: 'duet data fejl' (cf. section 5.3.1).

-67-

3.2.11.2 Read Specifications

> read s, ¢13 line_code

Figure 3.38: 'read' specification with reading

of a prepositioned delimiter

In front of the first read specification you can
state LELL This means that if an ordinary delimiter
(SP/ , which has not yet been read, i1s positioned
in the-current location of the input string, then

'the following field is not read.

This marking is only significant when reading the

flrst field of the llne or if the ‘read' operation,
last executed was readlng with the terminator code
0.

3.2.11.3 Check of value spectrum

When arfleld has been found syntactically.correct, a
poaezbie Valﬁe check is executed, determined by the
value spectrum of the reading variable in the 1ld-
description. It is checked that the value of a
numerical variable is inside its permitted value
spectrum. The number of characters read to a text
variable is checked to be inside the permitted

interval.

For variables without any value limits the only check
is that the value can be contained in the current

variable.

-68-

3.2.117.3 Check of value spectrum

If the read value is outside the permitted value

spectrum an error reaction is activated.

3.2.11.4 Standard Value

Explicit If only a single character of the class standard
standard mark (minus character) is given as a field in the
mark input string, no actual reading is executed.
specified reading variable if this is declared
with a standard value in the ld-description. If not,

an error reaction is activated. -

Implicit The same possibility of an automatic standard value
standard marking exists if you continue reading of fields,
mark after the input string has been exhausted. This will
be regarded as if a standard value had been stated

for the field.

i

This facility makes it possible (without any special
syntactical marking) to shorten those lines in the
input, in which all the remaining fields should

receive a standard value.

The processing of the standard mark depends on the

stdassign value of the variable 'stdassign':

T sy bt g vt o e e 3™ 7 T

- stdassign <> 0: the standard value specified
for the read variable in the ld-description is

assigned to the wvariable.

- stdassign = 0: the value of the reading variable
is not altered as a standard value is supposed
to have been assigned to the variable previously,

€.g9. by a db-operation (cf. section 3.2.13).

Resultvar

-69-

3.2.11.4 Standard Value

The variable 'stdassign' is reset to zero by the
call of 'init duetmaskine'. It may be changed by
the control prbgram after this call but it may also
be changed dynamically from the Duet program by

using the 'select' operation (see section 3.2.14).

After the reading opertion, the result variable
'result.readspec' specifies, which read specification

has been executed:

result.readspec = 0: standard value or
prepositioned delimiter
read
> 0: the number of the effectuated

read specification

(If the result variable has not been defined, this

piece of information will simply disappear).

3.2.12

"primula’

70

Print

The print operation is used for printing results
(by means of the 'primula' system). The printing
is carried out via a line buffer of 132 positions,

which may be assigned in an arbitrary sequence.

By a special print command this line buffer is
transferred to a result area via a zone in the

zone array 'prinz'. The control program defines how
many zones this zone array contains and opens each
zone to its respective result area (cf. section
5.2.7T and 5.5.1).

With the 'select' operation (which has been
described in section 3.2.14 the current zone within
the zone array is selected and this choice is valid
until the next call of 'select'. The call of the
'init_duetmaskine' procedure always selects prinz(1)

as print channel.

The format of the print operation is a list of

variable length, terminated with a Duet stop (the

character 's') as shown in the example, figure 3.39.
> print <p 1 t23> : cust name; form feed
<25 n8> : cust no
d335 : ; compute balance
<21 25 n6.2>: balance
<1 25 ¢c9> = .=,
< 1 >
s

Figure 3.39: print list

-71-

3.2.12 Print

Each line is either a Duet name or a print line

consisting of a layout and a value specification.

Duet name If the line is a Duet name it must be the name of a
Duet instruction in the same block and this Duet
action will be executed in the same way as in an
execute list. No block references can be written.
It is not allowed to write more than one Duet name

in one line.

™ Print line A print line consists of a layout specification
which describes how the printing is to proceed and
a value specification which states what is to be

printed.

3.2.12.1 Layout Specification

The layout is surrounded by brackets <>. Between

these is stated either:

- a solitary horizontal specification
or
- - a vertical specification
and/or
- a position specification
- a layout type and

- a layout parameter

Horizontal A horizontal specification is stated with the
specifica- character 'h' followed by a position indication
tion: basic which may be a numerical constant or a single
position integer variable in brackets. Hereby a basic
position is specified which, during the run, is
added to all the position values until meeting a

new horizontal specification.

-7 2~

3.2.12.1 Layout specification

The basic position is reset to zero by the 'init

duetmaskine' procedure.

Vertical A vertical specification indicates that the line
specifica- buffer must be transferred to the result area, after
tion which the printing of either a form feed, a vertical

tabulation or a line feed (ISO value, 12, 11 or 10,
respectively) proceeds. This is stated in the layout
with the character p, w or ﬂ; respectively - the
latter may be initiated with a parameter that
specifies the number of line feeds. The parameter
may be an integer constant or a simple integer
variable. In the latter case, the current number of
line feeds are not determined until during the run.
The numer of line feeds must not exceed 70, corres-

ponding to a full page Ad4-vertical.

Position The position indication determines the number in the
line buffer on the first character of the current
field. The indication may - like the horizontal
specification - be either an integer constant or a

simple integer variable in brackets. The value of

the position must be inside the range 1 - 127.
Layout type The layout type and the layout parameter determine
and layout the format and the size of the field to be printed
parameter in the linebuffer; and they also make certain demands

on the type of the value indicated by the value

specification.

t: text The layout type t indicates text printing and the
value must be of the type ‘text'. The layout
parameter, which may be an integer constant or a
simple integer variable in brackets, indicates how
many positions are available in the line buffer.

If the text is more extensive, it is shortened.

-73-

0’ 3.2.12.1 Layout Specification

c: char The layout type ¢ indicates the character printing
(charprint) . The value must be numerical and it will
be interpreted like a character constant (cf. section
3.1.4) . The layout parameter must also here be an
integer or a simple integer variable in brackets
which indicates how many times the character constant
must be printed. (The character printing is thus
suited for e.g. printing of underlinings and the like).
If the character constant consists of more than one

character the whole character sequence will be

f” repeated.

n: num The layout type n indicates a numerical printing and
demands the value to be numerical. The layout
parameter for this, is constructed by the following

elements, in the sequence shown below:

- a fixed-sign marking

- a zero representation statement
- a zero value statement

- number of principals

- number of decimals

!’Eixed sign The fixed sign marking, indicated by a minus
character, means that the sign of a possible
negative value always must be printed in the
first field position. If the marking is left
out, negative values are printed with floating-
point signs, i.e. immediately before the first

significant principal digit.

Zero repr. The zero representation statement specifies how
z * insignificant figures are to be printed. If
the character 'z' is stated, prepositioned zeroes
are printed and if '*' is stated, this character

ﬁh is printed instead of prepositioned zeroes.

zero value
b

Principals

numper

Decimals

.humber

-74-

3.2.12.1 Layout Specification

If the statement is left out, the prepositioned

zeroes are printed as blanks.

The zero value statement specifies, with the
character 'b', that the value zero should be
printed as a totally blank field, without regard

to a zero representation statement, if any.

The number of principals is expressed with an
integer stating how many character positions are,
at most, to be included in the principal part of
the number. If a floating-point sign is used the
minus character will take up one of these
positions. The principal specification is the

only parameter element which cannot be left out.

The number of decimals is specified with a point
followed by a number indicating the number of
decimal digits to be printed. These will always

be printed in full.

Figure 3.40 gives an informal outline of the layout

possibilities:

-75=

3.2.12.1 Layout Specification

integer
h
integer wvar)
\ {integ J
horizontal
specification
integer 1 integer t | integer \\\
(integer wvar) P {integer var) C (integer var)
%
W n -, b|princ | .dec
L — J - J w J
Vertical——} layout §3¥ameter
specification layout type
position
Figure 3.40: layout
See also the examples in figure 3.39 and 3.42.
3.2.12.2 Value Specification

text value

If the layout contains a layout type (t, ¢ or n), a
value specification must be stated, whose type must

correspond with the layout type.

For a text layout (t) a text value must be stated,

i.e.

1) a text constant (one or more text characters
within apostrophes),
2) a text wvariable

3) a variable name, e.g. name (v32)

-76-

3.2.12.2 Value Specification ~—
numerical For a numerical layout (n) or a character layout (c),
value a numerical value must be indicated; this may be:

4) a numerical constant

5) a character constant (1, 2 or 3 text characters
between points)

6) a numerical variable

7) an expression of numerical variables and/or
cdﬁstants

8) a digit group extracted from a numerical
variable by the operator, 'digits'

9) an integer expression stated with the operator,
'mod' or }):m. .

The points 1-2 and 4-6 belongs to the concept
'value element' (cf. section 3.1.4). The expression
in point 7 corresponds to what can be written after
the assign symbol in a compute list (cf. section
3.2.3).

The digits-operators and the name-operator have been

described under 'modify' (section 3.2.2).

The operators for the integer division and the modulo ‘O
have also been described under 'modify'; note, how-
ever, that in these operations the layout must not

contain decimals.

Automatic Numerical printing will always take place with an
normaliza- automatic regard to possible decimals in the value
tion to be printed, so that the layout's decimal point

always will follow right after the value's unit

position, as shown in figure 3.41.

-77-

3.2.12.2 Value Specification

> print <1 1 n8> : var_2 dec
< 11 n5.2> : var 2 dec
< 21 n3.4> : var 2 dec

S

When var_ 2 dec contains the value 123.45, this

print operation will print the line:

123 123.45 123.4500

Figure 3.41: processing decimals in print.

Between the layout and the value specification, a
colon may be written (out of consideration for those
who are used to write GENIUS programs) but this
colon is not compulsory (out of consideration for
those who are accustomed to use the previous Duet

language) .

Figure 3.42 shows a more extensive example of a

print operation. The Duet compiler attends to the
printing of the value specifications and the comments
beneath one another, but it does not alter the

structure of the layouts. We recommend that vou provide

a certain editing of the latter.

78

3.2.12.2 Value Specification

d10: print d11
<21 4 t30 > customer name
< (v2)n5.2 > balance - payed
<1 4 t30 > name(v32)
< (vZ2)nb5.2> payed

possible head line
text variable

new balance
variable name

- e e ws

< h(v1) > ; basic pos. for date
d20 ; print date

<h O > ; basic pos. zero
<113 t10 > customer discount ; fixed text

< 231 > sl - ; colon

< 25 n3.1 > (v13(2) = v3*100/v3 ; discount

< 30ct > 37 ; p.c. character

<1 > ; exhaust the last line
s

d11: modify line counter :+ 4
s
> if line counter > max line then d12

d12: modify page no :+ 1
line counter := 0

s
> print <p 5 t30> 'list op customers and payments'
< 50 t40> 'page’
< 55 n3> vage no
. -
d20: print < 1n2 > digits (2,1) of date ; day
< 3 n-z2> digits (4,3) of date ; month
< 6 n-z2> digits (6,5) of date ; year
< 3ct > 46 ; point
< 6cl > 46 ; point
S

Figure 3.42: print example

3.2.12.3

-79-

Printing with Standard Layout

In order to substitute the 'list' operation, which
could be used for standard printing of variables

in the old Duet language, two kinds of printing with
standard layout have been introduced. They are both

shown in figure 3.43.

print <1 1 t40> 'standard printing with var.names'
<a 5,20> numvar
<a 5,20> txtvar
<1 1 t40> 'standard printing, fixed texts'
<s 5,25> 'customer name', cust name

<s 5,30> 'balance', balance

Figure 3.43: standard layout

The standard layout contains a layout type, 'a' or
's' and two position statements, integers separated
by commas. Only a simple variable can be stated as a

value specification.

The first position states the starting position for
printing a variable designation. By layout type 'a'
the variable's name is printed whereas the stated
text constant is printed by the layout type 's'.
The specified variable is printed with a standard
layout which takes the variable's type and possible

number of decimals into consideration.

-80-

3.2.13 DB-operations

The Database-operations in Duet (db-operations) are

based on the DBMS-procedures of the Soda-system

(see ref. 2), as each db-operation in Duet calls the
Soda-procedure with the same name. The format of the

db-operations is as shown below in the examples in

fig. 3.44,
> get s
> next s (setno)
> lookup s7
> put s (v2)
> delete s2
> newset s7
> create s3, 17
> create s (v15), i (v16)

Figure 3.44: db-operations

The first parameter indicates the set no. For create
furthermore, the record type must be specified. Both
set no. and record type can be indicated with

integers (e.g. s3 and i7), or by reference to a

simple integer variable (e.g. 's(setno)' and 'i(v16)'.
If the latter is the case the setno/record type is not
decided upon till the start of the run.

The examination of the individual db-operations
below is rather sketchy. For a close examination see

the Soda-manual (ref. 2).

get

next

lookup

te
ﬂ crea

put

-81-

3.2.13 DB-operations

The operation 'get' fetches by direct access a
record from the Database, and makes this record a
'current record' in the set. Values are transferred
from record fields to variables according to the
field associations in the ld-description containing
Y,

The operation 'next' fetches either the next record
in the set after the one last read by 'next',6 or
the first record in the set, when 'next' is called
just after 'newset'. The record becomes 'current
record' in the set. The value is transferred from
record fields to variables by the same procedure as

in 'get'.

The operation 'lookup' checks whether the record
with the indicated keys is included in the set or
not. Even though the record exists, is will not

become a 'current record', and no field transfers
are performed. 'Lookup' can only be used on sets

belonging to cf-master files (set type M).

The operation 'create' creates a new record and makes
this a 'current record' in the set. Variables
attached to the current record type are initialized
with a standard value according to the field

associations in the ld-description containing '*'.

The operation 'put' delivers the 'current record' of
the set to the Database. After 'put' no 'current

record' exists.

-82 =

3.2.13 DB-operations

By 'put' after 'get/next' an existing record in the
Database is replaced by a new version, and values
are transferred from variables to record fields
according to the field associations containing '>'

or '=>"',

By 'put' after 'create' a new record is inserted into
the Database, and values are transferred from
variables to record fields according to the field

associations containing '=>' or '=>"',

The location of the new record in the file depends

on the set type as shown in the table, fig 3.45.

set type | file type | previous | record is inserted
activity
cf-master ~ according to keys
B bs-file ~ always at the end
of file, (at eof)
cf-1list, ~ insertion is not
allowed
newset as the first in
the chain
L cf-list next in front of prev.
subscrip- 'current record'
ted
end-of- at the end of the
chain chain

Figure 3.45: location of new records when

inserted into the Database.

delete

newset

result.soda

-83-

3.2.13 DB-operations

With the operation 'delete' the 'current record' of

the set is deleted from

'current record' exists

the Database. After this no

any longer in the set.

No field transfers are performed. If the set belongs

to a bs-file, all the succeeding records in the set,

if any, are consequently deleted.

Finally the operation 'newset' is designed to

initialize a sequential

'current record' exists

scan of the file. No

in the set after 'newset',

and no field transfers are performed. The starting

position for a later seguential reading is

defined by the set type

as shown in fig 3.46.

set type | file type

position is defined

M cf-master according to keys
identspec exists:
B bs—-file according to keys
no identspec:
at the start of the file
cf-list, sing. |newset is not allowed

cf-list,

subscr.|lat the front of the chain

Figure 3.46: positi

The result of the db-op

on after 'newset'

eration is accessible through

the result variable defined as 'result.soda' with the

following values:

result.soda = 0:
= 1:
>= 2

db-operation ok
record does not exist

error in db-operation

-84~

3.2.13 DB-operations

Result 1 is accepted as a result to operations
'lookup' (the wanted record does not exist) and
'next' (end of chain/end of file), while this result
after 'get' will cause the call of the error

procedure 'duet data fejl'.

The result values 2 and forward always cause the

call of an error procedure, either "duet _data fejl',

"duet_program fejl', or ‘duet system fejl' depending

on the type of error (cf. section 5.3).

e

result.recno After the insertion of a new record in a cf-list file

or a bs-file the result variable result.recno

contains the position of the new record. This position

may later be used as a key for direct access to the

file/set.

85

3.2.14 Select

The 'select' operation is a garbage action by which
various run parameters can be altered dynamically

during the execution of the Duet program.

The following items can be selected:

- print channel for result-, error - or test
output,

- reaction on error situations,

- reaction on reading of standard mark, and

- set/clear test variables

The format of the select operation is a list of
variable length terminated with a Duet stop (the
character 's'). Each line in the list executes one
of the above-mentioned actions, and the various
actions can be mixed arbitrarily among each other

as in figure 3.47.

> select print on 3
test a ¢+ 0, 2, 23
print test on 4
return on data error
exit p9 on system error 11, 12
no stdassign on read

S

Figure 3.47: example of a select list

In the following passage various possibilities are

discussed in their respective subsections.

3.2.14 .1

channel no.

out

-86-

Select print

The print channel (i.e. subscript in the zone array
'prinz') for result output, error messages and
test output, can be selected by 'select print'

the format of these lines is shown in figure 3.48.

> select print on v32

print data error on 6
print program error on 9
print system error on v16
print test on 0

S

Figure 3.48: select print

The channel number can be stated with an integer
in the interval 0-9, or with a simpel integer
variable. The Duet interpreter checks that the
channel number does not exceed the number of zones

in 'prinz’.

The channel number 0 means: print on the zone 'out'.
This possibility, however, is only available for
error messages and test output. The result output

can only be printed on one of the 'prinz'-zones.

Standard values for channel numbers are used when
the select print has not been called. Standard
channel for result output is 1 (prinz (1)) and

for error messages and test output 0 (out).

These standard channels are gselected each time the
procedure 'init duetmaskine' is called; the test
channel, however, is only selected once when calling

'init duet2'.

3.2.14.2

-87-

Select exit/return

The reaction after an error message is selected by
'select exit' and 'select return'. The standard
reaction to any error is an exit from the Duet
interpreter (cf. section 5.1). This can be changed
selectively for each of the error types so that the
Duet program either exits to a program point (cf.
section 3.2.1.3) or returns in order to continue
the program. The possibilities are shown in figure
3.49.

> select exit p3 on data error 2,7,5 ; exit to p3
return on data error 6,8 ; proceed unchanged

exit p0 on data error 11 ; exit out of program

-

exit p0 on system error exit for all system

errors

e

return on program error proceed after all

e

; duet-program errors

Figure 3.49: select error reactions

p0 cannot be defined as a program point. Here it is

used to state an exit from the Duet interpreter.

If one or more integers are stated after the error
type (data error, program error, system error) the
reaction applies exclusively to the error number,
specified that way. If the error number is omitted
the reaction applies to all errors of the type in

guestion.

3.2.14.3

3.2.14.4

88

Select stdassign

This defines whether,

or not, the standard value is

to be assigned to the read variable by reading the

standard mark.

There are only two possibilities as shown in figure

3.50.

S

> select stdassign on read s standard value

; 1s assigned

> select no stdassign on read; standard value

7 1s not assigned

Figure 3.50: select stdassign

Select test

Some bits in the test variables: testa, testb, ---

testg, testh can be set and cleared by means of the

'select test' as shown in figure 3.51.

> select test
test
test
test
test
test
test
test

[2NNe B (N O N © PEE © TN & B

on
off

0,1,3,7

3,4

21,22,23
duet testvar
v17

v16

Figure 3.57: select test

()

assign

operator

test bits

89

3.2.14.4 Select test

Note: a space is required between 'test' and the

names of the test-variables ('a', 'b', etc.).

The following assign operators can be adapted:

:= for ordinary assign
:+ for addition of further bits and

:= for deletion of single bits

After the assign operator follows a designation of
the test bits which are to be set, added or deleted
in the test variable. The test bits are numbered
from the right with the numbers 0-23.

'On' or 'off' can be stated; they reset all testbits
to 1 or to zero respectively. This possibility can

only be used together with the assign operator :=.

Test bits may also be written as one or more

integers separated by commas by which the bit

p——————————,

numbers, of the test bits which are to be set/added/

deleted, are stated.

Finally a simpel integer variable can be stated.
Here the bit pattern, which is contained in this
variable, is set/added/deleted in the test variable.

The test variables testa, testbh, testc and testd are

[P T [—_ . ' - v -

-~ Tires,

The test bits
test 4 =1, 2, 12

can be useful for the programmer, when debugging a

1

new Duet program. The setting of these bits pro-

vides a

program

bit
bit
bit

dynamic trace or monitoring of the running

with the following test printing:

1: perform <duetname>
2: operation <opt.name>

12: return <duetname>

3.2.15

-90-

Exit

> exit pd ; exit to the program point p4

Figure 3.52: exit

The format of the exit operation is shown in figure
3.52. It causes a return to the/;earest, active
programlpoint with the same number as described in

-

section 3.2.12.

The program point must be stated within the
interval p1 - p9.

3.2.16

algol
special

action

9‘1

Algol

The 'algol' operation is the user's escape
possibility, by which Algol-coded special actions
in the control program can be activated. This i
facility is used for program parts unfit for coding

in the Duet language.

> algol 3 ('text constaﬁt' 12345,
name (v27) ,
adr(v27), adr(var(vi1e),
customer no) .

> algol 15

Figure 3.53: algol

For the 'algol' operationan integer must be stated,

indicating the number of the wanted special action.

Fu£§¥ermor§£ a parenthesis can be stated, containing

parameters separated by

commas and possible line-feeds. These parameters
must be interpreted by the special action as

described in section 5.4.

The permitted types of parameters are:

1) text constant
2) text variable
3) name of the variable specified
by means of the 'name' operator
4) numerical constant
5) character constant
6) numerical variable
7) address of the variable specified

by means of the 'adr' operator.

adr

adr

()

(var (

))

92

3.2.16 Algol

The 'name' operator has been described under modify
(section 3.2.2.2).

The 'adr' operator states that the address of the
variable, referred to, is requested. If the variable
is an array, or if it is to be used as a return
parameter (i.e. is assigned by the special action)
it is necessary to use the 'adr' operator. It can

be used as shown in figure 3.54.

> algol 2 (adr(simple var),
adr (array var),
adr (var (simple var)),

adr (var (array var (subscr))))

Figure 3.54: Algol action with adr-

specified parameters

After 'adr (' a variable name (or =-number) can be
stated directly. A subscript must not be given to

an array variable. The address which will be
delivered to the special action will then be the
field address of a specified, simpel wvariable,
alternatively the field address of the first element

of an array variable.

If 'adr (var(' is written instead, the specified
variable must contain the variable number of the
wanted variable. In that case it is the field
address of this variable, stated indirectly, which

is computed.

o

Execute

Modify

Compute

Assign Case
Action

Read

Print

Select

Q Algol

93

DUET 21-V032

Maximum limits in duet operations

An execute list can contain 127-255 duet references,
depending on the number of block references and
program points appearing between the local duet refe-

rences.

A line containing the declaration of a program point

can contain no more than 7 duet references.

A modify list and a computelist can contain at most

127 references to variables and/or constants.

An assign, case, or action list can contain 127 test

lines.

A read operation can contain up to 3 read specifica-

tions.

In a print list no more than 127 layout elements can
be specified. As layout elements are counted each of
the following types:

duet reference

(new page)

(line feed)

(horizontal specification)
(numerical layout)

(text layout)

QO ¢« B D = T

(character layout)

A standard layout counts as 2 layout elements (a line

feed and a numerical or text layout).

The select operation can contain a maximum of 127

lines.

The algol operation can be specified with at most

7 parameters.

94

4.1 Program Text and Listing

The Duet program text can be read either from a

text file common text file on a disc or from a Sysdok file.

If the program text is stored in a Sysdok file, it
is recommended to place the separate Duet blocks 1n
co-ordinate subsections. By a partial compilation
of a single block the subsection in question can be
specified, and the time the compiler would use to
skip the other Duet blocks could be saved. In this

case, however, the Duet head can not be checked.

editing When keying the program text it is not necessary to @
edit the lines as they appear in the examples in
section 3. The compiler will take care of the

editing itself, when the program is listed.

form feed The listing will also be equipped with form feeds
corresponding to the type of paper on which listing
is being made. Apart from that, you can force a form
feed in front of a Duet operation by writing the

s hew—page symbol '-+-' and/or a stopcocde character
KISO—value = 12). In front of a block-start only a
stopcode character is allowed. A ghggggwgiwﬁection
in a Sysdok file will not cause a form feed, however.

P g

In the listing all lines are printed with two line

external and numbers. The external line numbers are printed first
internal i.e. Boss lineno. or Sysdeok lineno. After that
lineno. follows an internal lineno., which numbers the lines

in a block from 1 and onwards/upwards. By error
messages always the internal lineno. 1is being

referenced.

When editing, the single lines are divided into

columns as shown in fig. 4.7.

-95-

4,1 Program Text and Listing

d132: assign code := testvar of ; conment
a. 3
" : 2
else dib
> execute a7
p2: d32, d18 ; program point
£3 do98 ; test write out
S
; empty line
> print <1 17 n 5.2>: amount
< 26 t2> o 'd.kr!
S
instr. operator- operand column comment column
column column

Figure 4.1 Line editing

The editing is performed so that line parts of the

same type are always printed
Within the operand - and the

must perform the editing, if any,

spaces to get the ':'

assign list) .

In a printline, however,

(e.g.

below one another.
comment part the user

insert

placed under one another in an

the compiler performs some

editing as the print values here are edited below one

another, but any editing within the layout must be

controlled by the user.

comment lines

-96 -

4.1 Program Text and Listing

Pure comment lines can be printed in two ways: If
the comment character(;) is the very first in the
line, the comment is justified left starting in the
instructions column. If however there exist one
space in front of the ';', the entire comment is
printed in the comment column. This c¢an be used to
distinguish between a heading comment and ordinary

comment lines.

input

97

Activating the Duetcompiler

In a run with the Duetabler, there are included 2 or
3 input files and a maximum of 4 output files, as

shown in fig. 4.2.

old
duet
file

duetabler

error message //
log print out J listing test print
. /o outs
/
new
duet
file

Figure 4.2: Survey of input for and output from
Duetabler.

The input files are:

- a textfile or a Sysdok file containing the
Duet program text,

- an ld-file (in the form of a descripfile)
containing a compiled ld-description,

- perhaps an old Duet file from an earlier

compilation of the Duet program.

-98~

4.2 Activating the Duetcompiler

output The output files, of which only the first is always

created, are:

- current output, where error messages, if any
and a log printout, are written

- a disc area where the new Duet file is created,

- a disc area for a possible listing, and

- a disc area for test output, if any.

The use of these files are specified by fp-parameters
when calling the compiler, as described below. The
fp-parameters are mentioned in groups, where each
group begins with a key-word followed by one or more
parameters separated by points. Fig. 4.3 contains a

survey of all parameter key-words.

=90~

4.2 Activating the Duetcompiler

parameters concerning source text:
sysdok
section
vers
duettext
user
init

include

parameters concerning listing:
list
listout

paper

parameters concerning 1d files:
descrip
ldfile

ldsection

parameters concerning duet files:
oldduet

newduet

parameters concerning compilation specification:
insert
change
delete
translate

size

parameters concerning test print outs:
test

testout

Figure 4.3: outline of parameter key-words.

Sysdok file

Sysdok

section no.

=100~

4.2 Activating the Duetcompiler

Most parameter groups can be left out, in which case
standard values are used, as described for each
parameter group. If a parameter type is mentioned
more than once, the last will be valid except in
case of the parameter types insert, change, delete,
translate, and test, where further repetitions will

supplement earlier appearances.

For examples of calling the compiler see section
4.3.

Below is a description of each parameter group.

Parameters concerning source text:

The source text for the Duet program can be read
either from a Sysdok file or from an ordinary text
file. When read from a Sysdok file the following

parameter groups should be mentioned:

sysdok.<sysdokreg name>

section.<section number>
vers.<version_number>

The Sysdok parameter states which Sysdok file the text
is to be read from.

Standard: sysdok.sysdokfile

The section parameter states which section in the
Sysdok file the text is to be read from. The section
number is given in the usual Sysdokmanner with the
main section and subsection numbers, if anv,
separated by decimal points. The parameter cannot be

left out, if the text is read from a Sysdok file.

-101-

()

4.2 Activating the Duetcompiler

version 'Vers' states, the version of the Sysdok section to
be translated.

Standard: last version

textfile When reading from an ordinary text file, the name of
the text area, from where the Duet program is to be

read, is stated with:

duettext duettext.<duettext name>

()

Standard: If this parameter is left out, the compiler
reads from the Sysdok file. If the parameter is

stated, no Sysdok parameters must then be stated.

The parameters below may be stated whether, or not

there is read from Sysdok or a text file:

user number user.<user number>

~

indicates the user number of the compilation. Only
Duet blocks belonging to one user can be compiled in
a single run, and the 1ld description used must belong
to the same user or to a common user (user no = 0).

Standard: user.0.

o
IQ;:/FN #4'{ /%%égfiiaféyaégﬁgw4/’i

initials init.<initials>

states the initials of the programmer, who has
activated the Duet compilation to be printed in the
ﬂa Duet log. Standard value (= empty teststring) should

not be used.

include

list

listout

-102-

4.2 Activating the Duetcompiler

include.<suppress limit>

The suppress limit is an integer in the interval 0-9.
This parameter denotes suppression of those test-
lines in an execute-list, which are equipped with a

test-number larger than the suppression limit,

Standard: include.0, i.e. no test lines are included.

Parameters concerning listing:

yes
list.
no

listout.(listoutwname>

<boss_ paper format>
paper.

<lines per page>.<characters per line>

The list parameter states whether a listing of the
Duet program is created or not. (Possible error

messages are in either case printed on 'current out',
as well).

Standard: list.no

The listout parameter states the name of the disc-
area on which an edited listing is to be written. If
the area does not exist already, it will be created
as a temporary file, which is automatically converted
on the local printer. If the area exists already, the

user himself must provide for the converting. Hris~

: — 13 :
Pu—.v_auu_,tgu‘:" Ay :l‘\.ltuuiaL.J_(_.dJ..LY seethe_parameter lisk es

-

Stedard: Likoud Listeuk

4

paper

-103-

4.2 Activating the Duetcompiler

The paper parameter indicates, how the edited Duet
program is to be printed. A single integer can be
stated, giving the Boss paper format, or 2 integers
which decide the number of lines per page and the

number of characters per line.

In the edited listing form feeds are printed:

1. when <lines_per page> are execeeded
2. before each block start
3. by new-page symbol ('-+-' or stop code in

input

<boss_paper format>:
62)
40)

0: monitor paper (<lines_ per page>

2: A4-horizontal (<lines_per page>

(Ad-vertical = 1 is not allowed)

<lines_per_page>.<characters_per_line>:

These numbers can be stated explicitly instead of

the Boss paper format. However, <character_per line>
is not used for the moment. If <lines_per page> are
less than 15, form feed rule no. 1 1is cancelled,
which results in a more compact listing.

Standard: when reading from the Sysdok file: as stated
in the Sysdok file's owner information.

When reading from text file: paper.0.

-104-

4.2 Activating the Duetcompiler N

Parameters concerning the ld-file:

(descrip)
¢
(1dfile

V
J0

.<ld)fileuname>{}<ld_version_no>

1d file

ldsection.<1ld section no>

indicates the name and section of the description

file, where the compiled ld-description is stored.

The words 'descrip' and 'ldfile' can be used at -

pleasure. The parameter 'ldsection' cannot be left
out.

Standard for ld-filename: descrip.descripfile .
e
il "
&
@

Parameters concerning the Duet file:

old- and oldduet.<old duet file name> o 0% @
— — - e T

new Duetfile

Y

. . Y :

indicates the names & &)aggyxﬁo/ &
> Y ,gfo 8"

. - ™y 4@ «Qe’ . .
respectively. If * (07 »., x 4@ @ ~ied, this

. & o' X < .
version number 6{9 xﬁg ®{, 69 %%pifp' with the
version numh ?g &% & A, eﬁg
o4

e Yy 4
47 (2 o 2ft out, the 'oldduet'

ie,

If the 'newduet
is not allowed eit > Duet file is created.
The compilation run . ..en become only a check of

Duet blocks.

If newduet is stated, but not oldduet, a new Duet file
is created with version number 1, consisting of

correctly compiled Duet blocks.

-105-

4.2 Activating the Duetcompiler

If both newduet and oldduet are stated, blocks from
the o0ld Duet file are merged with the correctly

compiled blocks.

Parameters concerning the compilation specification:

*
insert <.<blockno>}1

*
change {.<blockno>}1

*k
delete {.<blockna>}1

*
translate {.<blockno>}1

4
or

1
insert
change .all

translate

These parameters, which must be stated after the

Duet file parameters, indicate which Duet blocks are

to be read by the compiler. If 'insert.all',
'change.all' or 'translate.all' are state, all Duet

blocks found in the source text are compiled

34 mo conpelateorn SP—Lu,{—(CQMO"M are SW
Huo cornpler will arsune “brantate. atl

block no.

size

-106-

4.2 Activating the Duetcompiler

insert The specified blocks are inserted in the
Duet file. This is only allowed if
'newduet' is stated. If 'oldduet' is also
stated, the specified blocks must not be
found in the old Duet file. -

change The specified blocks are replaced by
freshly compiled Duet blocks. This is
only allowed if both 'oldduet' and

'newduet' are stated.

delete The specified blocks are deleted from the
Duet file. This is only allowed if both

'oldduet' and 'newduet' are stated.

translate The specified blocks are checked by the
compiler, but are not inserted in the

Duet file. Is always allowed.

A block number can only appear once. Blocks found in
an old Duet file, if any, but not mentioned in the

list, are transferred unchanged to the new Duet file.
The same holds for blocks specified under translate,

and for incorrect blocks.

size.<extension per cent>

This parameter states in percentages the expansion
of all the compiler's internal tables. It should
only be used, if the compilation terminates with an
index~error; a new run can be attempted using the
size-parameter. The maintenance group must be
notified, when the use of the size parameter becomes
necessary. Size 100 means a doubling of all tables.

Standard: size.O.

e

-107-

4.2 Activating the Duetcompiler

Parameters concerning test output:

These parameters must only be used in agreement will
the maintenance group, when an error in the Duet

compiler occurs.

testa)
testb (3
testc .ves
testd . No

24
teste .<number> 1 >
testf .not {<number>}$4
testg
testh) . J

Indicates which testbits are to be inserted in the
respective test variables. Testbits are numbered
from 0 to 23.

Standard: no textbits

testout.<testout name> .extend g

Indicates the name of the area, where the test output
is printed. If '.extend' is stated, the area is
extended, i1f necessary, to contain the test output.
If not, the test output is written cyclically in the
area. The testout area is neither created nor
converted automatically.

Standard: testout.testout

-108-

4.2 Activating the Duetcompiler

If syntactical errors are discovered in a
parameter group, an error indication is printed in

the form of:

<*< if a new parameter group appears as an
illegal termination of the previous

parameter group, oOr

<> if an error is found in a keyword or in
a parameter in the parameter group in

guestion.

After errors in the fp-parameters, whether they are
syntactical errors or errors in consistency checks,

the run is terminated.

-109-

Resource Demands

The resource demands for the compilation job vary
with the size of the Duet program, and the figures
below should therefore only be regarded as a guide.
Only Boss parameters exceeding the standard are

included.

size 80000 In 100000 bytes no extra segment

transports take place. Minimum is 60000.

area 8 | can be reduced, if some of the output

— files are not created.

time In 80000 bytes it takes app. 1 minute to
compile a maximum size Duet block and
app. 20 sec. to skip one. In 60000 bytes
the corresponding times are 7 and 3

minutes.

perm A Duet block of maximum size takes up the
space 0of 5-8 segments in the Duet file.
If this already exists additional space
for an expansion, if any, must be taken

into account.

-110-

4,3 Resource Demands

bExamples of jobfiles.

job eah 28xxxx size 80000 area 8 time 3 0,
perm disc 100 1

mode list.yes

duetfile = set 1 disc create new duet file

~e

scope user duetfile

duetabler,
duettext.eahduet, ; source text
init.eah,
user.0,
ldfile.eahdescrip ldsection.30, ; ld-file
list.yes paper.?2, ; listing
new duetfile
the whole duet file

newduet.duetfile,

-

insert.all,

-

finis

Figure 4.4 Create a new Duet file

The example in fig. 4.4 shows the creation of a new
Duet file in 'duetfile' from a program text in
'eahduet'. The listing on A-4 horizontal is created

in 'listout', which is automatically converted on the
local printer.

-111-

4.3 Resource Demands

job pl 28xcotx size 80000 area 8 time 3 0
mode list.yes

oldduetfile = move duetfile

listout = copy 0 ; Create list out area
duetabler,
sysdok.eahsysfile section.22.1 ; source text
init.pl,
user.0,
ldfile.eahdescrip ldsection.30, ; ld-file
list.yes ; listing
oldduet.oladuetfile, 7 old duet file
newduet .duetfile, ; new duet file
change 1.7,
delete.?2

convert listout std

finis

Figure 4.5: change the Duet file

Fig. 4.5 shows the correction of a Duet file. The
Duet blocks 1 and 7 are re-compiled, while block

2 is deleted. The other blocks remain unchanged. In
order to keep the newest version of the Duet file

in the same area, 'duetfile' is moved toc 'oldduetfile'

before the compilation.

The Duet program text is read from section 22.1 in
the Sysdok file 'eahsysfile'.

The listing is to be printed on the central printer,
hence the listout area is created before the

compilation.

~112-

Log Print Out

As a conclusion of a Duet compilation, where a new
Duet file is created, a Duet log is written, showing
the result of the run and the contents of the old
and the new Duet file. An example is shown in fig.
4.6.

The 'blocksize' contains two numbers. The first one

| —

states how many words the compiled block takes up.

This numbexr must npof. exceed 2047.

i

The other number states the length of the block
including numerical constants and text constants.
This figure is of importance to the dimensioning of
the Duet array in the control program (cf. section
3.1.2 and 5.2.1).

The rest of the information is selfexplanatory.

-113-

4.4 Log Print Out

duetabler log

binary files:

new duetfile:
old duetfile:
localdata

textfile

sysdok

duetabler
block command
no
insert
copy
change
transl

-insert
—change
-delete
9 -transl

1
2
3
4
5 insert
6
7
8

10 insert
11 1insert
12 -insert
13 —change
14 -transl
15 —delete

duetblocktest eah.7 7.03.1977 - 16.03
area version date ident
newduetfile 7 eah 070377.1603 31 duetblocktest
eahduetfile 6 pl 030377.1619
eahdescrip 0 eah 070377.1320 30 variableld
section
eahsysfile 24 22, duetblocktest
old . block user duet- ld- date blocksize
version | no vers. vers. duet/total
: 1+ 0 7 eah 0 070277.1603 16/23
6 pl . 2 0 6 pl 0 030377.1619 22/29
6 pl 3+ 0 7 eah 0 070377.1603 9/16
4 isc 1 4 0 4 isc 0 030377.1400 6/14
: 5 0 7 eah 0 070377.1603 6/14
' 10+ 0 7 eah 0 070377.1603 144/219
11+ 0 7 eah 0 070377.1603 80,/98

total used 8 segments of 36

- : error: no change/insert/delete

+ : block inserted or changed

Figure 4.6: Duet log

-114-

Error Messages

S
All error messages from the Duet compiler are
printed on 'current output', as well as in a
possible program listing.
In the listing the error message will have the form
shown below:
¥¥x¥*¥* Jerror no> : <error text>{j<error parameter>}8
and the incorrect line will be printed unedited, ~
beginning with **,
In 'current output' the error will be printed as
follows:
<lineno><charno><text> <error no> : <error text){%errer parameter%}g
the incorrect line will then be written out. <text>
is the syntactical unit, causing the error, and
<charno> states where in the line this unit begins. <

<lineno> 1is the interval line number.

At this point before each error is described in
error numerical order, we shall state some general

remarks.

After an error the compiler will try to continue the
compilation, as soon as possible. By many errors,
however, it is necessary to skip the rest of the line.

This is stated in the explanation to each error.

=115~

4.5 Error Messages

In some error situations it is necessary, however,
to skip until the beginning of the next Duet
operation. In that case the succeeding lines will
be cancelled and labelled error type 1: SYNTAX,

even though they might not be incorrect.

If an error is discovered during the compilation
of a Duet block, the latter is not delivered to a
Duet file, if any, and this block will be marked

in a special way on the Duet log (cf. section 4.4),

Errors in one block will not affect the compilation
of the other blocks. Compilation time can therefore
be saved, if only the altered blocks are recompiled,

after the error correction.

1: SYNTAX: <text>

<text> is the last read syntactical unit.
This syntactical construction is not allowed.

The rest of the line is skipped.

2: ILLEGAL VARIABLENO <v_no>

A variableno. must not exceed the largest variable
number used in the ld-description. In order to
continue the compilation, a reference is simulated

to a simple word var without decimals.

-116-

4.5 Error Messages

3: UNDECLARED VARIABLE <text>

The last read syntactical unit is an identifier or

a variable no., which does not correspond to a
variable declared in the ld-description. In order to
continue the compilation, a reference is simulated

to a simple word var without decimals.

4: ILLEGAL ERROR NUMBER <error no>

System error. Contact the maintenance group.

5: ILLEGAL OPERAND VALUE <value>

Is used where: suppression specification > 9
Duet program point > 9
select print channel > 9
select ... on error: illegal error no.
select test: testbit > 23
select test: testbit double specified
number <> 0 in 'modify array := 0'
number <> 0 in 'modify recno := 0'
Algol action no < 1

The rest of the line is skipped.

6: NOT SIMPLE VARIABLE <var name><var no>

Neither array variable nor array element are allowed

here.

-117-

4.5 Error Messages

7 ILLEGAL VARIABLE TYPE <var_ name> <var_no> <var_ tyvpe>

This variable type must not be used in the given

context.

8: ILLEGAL NUMBER <no>

A numerical constant is stated outside the range of
a 24-bits word. The error appears in connection

with test values/assign values in an assign- or

action list.

9: UNDEFINED DUETNAME <d_ name>

The Duet name referred, is not declared in any Duet

instruction within the block.

10: ILLEGAL NUMBER OF DECIMALS <var name> <var_no>

The variable has not been declared with decimals and
can therefore not be used:

as subscript
for reading in of a character field
as a test variable in assign,

action, case, and for

The rest of the line is skipped.

-118-

4.5 Error Messages

11: ILLEGAL BLOCKNO <block no>

The block no must not exceed 255.

If the error appears in a block head, the rest of
the program text is skipped.

By error in a block reference the compilation is

continued.

12: ILLEGAL USERNO <user_ no>

The user no. must not exceed 127.

13: USERNO INCOMPATIBLE WITH LD DESCRIPTION <user no> <ld user>

{user no> userno. in block head
<ld user> userno. in ld-description
The user no. in block head and ld-description must be

the same, unless one of the numbers are 0.

14: ILLEGAL ENTRYNO <entry no>

An entry number must not be defined outside the
interval 1-63, and not be referenced outside the

interval 0-63.

-119-

4,5 Error Messages

15: ENTRYPOINT PREVIOUSLY DEFINED IN LINE <line no>

<line no> the linenumber, where the entrypoint

is first defined.

16: ILLEGAL END NUMBER <block no> <end no>

<block no> from the block head

<end no> from the end-line

The two numbers must be identical

17: NB! BLOCKSIZE APPROACHING LIMIT <size> <max_size>

<size> the length in words of the compiled
Duet block.

<max_size> the maximum block length in words.

The space available for possible block extensions

is limited.

This is only a note, which does not affect the

creation of a Duet file.

18: DUETNAME PREVIOUSLY DEFINED IN LINE <line no>

<line no> the line number, where the Duet name is

defined for the first time.

19: not used.

-120~

4.5 Error Messages

20: ILLEGAL NUMBER OF CHARACTERS <no>

With a read specification of type ¢, a maximum of
three characters can be read.

The rest of the line is skipped.

21: ILLEGAL TERMINATOR CODE <code value>

Only the terminator codes 0, 1, 2, 3, are alowed in
a read specification.

The rest of the line is skipped.

22: TOO MANY READSPEC

No more than 3 read specifications are allowed in a
'read' specification.

The rest of the line is skipped.

23: ILLEGAL CASENO <case no> <no>

<{case no> the read number

<no> the expected number

There is a discrepancy between the number of Duet
actions in the case list and a specified case
number.

The rest of the line is skipped.

-121-

4.5 Error Messages

24 ; TOO MANY DUETREF IN ONE LINE
In an execute list no more than 7 Duet names are
allowed in a line which has a Duetpoint attached
to it. If a Duet point is to include more than 7,
Duet actions, these must be specified in a separate
execute list.
The rest of the line is skipped.
25: ILLEGAL USE OF DO
d0 is not allowed in: the entryv point definition,
the execute list,
the if-operation after 'else'.
The rest of the line is skipped.
26: NB! DUETBLOCK TOO BIG <size> <max size>
<size> length in words of the compiled Duet
block.
<max_size> maximum block length in words.
The block must be split up into two smaller blocks.
27: ILLEGAL DIGITS SPEC <no_a> <no_b>

In 'digits (a,b) of' it is reguired that a>=b.

-122-

4.5 Error Messages

28:

ILLEGAL SUBSCRIPT VALUE <subscr values>

A constant subscript value has been specified out-

side the limits of the array variable in question.
The rest of the line is skipped.

29: ILLEGAL SETNO <set no>

The Duet compiler does not check that a set is

defined in the ld-description, but only that the

set number is within the interval 1-max def setno.

The rest of the line is skipped.

30: ILLEGAL RECCRDTYPE <no>

)
{
The record type is not allowed.

The rest of the line is skipped.

31: ILLEGAL CHARACTER <text>

the last read syntactical unit contains an
illegal character.

The rest of the line is skipped.

-123-

4.5 Error Messages

32: ILLEGAL BYTE <text>

the last read syntactical unit cannot be recognized.

33: ILLEGAL DUETNAME <d_name>

the Duet name must not exceed d1023.

The rest of the line is skipped.

34: TOO MANY DIGITS IN NUMBER <no>

the number of digits in a number must not exceed 15.

The rest of the line is skipped.

35: ILLEGAL IDENT <text>

the last syntactical unit read is identified as a
variable identifier, but the wvariable is not known.

The rest of the line is skipped.

36: not used.

-124-

4.5 Error Messages

37: LISTAREA CANNOT BE CREATED <area_ name> <no>
<area name> name of the listarea
<no> the error value from the creation attempt.
Resources (segments, catalogue entries, or area-
processes) for the creation of an area for listing
are not available. The Duet program is compiled
without listing.

38: BLOCKEND MISSING <block no>
<block no> the Duet block, last compiled.
The Duet program text is terminated (endtmedium/
end of section) without a block end.

39: DOUBLE USED VARIABLE NAME <var name> <var_no>
Two variables in the ld-description declared with
the same name. System error. This error should have
been caught by the ld-compiler Contact the
maintenance group.

40: ASSIGN SYMBOL MISSING

:= is missing in a line of a compute list.

=125~

4.5 Error Messages

41: ILLEGAL DELIMITER <text>

<text> the illegal syntactical unit.
Syntactical error in a numerical expression, the

rest of the line is skipped.

42: ILLEGAL OPERATOR <text>

<test> the illegal syntactical unit.
Syntactical error in a numerical expression.

The rest of the line is skipped.

43: ILLEGAL OPERAND <text>

<text> the illegal syntactical unit.
Syntactical error in a numerical expression, the

rest of the line is skipped.

44; 'OPTSTAK' OVERFLOW <no>

Too many bracket levels in a numerical expression.
The rest of the line is skipped.
The expression should be split up, and the inter-

mediate results explicitly stored.

-126-

4.5 Error Messages

45: 'OPDSTAK' OVERFLOW <no>
see 44.

46: WORKVAR OVERFLOW
A numerical expression is too complicated to be
computed with the 4 existing working registers.
The rest of the line is skipped.

47: ILLEGAL OPERATOR COMBINATION
Syntactical error in numerical expression, the
rest of the line is skipped.

48: ILLEGAL LENGTH OF TEXT/AGGR <length1> <length2>

By 'modify arrayl := array2' it is required that the
length of a single element in both arrays is the
same.

<length1> the nurber of text characters/aggregat bytes

<length2> per element in the two arrays.

By 'modify' of simple text-/bits variables it is
required that the length of the left side wvariable
is >= the length of the right side variable.

The rest of the line is skipped.

-127-

4.5 Error Messages

49 :

SYNTAX <text>

50:

<text> the last read syntactical unit.
This syntactical construction is not allowed.
The compiler goes on to read the next syntactical

unit in the line.

not used.

51:

NOT DUETFILE IN OLDDUETFILE

The area specified as 'oldduet' does not contain any

Duet file. No new Duet file is created.

52:

ILLEGAL VERSION OF OLDDUET <version> <old version>

53:

<version> specified as an fp-parameter.
<old version> version of the old Duet file.
If the Duet version is specified as an fp-parameter,

the two version numbers must be identical.

not used.

54

DUETWORK CANNOT BE CREATED

Resources (segments, catalogue entries, or area-
processes) for the creation of aworking area for
compiling Duet block area not available.

No new file is created.

-128-

4.5 Error Messages

55: MISSING SUBSCRIPT <var_name> <var no>

The variable specified is an array variable, the
subscript must be stated. The rest of the line is

skipped.

56: ILLEGAL VERTICAL OPERAND OR POSITION

In a print lay-out no more than 70 line feeds are
allowed at a time (corresponding to one page).
The print position must be stated in the interval
1-127.

57: ILLEGAL NUMBER OF PRINCIPALS OR DECIMALS

In a print lay-out no more than 15 principals and 7
decimals are allowed. If the decimals are stated,

neither the principals nor the decimals must be 0.

58: POSITION + FIELD LENGTH > 132

The field cannot be printed within the given line

buffer of 132 characters.

59: BLOCK LOCATION ERROR

System error by updating of 'newduet'.

Contact the maintenance group.

-129-

4.5 Error Messages

60: BLOCK SEQUENCENO ERROR

Block numbers in the text must appear in an

ascending sequence. The block is skipped.

61: SYNTAX OR ILLEGAL VARTYPE <text>

<text> is a variable no. or - name.

Is either a variable stated, where it is not
allowed, or the variable type in guestion is
illegal.

The rest of the line is skipped.

62: SYSTEM ERROR: VARIABLE NAME ADDRESS CONFLICT <no> <adr>

System error during the creation of tables for
recognizing variable names. Contact the

maintenance group.

63: SYNTAX ERROR BEFORE BLOCKSTART <text>

<text> is the last read syntactical unit.
Before block start only empty lines and comment
lines are allowed. The rest of the text up to the
next block start (begin <block no>:) is skipped

without any further print out.

-130-

4.5 Error Messages

©64: UNKNOWN DUETBLOCK SPECIFIED FOR TRANSLATION <block no>

The specified Duet block does not exist in the

Duet program text.

65: SYSTEM ERROR: MISSING GOTO IN BYTEACTION <no>

A programming error in the Duetabler-compiler,

contact the maintenance group.

66: INSERT DUETBLOCK: EXISTING BLOCKNO <block no>

The specified Duet block is compiled (syntax

checked) , but is not inserted in 'newduet'.

67: ILLEGAL USERNO FOR CHANGE/DELETE DUETBLOCK <block no>

The specified Duet block belongs tc another user.
In case of 'change' the block is compiled (syntax

checked) but is not delivered to 'newduet'.

68: UNKNOWN DUETBLOCK SPECIFIED FOR DELETE <block no>

The specified Duet block does not exist in 'oldduet'

-131-

4.5 Error Messages

69: TOO MANY MOVEWORDS IN MODIFY ARRAY <no>

The total number of words to be moved in a single
modify line must not exceed 2047.

The array must either be moved one element at a
time, or it must be split up in shorter arrays in
the ld-description.

The rest of the line is skipped.

70: DUET PROGRAM HEAD MISSING

When compiling to create a new Duet file the

program head must be read too.

71: PROGRAM NO IN TEXT DOES NOT MATCH WITH OLDDUET <program no> <old proram no>

<{program_no> program no. read in Duet program
text.
<old program no> program no. in old Duet file.

The two numbers must be identical.

72: DUET PROGRAM NAME TOO LONG

The Duet program name must not contain more than 17

characters. The name is cut off to 17 characters.

~-132-

4.5 Error Messages

73: SPECIFIED LD-NUMBER DOES NOT MATCH LD-FILE <ld no> <old 1d no>

<ld no> ld-number read in the Duet program text.
<old 1ld no> ld-number stored in 'oldduet'.

The two numbers must be identical.

74: SYNTAX ERROR IN DUET PROGRAMHEAD

The compilation is terminated.

75 ILLEGAL LEFT SIDE VARIABLE <var name> <var no>

By modify with modulo or an integer division the left
side variable must be a numerical integer variable
declared without decimals.

The rest of the line is skipped.

-133-

The Duet System in a Control Program

A compiled Duet program, stored in a Duet file,
can be executed by a control program, containing

the interpreter the 'Duet interpreter'.

control pro-
gram text

algol- control
compiler program
Duet inter-
preter text
figure 5.1: The executing Duet svstem.

This section describes how a control program is
established.

The 'teleop' from the Teledata system and the
'telescop' from Data Entry system are examples of
such control programs. Therefore readers, who are
going to code Duet programs for these systems, only

have to make a superficial reading of this chapter.

-134-

Duet Texts and Algol Block Structure

The Duet interpreter consists of three texts which
in suitable places must be incorporated into the
control program with the 'algol copy' as shown in
figure 5.2. Furthermore, a potential declaration
file, generated by the Soda-1d compiler, must be

incorporated.

S

-135-

5.1 Duet Texts and Algol Block Structure

s 4

\begin; <*external block of the control program*>

= WSPRP— |
-

. declarations in the external block

algol copy.duettexti; <*duet declarations*>

. initialising in the external block

init duetl; <*duet initialising*>

\begin\ <*internal block of the control program*>

. declarations in the internal block

procedure duet _algol(no); <*must be declared by the user*>
algol copy.duettext2; <*duet declarations*>
algol copy.vardecl; <*variable decl. from soda-1ld*>

. initialising in the internal block

init duet2; <*duet initialising*>

contrel program before
. the duet interpreter

algol copy.duettext3; <*executing duet interpreter*>

. user's termination

close duet; <*close the files of the data base*>
end internal block;

end external block;

figure 5.2: The structure of a contrcl program

duettexti

-136-

5.1 Duet Texts and Algol Block Structure

The three texts are called:

duettextl
duettext?2
duettext3

These texts incorporate the dbms-procedures of

the 'soda' system in the form of 5 texts

sodatext]
sodatext?2
sodatext3
tflytproc
l1dfields

and the Duet interpreter calls the external

procedure
read general

and the 'primula' procedures, which can be found

in textform in
prim

These files must all be present on disc, when the
control program is compiled. The 'primula' pro-
cedures are compiled by the call 'i prim' before

the call of the Algol compiler.

'duettextl' contains partly declarations of
variables, which are used as an upper limit for
the array declarations in the 'duettext2' and
partly the initializing procedure 'init duetl'

and the error printing procedure 'print data error'.

duettext2

duettext3

-137-

5.1 Duet Texts and Algol Block Structure

'print data error' is declared in block1 in order
to give the user the possibility of changing the
wording of the data error messages by declaring a

similar procedure in an internal block.

Finally 'duettextl1' incorporates the texts 'sodatext1'

and 'ldfields' from the Soda system.

'duettext2' contains a declaration of all the
remaining variables and procedures of the Duet system.
Furthermore it incorporates 'sodatext2', which
incorporates both 'sodatext3' and 'tflytproc' from

the Soda system.

'duettext3' contains the actual interpreter, i.e. the

executing part of the Duet interpreter.

-138-

Initialisation and Termination

The Duet interpreter is initalised by calling the
initialising procedures 'init duet1' and 'init_duet2'.
If the control program is‘BGTIH“Gé as a loééhﬁﬂigh
activates the Duet interpreter several times, the
'init duetmaskine' procedure must also be called
before each new activation. (The first time, is

'init_duetmaskine' called from 'init duet2').

After the last activation of the Duet interpreter
the control program must terminate the DBMS and the

'prinz' zones by calling the 'close duet' procedure.

A R g

duetlog

/

§

4

&

-139-

Integer Procedure 'init duetil(z)'.

The 'init duet1' procedure reads the control records
in from the 1ld- and Duet files and this causes an

initialisation of a number of array limits.

Furthermore a Duet log is written on the zone, which
is specified as parameter for the call. It can either
be the zone 'out' or 'fejlud'. The latter must be

opened by the control program.

',,-' ’ . T “\\
Before the call of\LiEit_duet1fﬂ&he control program

must have initialised the following variables:

duet areal the number of words which are
reserved in the Duet array for
placing active blocks.

duet _reg navn the name of the Duet file.

duet version if these are different from 0

1d version they must be equal to the actual

versions of the Duet- and 1d

file.
ld_reg navn name- and section number of the
1ld_afsnit nummer descripfile, containing the 1d
file.
max kanal the number of zones in the zone

array 'prinz'.

sd_extend buf the size of the buffer extention
reserve, requested per cf-master-
file (for possible use of extend
cf).

-140-

5.2.1 Integer Procedure 'init duetl(z)'.

The return value of the procedure is a bit pattern

which states the result of the call. If all bits are

zero the result is ok. The single bits have the

following significance:

. U .

shift
shift
shift
shift

shift
shift
shift
shift

shift

=W N -

13:
14:
15:
16:

no 1d file in 'ld reg navn'

the 1d file is not formed by Soda-1ld

the 1d description is not correctly compiled

illegal version of the 1d file

the ld-control record cannot be found

check sum error in the Duet control record
no Duet file in 'duet reg navn'

not used

illegal version of the Duet file

the Duet area is too small for the largest

Duet block

e’

e 2.

-141-

Integer procedure 'init duet2’';

The 'init duet2' procedure reads in the rest of the
1d- and Duet files, resets all variables, declared

in the ld-description, to zero and initialises the
character set table for the use of the read operation.
Furthermore the 'prinz' zones are initialised for
possible 'primula' print, and the 'init duetmaskine’

is called (cf. section 5.2.3).

Before calling the 'init duet2' the user program

must have executed the following initialisations:

prinz all zones in the zone array must be
opened to disc areas or tape files, but
the zones must not be used for output

until after 'init_duetZ'.

readz must be opened to the input area, if

input is to be read.

After calling the 'init duet2', the following
variables can be redefined by the control program,

if necessary:

alfa the character set table can be changed,
after which the 'intable (alfa)' must be
called once more (cf. 'read', section
3.2.11 and section 5.5.1)

max print pos (=132) the length of the line buffer for

print
max_ref (=20) see section 5.5.17.
test kanal (=0) test output is printed as standard

on the zone 'out', but with the 'test

kanal' it can be diverted to one of the

zones in ‘'prinz'.

5.2.2 Integer procedure 'init duet2';

Furthermore the variables, assigned by the 'init

duetmaskine', can be redefined, see the next section.

The return value of the procedure is a bit pattern
which indicates the result of the call. If all bits
are zero the result is ok. The value '1 shift 3
indicates that the Duet file does not contain any
blocks, correctly compiled. All other error bits are

due to system errors. If such errors appear, please

contact the maintenance group.

L aANA -

The value '1 shift 23 + 40' indicates that a bs-
file specified in the ld-description does not,
exist at runtime.

The value '1 shift 23 + 4%' jindicates a block-
length—-error in a bs-file. (If a cf-masterfile
or a cf-listfile referred in the ld-description
is missing at runtime, the program is terminated

by an alarm message).

2.

-143-

Procedure 'init duetmaskine';

The ‘init duetmaskine' procedure puts the Duet

interpreter into a neutral state. It is called

from the 'init duet2' procedure before the first

activation in the Duet interpreter and can be

called from the control program before subsequent

activations, if any.

It initialises the following variables which after-

wards can be redefined by the control program as

required:

kanal = 1;

data_fejl kanal
program_ fejl kanal

system fejl kanal

data fejl akt
program fejl akt
system_fejl akt

'prinz' zone no. for result

print outs.
:= 0; 1
:= 0;

error messages are printed as
standard on the zone 'fejlud',
but by changing the channel
number it can be diverted to one
of the zones in 'prinz'

(cf. 'select', section 3.2.14).

(1: max data fejl)
(1: max_programfejl)

(1: max_systemfejl)

are all reset to zero, signifying:
exit from the Duet interpreter
by all errors. Can be changed

to a positive number, signifying:

-144-

5.2.3 Procedure 'init duetmaskine';

exit to the program point; or

changed to a negative number,

signifying: continue after the
error.

(cf. '"select', section 3.2.14).

max instruction : 8 388 607;

Is the upper limit for the num-
ber of Duet instructions which
can be executed within one
activation of the Duet inter-
preter: If the activation of
Duet names exceeds this number
the Duet system presupposes an
indefinite loop in the Duet
program. This control, however,
will only have any influence if
the control program redefines
the max instruktion' to a lower

number.

std assign

when std assign = 0 no standard
value is assigned when reading
the standard mark. It can be
changed to 1 by the control pro-
gram or by the Duet operation
'select', if a standard value
assign is requested.

(cf. 'read', section 3.2.11).

-145-

5.2.3 Procedure 'init duetmaskine’;

instruktions tal := 0;

the instruction counter is

reset to zero. After exit from
the Duet interpreter it can be
read, from this variable, EEE__

many Duet instructions have

-
been executed.

[—

close_ soda

-146-

Procedure 'close duet';

The 'close duet' procedure must be called by the
control program before the termination of the run,

i.e, after the last exit from the Duet interpreter.

It closes all files in the database, and the
necessary information about bs files is preserved

in the cataloque tail.

Furthermore, the writing of each of the 'prinz'

zones in terminated in this way:

- the line buffer is transferred to the zone (thus
printing an extra - possibly empty - line),
- end medium is written on the area and

- the zone is closed.

The zone - 'fejlud' must, however, be closed bv the
control program, as access to that zone might be

requested after 'close duet'.

If the control program wants to provide for the
termination of the 'prinz' zones the procedure of
the Soda system 'close soda' can be called instead

of 'close duet'.

~147-

Error Procedures

In all error situations the Duet interpreter
activates one out of three error procedures, namely
"duet data fejl', 'duet program fejl' or

'duet system fejl' depending on whether the
situation is caused by an error in the input, in

the Duet program or in the surrounding system.

The error procedure prints a message on the

selected error message zone, after which it either
returns or exits from the Duet interpreter or exits
to a program point in the Duet program. (see section
3.2.14, 'select' and section 5.2.3,

‘init duetmaskine').

-148-

Duet Data Error

The procedure 'duet data fejl' is called in case of
an error in input. It calls the print out procedure
'print data error'. This procedure is declared in the
outmost block, but it can be redefined by the con-
trol program on another block level (cf. section
5.1), if the error messages are required in another

language, e.g. Danish.

The standard format of data error messacges is:

.

[——

kKKK <o

— 5
rroxr text)-{<error-parameter>} 1

f\f’ ("{ (.

In the error messages originating from the 'read'
operation, the first error parameter is always the

name of the reading variable, which is stored in

'lasvar_navn'.

Below, the error messages are described in

alphabetical order:

vl E {AA IAA _nal “»

DECIMALS MISSING IN <var name>

A decimal point has been read after a numerical

field, but no decimals are read-

DA

-149-

5.3.1 Duet Data Error

()

L \ ’ A # :
. Loo Shovt = Loyt Ledd Lo & Ut 1rOnae

ILLEGAL DELIMITER AFTER <var_ name>

The last read field has not been terminated with an
ordinary delimiter as required in the reading
specification.

— P & f 4 3
l ({2 A o w.i? . o, W4 e 770 A SRV, J 4.,

ISy % | T 7 B O . £,

ILLEGAL DELIMITER OR LINE TOO LONG AFTER <var name>

The last read field is neither terminated with an

ordinary delimiter nor an end of string delimiter.

. [» ":' X / - /
& # a v § o 4 " . .
L5 ': - | . T oY ! A - # (;‘ !4 y - § 4 ’ . o
(

ILLEGAL FIELD AFTER <var_ name>

The contenst of the data field after the last
correct field does not correspond to the type in

the stated read specification(s).

- /7 , ")
Al cad (g 0L <varnaness <ipolul
v "‘T"' e (P
ILLEGAL VALUE FOR <var_ name> <value> L. bio < Vad ol
DIy - ~bal

The value of the read field lies outside the value
spectrum allowed for the reading variable in
guestion. <value> states the value read for a
numerical field, or the number of characters read
for a text field.

' aod ol G a s

-150-

5.3.1 Duet Data Error

f fF = f 3 &

J,{ (, N, . Verta e " -, ‘e‘ f‘é {.: -V IR V %% {: (J/l(f s A ‘A

'l)fig LINE TOO LONG AFTER <var name>

The last read field has not been terminated with an

'end of string' delimiter (line feed) as required

in the read specification.

¥

L SOX W et 2

[ksf? RECORD WITH THE SPECIFIED KEY DOES NOT EXIST <set_no>

Unknown record attempted read with 'get'

LSoAh M Oupg > I ante all e A

1)'?2? RECORD WITH THE SPECIFIED KEY PREVIOUSLY CREATED <set_no>

The record is rejected by put after 'create'

1/‘_" T AL AA e~ L /T3 { r

\

STANDARD MARK ILLEGAL FOR <var name>

A standard mark has been read to a variable, which

does not allow standard value.

i N 7). ‘ ‘ 4 # i
C A - ' Yo b TR, 2y W l”‘r{ LA 4 4

&\.‘ "r\»_,“k F. { P £

I)/rs SYSTEM ERROR: OPERATION P.T. ILLEGAL

This Duet data error is always activated after a

Duet program error or a Duet system error.

A g

o %

o

-151-

5.3.1 Duet Data Error

:TWLL, 44»40$' 4&,. LA Nt > 44494"f%hf1¢m¢;¢¢zf§ac£?

’I)E; TEXT TERMINATION MISSING AT <var_name>

A text field has been interrupted by an end of string
delimiter (line feed) prior to the terminating text
delimiter (apostrophe).

Dé?l Uty Mbue> £00 bova ~ Jugles ok <wmar) Chan

TEXT TOO LONG AT <var_name> <max_length>

The read text field is longer than the specified
reading variable

<max_length> states the largest text length allowed.

teo Maw% Arcvals o cosrvonesy mabee hac Luaxe

DI{‘ TOO MANY DECIMALS IN <var_ name> <max_decim>

The field in the input has more decimals than the

reading variable in guestion allows.

’5\ <max_decim> states the largest number of decimals
allowed.
<Setmane >
*SETN ETNAME®>

:*S$I>O<:I$EM MASTER >, <k 17x> <:ORDER MASTER:>,
<x 2%x> <:IREFERENCE ITENID, <x 184> <IORDER LINE:D>,
Cx Ix> <IITEM:>, <k 19%> <3VOUCHER HEAD:>,
<k L¥k> <IPART ITEM:>, <k 20%> <:PARENT ORDER LINED>,
Cx S%> <:PARTS LIST REF:>, <x 21%> <:QRDER HEADzZ>,
<k AR> C:CUSTOMER MASTER:ID, <k 22%> <:PART TITEM LINE:I>,
<k 7> <sHIGH LEVEL CUSTOMER:>, <k 23%> <:VOUCHER LIMNE:ID>,
<k B%> <:CUSTOMER HEAD:I>, <x 24%> <IUSER ADMINIO,
Cx 9%> <:CUSTOMER STRUCTURE REF:>, <k 25%> <:0DLINE OF ITENM:>,
<x 10%> <:USER INF:>, <k 2hx> <:0RDER LINE COPYID,
<k 11%> <:ADMIN MASTER:I>, <k 27%> <C:OFDER LIST ELEMENTI>.
<k 12%> <IWHERE USED LIST REF:>, <x 28%> <:CUSTOMER COPYI>.

g!; Cx 13%> <:HIGH LEVEL CUST REF:>, <k 29%> <i1ACCOUNT ENTRY:>,

T <k 14%> <ITERMINAL ADMID, <x 30x> <1VOUCHER SCAN LINE:D>,

<k 15%> <1ADMIN EXTRAZD, <k 31%> <3DISCOUNT LINEzZ>.
<k 1H*> <CICUSTOMER:ID,

5.3.2 Duet Program Error

-152-

The procedure 'duet_program fejl' is called when

the Duet Interpreter detexts any illegal

constructions in the Duet program.

i
—

The standard format for program error messages is

*¥*xk* PROGRAM FRROR eno: CALL FROM: BLOCK INSTR. OPT (ADR PIL ART)
D;9:9.0.0.0.4 XXX X 0 XX XX XX

{ <error text> <error parameter>}3

Q

eno

CALL FROM

BLOCK
INSTR
OPT

ADR
PIL
ART

J

is the current error number

is either DUET or the name of a

db-operation.

indicates the current block no, Duet name
and Duet operation at the errorneous loca-

tion in the Duet program

internal values in the Duet interpreter
which may assist the maintenance group

in case of errors in the Duet system.

Below the Duet program errors are described in error

number order.

1. ILLEGAL BLOCK NO OR BLOCK MISSING <block no>

Attempt to activate a non-existent Duet block (cf.

execute,

section 3.2.1).

-153-

5.3.2 Duet Program Error

2. ILLEGAL BLOCKREF, USER CONFLICT <block no> <user_ no>

Attempt to activate a Duet block belonging to another
user.
<user no> is the user no of the illegal block. (cf.

execute, section 3.2.1).

3. JILLEGAL ENTRY POINT <entry no>

Attempt to activate a Duet block with entry at a non-

existing entry-point. (cf. execute, section 3.2.1).

4, Not used

5. ILLEGAL VARIABLE NUMBER <var_ no>

By an indirect variable reference a non-existing

variable is referred.

6. INDEX <index value>

An array variable is referred with an illegal

subscript wvalue.

-154-

5.3.2 Duet Program Error

7. ILLEGAL CHANNEL NUMBER <channel no>
With select print a non-existing zone in the zone
array 'prinz' is chosen i.e. channel no > max kanal
or channel no = 0 for result print-outs (cf. select,
section 3.2.14).

8. INSTR. COUNT EXCEEDED <inst count> <max inst>
The instruction counter exceeds 'max instruktion',
perhaps due to an infinite loop in the Duet program.

9. ILLEGAL SET NUMBER <set no>
Illegal set no in db-operation.

10. USAGE CONFLICT <set no>

db-operation in disagreement with the usage-
specification of the set declaration in the 1ld-

description.

-155-

5.3.2 Duet Program Error

11.

RECORD STATE ILLEGAL FOR THIS OPERATION <set_no> <record_ state>

illegal db-operation in relation to the record
state of the set.

<record state>:

after open

after get

after put (direct access) or after error
after delete (direct access)

after create

after newset

after next

after put (sequential)

W ~1 O U e W N = O

after delete (sequential)

9 after end of chain by delete

10 after end of chain by next

11 after end of chain in an empty chain

12 after end-of-set

12.

MOVE ERROR <set_no> <text> <addr> <value>

Error by move between variables and fields in
connection with a db-operation.
<addr> and <value> is always the address of and

value of the current wvariable.

<text> is a further explanation of the error cause:

-156-

5.3.2 Duet Program Error

SPILL DURING TRANSFER FROM VAR

The value of a variable cannot be contained in the

current field.

INDEX

The value of a variable used as subscript is outside
the limits of an array or exceeds the current number

of repetitions for a repeating group.

ILLEGAL NUMBER OF REPET. IN RPG

Number of repetitions by creation of a repeating

group is outside the legal interval.

13. SET CLOSED FOR SEQ. ACCESS BY NEWSET ON ANOTHER SET <set_ no>

14. DAUGHTER RECORDS ASSOCIATED WITH CURRENT RECORD

Deletion of a masterfile record is not allowed when

the record has any daughter records connected to it.

15. Not used

-157-

5.3.2 Duet Program Error

16. CURRENT RECORD REMOVED FROM DB <set no>
A record read with get or next cannot be found in
the file at put or delete.

17. MOTHER RECORD MISSING IN SIDE CHAIN <set_no>
By insertion of a new record into a list file the
secondary mother record which was entered by create,
is missing.

18. MOTHER RECORD REMOVED FROM DB <set_no>
The mother record for a set (set type L) has been
removed after newset.

19. ILLEGAL STATE FOR MOTHER SET <set no> <record state>
No current record in the mother set exists in the
data base at newset (settype L).

20.

ILLEGAL CURRENT RECORD TYPE IN MOTHER SET <set no>

At newset (settype L) the current record in the
mother set is a record type which cannot function

as a mother to current set.

-158-

5.3.2 Duet Program Error

21. RECORD TYPE ILLEGAL IN SET {set no> <record type>

The specified record type at create does not belong
to the set.

22. PRINTVALUE EXCEEDS FIELD RANGE <channel> <value>

The number of digit positions is too small for the
value to be printed. In the result area the value

is printed as '??2?2°'.

<channel> indicates the current result zone

<value> is the too big wvalue

23. ILLEGAL PRINTPOSITION <start pos>

The start position for print is specified outside
the line buffer.

24. PRINT FIELD EXCEEDS LINE BUFFER <start pos> <number>

The calculated last position of a field is outside
the line buffer.

-159-

5.3.2 Duet Program Error

25. ILLEGAL BS. OPERATION, POSITION AFTER EOF <set no>
At get or newset (settype B) the specified position
is after end-of-file.
26. ILLEGAL DELETE POSITION <set no>
Current Record in the set (settype B) cannot be
deleted because another set in the same file has a
current record after this position.
27. SET NOT OPEN FOR SEQUENTIAL ACCESS <set_ no>
Newset has not been called or end-of-set is reached.
28. ILLEGAL SPECIAL ACTION <algol no>
An undefined Algol special-action is activated from
the Duet program.
29, ILLEGAL NO OF PARAMETERS <algol no> <no>

Illegal number of parameters specified for the

activated Algol special-action.

-160-

5.3.2 Duet Program Error

30.

ILLEGAL TYPE OF PARAMETER <algol no> <param no>

Illegal parameter type specified for an algol

special action.

Add the following new duet program error:

31: illegal zero division

can be caused by modify (integer division) and

compute (cordinary division).

-161-

Duet System Errors

The procedure 'duet_system fejl' is called, if the
Duet Interpreter detects any inconsistencies in the
Duet program, the ld-description, or the database.
In case of system errors, the maintenance group

should normally be notified.

The standard format for system error messages is:

¥*¥** SYSTEM ERROR eno: CALL FROM: BLOCK INSTR OPT (ADR PIL ART)

<errortext>{<errorparameter>}3

HEXKXX XK KO 00000 XK XX XX

0

The information in the system error line is the same
as the information in a program error line (see
section 5.3.2). Below the system errors are described

in error number order.

The information in <> states the names of the
variables, which are being printed, as a further

indication of the system error.

1.

DUETREL <duetrel> <duetstop>

There is an inconsistency in the binary Duet program
in connection with the activation of a Duet

instruction.

-162-

5.3.3 Duet System Errors

2. BIT23 = 0

There is an inconsistency in the binary Duet program
in connection with the execution of a Duet instruc-

tion.

3. 'DUETNAME'

There is an inconsistency in the binary Duet program
in connection with the execution of a Duet instruc-

tion.

4. VALUE OF 'UDTRYK' <val> <duetstop>

There is an inconsistency in the binary Duet program
or an error in the Duet Interpreter's procedure

‘udtryk'.

5. BIT23 = 1 <duetstop>

There is an inconsistency in the binary Duet program
or an error in the Duet Interpreter's procedure

'udtryk'.

-163-

5.3.3 Duet System Errors

™,

6. LD-TABLES <setno>
There is an inconsistency in the binary ld-descrip-
tion.,

N

7. CHECKSUM <setno> —
Checksum error in a database record; there is an
inconsistency in the database.

8. RECORDLENGTH <setno>
There is an inconsistency in the database: The lengtﬂ
of a record which is read with 'get', 'next', or '
'lookup' does not correspond to the db-description. —~~

9. CONNECT MISSING IN SIDE CHAIN <setno>

There is an inconsistency in the database: the list
file record in gquestion has not been connected to all

the secondary mothers.

-164-

5.3.3 Duet System Errors

10. FILE EXPANSION IMPOSSIBLE <resultcf>
By put, a file expansion with 'extendcf' has
failed.
<resultcf> states the cause:
2 The file has been extended, but the zone
buffer is too small (the wvariable
'sd_extend buf' must be initialised
with a larger value, if many records
are to be inserted in one run).
>70000 Lack of resources.
11. RECORD CREATION TOO EXPENSIVE <resultcf>
Insertion of a new record (put after create) has
failed.
<resultcf> states the cause (see ref. 4).
12. DELETION OF LAST RECORD IN FILE
There must always be at least one record in a
cf-masterfile.
13. SKIPWORD

There is an inconsistency in the binary Duet program

in connection with an exit te a program point.

-165-

5.3.3 Duet System Errors

14. OVER/UNDERFLOW <staktrin>

Error in the Duet interpreter by stacking or
unstacking. The cause might be too many levels of

execute-operations.

15. ERROR IN BLOCK TRANSFER <blockno> <errortext>

Error discovered when reading a Duet block.

<errortext> states additional cause:

BLOCKLENGTH ERROR

BLOCKNO ERROR

CHECKSUM ERROR

RECORDNO ERROR

They all state an inconsistency in the binary Duet

program

BLOCK/LD VERSION INCONSISTENCY

The Duet block has been compiled with another
version of the ld-description than the one the

running system operates with.

-166-

[y a)

5.3.3 Duet System Errors

16. MOVE ERROR <text>

An inconsistency arisen during transfer between
variables and fields in connection with a db-
operation.

<text> is a further explanation of what caused the

error:

ILLEGAL ENTRYADDR IN 'FLYTTETAB'

ILLEGAL MOVEINSTRUCTION: <type> <addr>

they both state an inconsistency in the binary 1ld-

description.

17. ILLEGAL TYPE OF VALUE ELEMENT <type>

There is an inconsistency in the binary Duet program
or an error in the Duet interpreter's procedure

'take wvalue'.

duet _algol

-167-

Algol special actions

The algol
performed
procedure

number as

special actions in the Duet program are
by letting the Duet Interpreter call the

‘duet_algol (no)' with the Algol action

parameter.

This procedure must be declared by the control pro-

gram at the block level, which 'duet text2' is

copied into.

The procedure may have the appearance shown in fig.

5.3.

value

begin

procedure

case no of

duet algol (no) ;

no; integer no;

begin <*actionl1*>

begin <*actionx*>

.

end

end duet algol;

Figure 5.3: procedure duet _algol

duetparam

takevalue

e v the table fig. 5.4.
{) ’j’ir ,-t"”-‘ ‘ /__%—« N l

P
2 5.; _(‘H_,-.{dgs..{f‘

QH T ":ﬂfl\)" (/J "!1
ol s

/':\‘_{' A _? . Sﬁ'
R g

varadr

-168-

5.4 Algol special actions

Each single Algol action must interpret its
parameters itself by repeatedly calling the Duet

Interpreter's integer procedure 'takevalue'.

The variable 'duetparam' indicates the number of
parameters stated, and thus how many times
'takevalue' must be called.

The return value of 'takevalue' states how the
parameter has been read and the name of the program
variables in which the value is stored, as shown in
Vel :

value| value stored \value stored as a
takevalue | type | as an intleger | floating-point number

0 real ~ i © reg
o 1 2 o vardi reg
“ 2 word d.;, vardi reqg
3 long | 4.1, verdi reg
4 text | d.t ~

5 adr (| procedure 'varadr' has been called

Figure 5.4 the result of 'takevalue'

The procedure ‘'varadr' is called from 'takevalue',

when the parameter has been specified as tadr(...)".

¥ type 1
variable is to be found, as shown in fig. 5.5.

In this case states where the resulting

Furthermore 'lgd' states, how many words the variable

/) s
oo Ueqdi

G

occupies.

goto

error

Adus

Lo I

-169-

5.4 Algol special actions

variable variable is
"type' type found in 'lgd’
0 text d.t. text length in words
1 ~ ~ ~
2 word d.w 1
3 long d.l 2
4 real d.r. 2
5 recno d.w 1
6 date d.w 1
7 bits d.t aggregate length in
words

Figure 5.5. The result of 'varadr'

NB': If the variable is an array variable it is
always the address of the 1, element which is

being computed.

Normally an Algol special action must not contain a
'goto' which leads out of the procedure. If the
processing of the Duet program is to be continued,
the 'duet algol' must necessarily return, to where
it was called from. It is allowed, however, to go to
a label outside the Duet interpreter and thereby

interrupt the Duet program.

The Duet program errors no.s 28, 29, and 30 can be
called from the 'duet algol' procedure, if the

latter detects any errors in the call of the special

action.
s /C" -
-y /
»
v ;I" gf! /(; %) \ ' {
b _proaoun (e j0 (22) -
(O v ok
¥ ‘,! / Py ‘;.—;.-,/ & Aand ®
0 Y ratell 1ol dn ,," Q > o Y.

-170~-

Reserved Algol names

Below is an index of all Algol names, which are
declared globally by the Duet text.
Furthermore, all names declared by the Soda dbms are

recerved. (cf. ref. 2).

The index 1is split up into three lists compressing

Algol names, which

1) must/may be used by the control program
2) can be used as working variables

3) must not be touched

The variables in the first list are arranged
according to their use, while the two other lists

are arranged alphabetically.

takevalue

+t = KB

reg
vaerdi
lgd
type

duetalgol

duetparam

-171-

Application — known Algol names

Names concerning Algol-special actions
(cf. section 5.4 and 3.2.16)

procedure takevalue;
is called from Algol-special actions to fetch the

parameters of the action.

long field 1;
real field r;
integer field W;

integer array field t;

real reg;

long verdi;

integer lgd;

integer type;

contain return values from call of 'takevalue', as

described in section 5.4. Apart from that they. can

be U%ngggwwprking variables without any restrictions.

integer array d(-3:maxc);

is the basic array, in which all variables, declared
in Soda-1d, and all constants are placed. These can
be referenced from Algol-special actions by fielding,
either with a field variable generated by the Soda-1d
compiler, or by one of the standard field variables

w, 1, r, or t assigned by the procedure 'takevalue'.

procedure duetalgol (no) ;
Must be declared by the control program for executing

Algol-special actions.

integer duetparam;
States the number of parameters for an Algol-special

action.

read _general

readz

linie
felter
felt type

line index

-172-

5.5.1 Application - known Algol names

Names concerning reading
(cf. section 3.2.10 and 3.2.11)

external procedure read general (readz, linie, felter,

felttype, linieindex) ;
reads an input line, to be used by the operation
read, as described in the Duet operation 'getline'.
Usually the reading is coded in the Duet program,
but with some type of program it is more convenient
to let the control program itself read in the data
lines. In these cases the control program must call
'read _general' with the above - mentioned parameters,
and the Duet program must not use the operation
'getline'. This concerns e.g. both 'teleop' and

'telescop'.

zone 'readz' (128, 1, stderror);

must be opened by the control program before calling

'init duet2' (cf. section 5.2.2). Is used as a

parameter in a possible call of 'read general'.

real array linie (1:25);

long array felter (1:150);

integer array felt type (1:150);

integer linie index; & &Jﬂf{{ e
are used as parameters for 'read general'. In the

array 'linie' the input line is delivered as a

text.

-173-

5.5.1 Application - known Algol names

alfa integer array alfa (0:127) ;

is initialised by 'init duet2' with the standard

character class table for reading (cf. section

3.2.11, specially fig. 3.35). The control program

can change the contents of this table and must then

call the procedure 'intable {(alfa)'.

Each element in alfa must have the format,
character class shift 12 + character value

std_assign integer std_assign;

see section 5.2.3.

Names concerning print ('primula' printing)
(cf. section 3.2.12 and 5.2.1-4),

prinz zone array prinz (max_kanal, 128+38,1, prinzproc);

Each zone in 'prinz' must be opened to an output area

before calling 'init duet2' (cf. section 5.2.2).
max kanal integer max kanal;
defines the number of zones in 'prinz'. Must be

initialised by the control program before calling

'init_dueti'.

max printpos integer max printpos;
defines the length of the 'primula'-system's line
buffer in each of the prinz-zones. Is initialised
by 'init duet1' to 132, but can be redefined in the

ocuter block of the control program.

-174-

5.5.1 Application - known Algol names

set_primula procedure set primula (zone no);
integer (zone noj;
utility procedure, which makes use of 'write' possible
on the 'prinz'-zones. Before calling 'write' the con-
trol program must call
end print (prinz (zone no));
and after 'write' terminate with

set_primula (zone no) ;

kanal integer kanal;
defines which 'prinz'=-zone is to be used by print.
Is set to 1 by the 'init duetmaskine'. Can be
altered by the control program or by the operation
'select', but must not be reset to zero (cf. section

3.2.14 and 5.2.3).

Names concerning the execution of the Duet program

duetareal integer duetareal;

Must be initialised by the control program before

calling 'init duet1'. Defines the size (in words) of
the Duet array which the Duet blocks are read to.

(cf. section 3.1.2 and 5.2.1).

max ref integer max ref;
defines 'the half life' of the array 'block use', in
which the Duet system notes how often each single
Duet block is referenced. Using this registration it
is possible to have the most frequently used blocks
remain in the core store (in 'duet array') (cf.

section 3.1.2).

Poamn

instruktionstal

max_instruktion

duetreg navn

duet version

ldreg_navn
1d afsnit num

1ld_version

fejlud

-175-

5.5.1 Application - known Algol names

To avoid having a block, which, over a period, has
been used frequently, but then is not referenced

for some time, remain in the core store, the counters
in 'block use' are halved each time 'max_ref' block
references have been executed.

'max_ref' is by 'init duet2' initialised to 20.

integer instruktionstal;
integer max instruktion;
the instruction counter and its upper limit (cf.

section 5.2.3).

Names concerning initialising

(cf. section 5.2)

real array duetreg navn (1:2);
integer duet version;

must be initialised by the control program before

calling 'init duet1' with area name and version no.

of the compiled Duet program.

real array 1ldreg navn (1:2);
integer 1ld afsnit nummer;
integer 1ld version

must be initialised by the control program before

calling 'init duetl1' with area name, section number,

and version no of the compiled ld-description.

zone fejlud (128, 1, stderror)

must be opened and closed by the control program to

be used for writing the Duetlog and possible error

messages, if these are not redirected to 'out'/'prinz'

init_duet1

init_ duet2

init_duetmaskine

close_duet

datafejl akt
datafejl kanal
programfejl akt
programfejl kanal
systefejl akt
systemfejl kanal

-176-

5.5.1 Application - known Algol names ﬁa

integer procedure init duetl (z);

zone z;

The initialising proéedure in 'duettext1'. It must
be called by the control program with 'out' or
'fejlud' as parameter; the 'prinz'-zones must not

be used. See section 5.2.1.

integer procedure 'init duet2';
procedure 'init duetmaskine’';
Initialising procedures in 'duettext2'. See section

5.2.2 and 5.2.3. 0

procedure close duet;
Termination procedure for closing zones.

See section 5.2.4.

Notice: Variables which must be initialised are also

found under print and execution of Duet program.

Names concerning error messages

(cf. section 5.3)

integer array datafejl akt (1:max_datafejl);

integer datafejl kanal; N,
integer array programfejl akt (1:max programfejl

integer programfejl kanal;

integer array systemfejl akt (1:max_ systemfejl);

integer systemfejl kanal;

are initialised by the 'init duetmaskine'. They can be
altered with the 'select' operation or by the control

program. See section 5.2.3.

-177-

5.5.1 Application - known Algol names

max datafejl integer max_datafejl;
max programfejl integer max programfejl;
max systemfe]l integer max systemfejl;

The upper limits for the 'fejlakt'-arrays. They

must not be assigned by the control program.

print dataerror procedure print datafejl (z, error no);

zone Z; integer error noj;

lasvarnavn long array lesvarnavn(1:4) ;

fejlvaerdi long fejlverdi;
contains, when 'print datafejl' is called, the

name of the Soda variable, which was last used for

reading, plus the illegal value.

Names concerning tests

testa integer testa;
testb integer testb;
testc integer testc;
testd integer testd;
teste integer teste;
testf integer testf;
testg integer testqg;
testh integer testh;

testvariables, which might be assigned, when
needed, by the control program and/or by the Duet

operation 'select' (cf. section 3.2.14).

testkanal integer testkanalj;
defines where the test ocutput is printed (cf. section
5.2.2).

duetdato
duettid

duetsystem vers
duetsystem dato

duetsystem init

systemtest

nl
sp

tipotens

trykbits

-178-

5.5.1 Application - known Algol names

Other names

integer duetdato;

integer duetid;

are assigned with ISO-date and hour for start of run
(hour-minute-seconds) by 'init dueti'.

They are printed on the Duet log.

integer duetsystem version;

integer duetsystem dato;

real array duetsystem init (1:2);

contain version no and date of publishing plus the
initials of the person responsible for the current
edition of the Duet system texts. Is printed on the

Duet log by 'init duetl'.

long array systemtext (1:4);
contains the name ©0f the Duet program (from the

Duet head), which is printed on the Duet log.

boolean nl;

boolean sSpP;

are assigned by 'init duetl' with respectively
'false add 10' and 'false add 32'.

integer array tipotens (0:6);
is assigned by 'init duet2' with the tenth powers
1, 10, 100,, 1000000.

procedure trykbits (z, number, word);

zone z; integer number, word;

prints the contents of the parameter 'word' as a
bit pattern. The parameter 'number' states how many
bits of 'word', counted from the right that is to

be printed.

Affix
postage
here

A/S REGNECENTRALEN
Marketing Department
Falkoner Allé 1

2000 Copenhagen F ’\
Denmark

READER's COMMENTS DUET

RCSL No: 21-v032

A/S Regnecentralen maintains a continuous effort to
improve the guality and usefulness of its publications.
To do this effectively we need user feedback - your
critical evaluation of this manual.
Please comment on this manual's completeness, accuracy,
organization, usability, and readability:
Do you find errors in this manual ? If so, specify
by page.
How can this manual be improved ?
Other comments ?

S’

Please state your position:

Name: Organization:

Address: Department:

Date:

Thank you

RETURN LETTER = CONTENTS AND LAYOUT

-213-

Index (continued)

Zero_repr
zero representation
zero_value

zero value statement

A=-192
3-73

3-74

-212-

Index (continued)

value

value check

value element
value_spec

value specification
value spectrum

var

vardecl

variable

variable name

variable number
variable reference
variable type

varref

var_spec

vartext

version

vertical_spec

vertical specification
vertical tabulation

vaerdi

W
while

while opt

word var

working register
write (between print)

A-189
3-62,
3-31,
A-193
3-71,
3-67

3-44,
5-135
2-10,
A-197
3-26,
3-91

3-26

3-26

3-27

A-197
A-188
A-193
4-101
A-191
3-71,
3-72

5-171

5-171
3-59
A-190
3-28
3-50
5-174

3=67
3-40,

3-76

3-26,3-81,

3-44,

3-75,

-211-

Index (continued)

test line

test output (from the Duet
interpreter)

test output (from the compiler)

test value

test value (assign/action)
testvar

test variable (assign/action)
test variable (test outputs)
textchar

textconst

text constant

text delimiter

text field (in input)

text file (program text)
textlength

text printing

textvar

text variable (textvar)

tflytproc
t-layout
tno
to_value

translate

type

user
user adaption

user number

A-195
3-85,
5-177
4-107

A-189,

A-195
3-51,
A-195
3-51,
3-88,
A-197
A-197
3-30,
3-63,
3-63

4-94,
A-192
3-72

3-28,
3-28,
3-91

5-136
3-72

A-187
A-190

3-19,
2-10
3-19,

3-86,

A-190,

3-57, 3-75

3-55, 3-56

5-177

3-76, 3-91

3-65

4-97, 4-101

A-197
3-65, 3-75,

4-101

3-21, 4-101

-210-

Index (continued)

soda dbms

soda-1d
sodatext1,-2,-3
source text
spill

standard layout
standard mark

standard value

std _assign

std assign line
std layout

std layoutype

std line

suppression specification

syntactical description

Sysdok lineno.
Sysdok file

system_fejl akt
system fejl kanal

t

take value

teleop

telescop

term code
terminator code
testassign symbol
testbit

test channel

test kanal

testkanal

1-6, 2-9, 3-80,

5-170

1-6, 2-9, 5-134

5-136
4-100,
3-29
3-79
3-68,
3-62,
3-88,
3-69,
A-195
A-193
A-193
A-193
3-37,
A-185
4-94
4-94,
4-103,
5-143,
5-143,

5-171
5-168,

4-105

3-85, 3-88
3-68, 3-81,

5-144, 5-173

—

4-102

4-97, 4-100,

5=-176
5-176

5-171

-7, 5-133
1-7, 5-133

A-191
3-64,
A-195
3-89,
3-86

5-141
5-177

3-65

A-195

-209-

Index (continued)

result area
result channel
result output
result variable
return line

right side

sd _extend buf
section number

select

select exit
select line
select opt
select print
select return
select stdassign
select test
selective assign
selective branching
set

set _no

set primula

set _spec

set type
shortcar

simple numvar
simple textvar
simple var
simple variable
simple wordvar
size

s—-layout

3-70
A-194
3-86
3-66,
A-195
A-188

5-139
4-100
3-37,
3-85

3-69,

3-69,

(cont.)

5-177
3-87
A-194
A-194
3-86
3-87
3-88
3-89
3-51
3-56
3-80
A-194
5-174
A-194
3-82,
A=-197
A-197
A-197
A~-197
3-27
A=197
4-106
3=79

(cont.)

3-84

3-70’

r

-208-

Index (continued)

print spec

prinz

program fejl akt
program_fejl kanal
program point
program text

put

put opt

quotation mark

r
read

read general

reading variable
read_mode

read opt

read_spec

read specification
readvar

readz

real working register
rec no var

record field
record type

reg

relation

relopt

reset to zero of numerical array

resource demands (for the compiler)

A-191
3-70,
5-141,
5-173
5-143,
5-143,
3-35,
4-94
3-81
A-194

3-63

5-171
3-60
3-60,
5-172
3-50
3-64,
A=190
A-190
3-64,
A-191
3-60,
3-50
3-28
3-81
3-80
5-171
3-54,
A-189
3-47
4-109

3-86,

5-146

5-176
5-176

3-87,

3-62,

A-191

3-66,

5-141,

3

59,

5-147

5-136,

3-67

5-172

A-189

—_—

-207-

Index {(continued)

numerical printing
numerical value
numerical variable
num_expr
num_operand
num_opt

numvar

oldduet

paper
parameter

parameter list

passive program point

pno
pos 1
pos 2

position

prepositioned delimiter

prim

primula
principals
print

print action
print channel

print_data error

print error line
print line
print line
print opt

print_result line

(in input)

3-73
3-76
3-28, 3-76, 3-91
A-188
A-189
A-189
3-28, 3-76, 3-91,
A-197

4-105

4-103

A-196

A-196

3-36

A-187

A-193

A-193

3-71, 3-72, A-192
3-67

5-136

3-70, 5-136
3-74, A-192
3-70 (cont.)
A-191

3-70, 3-85, 3-86
5-136, 5-148,
5-177

A-194

A-191

3-71, 4-95
A-191

A-194

Index (continued)

max_datafejl

max_ instruction

max kanal
max_print pos
max_programfejl
max_ref

max systemfejl
modulo

modify

modify line
modify opt
modify symbol

mod_spec.

name
name_spec
next

newduet
newset
newset_opt

nl

n-layout

no

no of chars
no of lines
no of rep
normalization
np

num_const
numerical field

numerical constant

numerical expression

(in input)

5-176,
5-144,
5-175
5-173,
5-141,
5-176,
5-141,
5-176,
3-76

5-177
5-154

5-139
5-173
5-177
5-174
5=177

r

3-39 (cont.),

3-76

A-188
A-188
A-188
A-188

3-44,
A-188
3-81

4-105
3-81,
A-194
A-197
3-73

A-192
A-191
A 191
A=192
3-28

A=197
A-197
3-63

3-28,
3-49,

3-76,
3-76

3-91

iy g g o+ 0 s e

-205-

Index {continued)

jobfile for compilation 4-110, 4-111

1 5=-171

layout A-191

layout param A-192

layout parameter 3-71, 3-72 {(cont.)

layout specification 3-71 (cont.)

layout type 3-71, 3-72 (cont.)
3-75, A-192

1ld_sectionno 4-104

1d_afsnit nummer 5-139, 5-175

ld-description 2-9, 3=-81 (cont.)

ldfields 5-136

ldfile 4-104

ld-file 2-9, 4-97, 4-104,
5-139

ld _ident A-186

1d no A-186

ld_reg navn 5-139, 5-175

1d version 5-139, 5-175

leftside A-138

lgd 5-168, 5-169

line buffer 3-70

line feed (in Duet program) 3-15

lineno. 4-94

list 4-102

listing 4-93, 4-94, 4-98

listout 4-102

log print out 4-112, 5-139,
5-178

lookup 3-80

lookup opt A-194

le&svar navn 5-148, 5-177

-204-

Index (continued)

get

getline
getline opt
get opt
Goto

horizontal specification

if

if opt

implicit standard mark
include

index

informal

init duet?

init duet2

init duetmaskine

initials

insert
instruktions tal
integer division
integer variable
internal lineno.
itype no

itype spec

3-81

3-60

A-190

A-194

3-35, 5-169

3-54
A-189

3-68

3-37, 4-102,
A-197

A-185

5-135, 5-136,
5-138, 5-139,
5-176

3-62, 3-86, 5-135,
5-138, 5-141,
5-176

3-69, 3-70, 3-72,
3-86, 5-135,
5-138, 5-143,
5-176

4-101

4-105, 4-106,
5-145, 5-175

3-76

3-28

4-94, 4-114

A-194

A-194

=203~

Index (continued)

error_ no
error_type
execute line

execute list

execute opt

execution of Duet program
exit

exit line

exit opt

expansion percentage
explicit standard mark

external lineno.

fejlud

fejlverdi

field association

field transfer

fixed pos

fixed sign

fixed sign

for

form feed (in print)

form feed (in the Duet program
listing)

for opt

fp-parameter

fp-parameter key-word

from value

A-195

A-194

A-187

2-10, 3-13, 3-15,
3-33 (cont.)
A-187

3-15

3-36, 3-58
A-195

A-195

4-106

3-68

4-94

5-139, 5-146
5-177

3-81 (cont.)
3-81 (cont.)
A-192

A-192

3-73

3-58

3-72

4-94

A-190
4-98 (cont.)
4-99
A-190

-202-

Index (continued)

Duet program name
Duet program number
Duet program text
duet ref

Duet reference
duet reg navn_

Duet stop

Duet system

duet system fejl
Duet system error
Duet texts
duettext1i
duettext2

duettext3
duettextvname

duettid

duet version

editing (program text)

else action
else line

end of string

end of string delimiter

entry no
entrypoint
entry spec

3-17

3-17

4-94

A-187

3-30, 3-33
5-139, 5-175
3-14,3-33, 3-39,
3-49, 3-51, 3-55,
3-56, 3-70, 3-85
1-6

5-147, 5-161
5-161 (cont.)
5-134

5-135, 5-136
5-135,5-136, 5-137,
5-167

5-135, 5-136,
5-137

4-101

5-178

4-104, 5-139,
5-175

4-94 (cont.)
A-190

3-52, 3-56, A-189
3-60, 3-63

3-65

3-19

2-9, 3-18, A-186
A-187

error messages (from the compiler) 4-98, 4-14 (cont.)

error messages (from the Duet 3-86

interpreter)

-201-

Index (continued)

Duet algol

duetareal
Duetarray
duet block
Duet blocks

Duet compiler
duet data fejl

duetdato
Duet file

duet_head

Duet head

duet instr

Duet instruction

Duet interpreter

Duet log

Duet name

duet no

Duet operand

Duet operation
Duet operator
duetparam

duetprg ident

Duet program
duetprogram

Duet program error

duet program fejl

5-135, 5-136,
5-167, 5-169,

5-139, 5-174

2-9, 5-139, 5-174
A-186

2-9, 3-18 (cont.),
4-93, 4-104, 5-174
1-6, 2-9, 4-93
5-147, 5-148
(cont.)

5-178

2-9, 4-93, 4-98,
4-104 (cont.),
5-139

A-186

3-17, 4-93

A-186

2-10, 3-13

1-6, 2-9, 4-93,
5-136
4-112,5-139,
5-178

3-13, 3-24, 3-30,
3-71

A-186

3-14, 3-26 (cont.)
3-10, 3-24, A-187
3-14

5-168

A-186

2-9, 4-97

A-186

5-152 (cont.)
5-147

-200~

Index {(continued)

constant

control program

create
create opt
current record

comment delimiter

d-array
database

data error (data fejl)

data_fejl akt
data_fejl kanal
db-description
db-operation
db-opt

decimals
declaration file
delete (db-operatiocn)
delete (duet block
delete opt
delimiter
descripfile

digit (group)
digitno

div_spec

d name

Duetabler

Duet action

3-28

1-6, 1-7, 2-9, 3-22,
3-60, 3-62, 3-69,
3-70, 3-89, 5-133
(cont.), 5-167

3-81

A-194

3-81 (cont.)

3-63

2-10, 3-20, 5-171
3-80

3-66, 3-68, 5-148
(cont.)

5-143, 5-176
5-143, 5-176
2-9

3-80 (cont.)
A-193

3-73, A-192
5-134

3-83

4-105, 4-106
5-194

3-64, 3-65
4-104

3-42, 3-76
A-188

A-188

A-197

1-6, 2-9, 4-93,
5-133

3-71

-199-

Index (continued)

block no A-186

block number 3-18, 4-105 (cont.)

block ref ' A-187

block reference 3-34

block spec A-187

Boss lineno. 4-94

bs-file 3-82, 5-146

case 3-55

case line A-190

case opt A-190

cf-list file 3-82

cf-master file 3-81, 3-82

change 4-105, 4-106

channel 3-86, 5-174, A-194

char const A-197

character constant 3-30, 3-76, 3-91

character field (in input) 3-63, 3-65

char print 3-73

character printing 3-73

character set table 3-62, 3-63, 5-141

character class 3-63, 5-173

chars 3-65

c-layout 3-73

close duet 5-135, 5-138,
5-146, 5-176

comment field (in input) 3-63

comment (in Duet program) 3-15

compilation job 4-110, 4-111

compute 3-49 (cont,), 3-76

compute line A-188

compute opt A-188

conditional compilation 3-37

-198-

Index

action
action_line
action list
action opt
active program point
adaption point
adr

a-layout

alfa

algol

algol opt

algol special action

alternative action
alternative value
ap

apostrophes
array_var
assign_line

Assign list
assign_opt

assign operator

assign value

assign variable

automatic normalization

basispos_spec
basic position
bit var (iable)
block_end
Block head

3-56
A-109
3-56
A-189
3-36,
2-10
3-91
3-79
5-141
3-91
A-196
3-91,
5-171
3-53,
3-53
A-197
3-30,
3-26,
A-189
3-52
A-189
3-40,
3-47,
A-189
3-51
3-28,

A-191
3-71
3-28
3-19,
3-19,

3-90

, 5=-173

(cont.)

5-167

{cont) .

3-56

3_63 r
A-197

3-41,
3-49,

3-43,

A-186
A-186

3-65

3-44,
3-89

3-76

~

-197-

Appendix A

Basic concepts:
nl = 10> | ';' textchar(*) <10>) (+);
np .= ('—+—'. | <12>) nl(*);
d name .= 'd'" NUMBER(1 TO 999);
varref .= simple var |

array var (" index ') ';
simple var .= variable (: no arrayspec);
array var .= variable (: arrayspec);

variable .= 'v' NUMBER(1 TO max var) |

var ident;

index .= nuwar |
NUMBER(1 TO max index);

NUINVAY .= varref (: vartype = word, long, real, date);
textvar .= varref (: vartype = text);

simple numvar .= simple var (: vartype = word, long, real, date);
simple textvar .= simple var (: vartype = text);

simple wordvar .= simple var (: vartype = word);

num _const .= NUMBER ('.' NUMBER) (.));

text const .= ap textchar(*) ap;

ap .= <39>; <* apostrof: ' *>
char const .= '.'" shortchar shortchar(.) shortchar(.) '.';
shortchar .= <letter, digit, ',—+:;!1?/ =O*¥()2'>

textchar .= <shortchar, '.'>

—— - -

algoi opt
parameter list

parameter

name_spec
adr spec

var_spec

-196~-

AEEendix A

I

'algol' parameter list(.};

(' paraneter (',' parameter) (¥)

num const |
text const |
char const i
varref i
name_spec i
adr_spec; -

see modify opt.
‘adr' ' (' (variable

see modify opt.

var_spec)

l')l;

'l)!

.

’

-195-

Appendix A
print error line .= 'print' (error type | ‘'test') ‘'on' channel;
error type .= 'data' ‘'error' |
'program' ‘error' |
'system' 'error';
channel .= NUWMBER(0 TO 9);
exit line = 'exit' pno 'on' error type
(error no (',' error no) (*)) (.);
Tt
pno see execute opt
error no .= NUMBER(1 TO max error) ;
return line .= 'return' ‘on' error_type;
test line .= 'test' testvar testassign symbol test value;
testvar = 'a' | 'b' | ‘et | r'a' |
1.7 .l I'fl |. 'lgl i lhl;
w testassign symbol = Tt RS R P
test value = numwar | 'on' | 'of' |
testbit (',' testbit) (*);
testbit .= NUMBER(0 TO 23);
std_assign line .= 'mo'(.) 'stdassign' ‘'on' ‘'read';
exit opt .= 'exit' pno;
o see execute opt

create opt
lookup opt
get opt
put_opt
delete opt
newset opt

set_spec

set no

itype spec

itype no

select opt

select line

print result line

result_charmel

-194-

Appendix A

'create' set spec itype spec;
"lookup® set spec;

'get' set spec;

'put’ set spec;

'delete' set spec;

'newset' set spec;

's' set no |

's(' simpel wordvar ')';
NUMBER(1 TO max set) ;

'i' itype no |

'i(" simpel wordvar ‘')';

NUMBER
'select' select line(*) 's';

(prh;t_result_line [
print error line |
exit line i
return line I
test line |
std_assign line) ni;
'print' ‘'on' result channel;

NUMBER(1 TO 9) ;

<krecord type*>

-193-

Appendix A

value spec .= IF layouttype = 't' THEN

(text_const

textvar .

name spec)
ELSE

(num const

char const

numvar .
num_expr !
mod spec :
div_spec :
digits spec) ;
name spec
mod_spec see modify opt
div_spec
digits spec
num_expr see campute opt
std line .= stdlayout vartext simpel var;
std layout .= '<' std layouttype posl ',' pos2 '>';
std layouttype .= 's' I 'a';
pos1 .= fixed pos;
pos2 .= fixed pos;
vartext .= IF std layouttype = 's' THEN textkonst;
db opt .= Create opt !
lookup opt !
get opt :
put _opt !
delete opt !

newset opt ;

position

fixed pos

layouttype

layoutparam

textlength

no of rep

fixed sign

Zero_repr

zero value

principals

decimals

-192-

Appendix A

fixed pos | '(' simp wordvar

NUMBER(1 TG 127);

TABLE layouttype = (

't' g textlength,

'c' 8 mo of rep,

'n' g fixed sign(.) zero repr(
zero value(.) princiﬁals

('.'" decimals) (.)
no | '(' simp wordvar ')';
no | '(' simp wordvar ')';

NUMBER(1 TO 127);

NUMBER(1 TO 15);

NU'BER(T TO 7);

.)

);

read mode

term code
no of chars
read var

print opt

print action

print line

layout
‘/kﬂsisposjﬁxn

printspec

verticalspec

IKLpf_LUES

-191-

Appendix A

.= 'n' term code |

't' term code |

.

'c' term code no of chars;

.= NUMBER(D TO 3);

.= NUMBER(1 TO 3);

.= IF read mode = 't' THEN textvar

EISE numvar;

.= 'print'

(print action | print line | std line) (%)

.= d name nl;

.= layout value spec(.) nl;

.= basispos spec ! print spec;
= '<¢' 'h' position '>';

.= '<' verticalspec(.)

(position layouttype layoutparam) (.)

(no_of lines | simp wordvar) 'l

.= NUMBER(1 TO 70);

l>|;

action line
testnyalue
else action

case_opt

case_line

else_action

for opt

from value

tq_yalue

while opt

relation

getline opt

read opt

read spec

-190-

Appendix A
.= test value ':' d name nl;
.= num const | char const | simp wordvar;

.= 'else' d name;

.= 'case' simp wordvar 'of'

case line(*) (else action | 's');
.= (caseno ':')(.) dname nl;

see action opt.

.= 'for' simp wordvar ':=' from value ',' to value

'do' d name nl;
.= num const | char const | numwar;

.= num const | char const | nuwvar;

.= 'while' relation 'do' dname;

see if opt

.= 'getline' simpel textvar;

.= ‘'read' read spec (',' read spec) (*);

.= read mode read var;

S

num_operand

num_opt

assign opt

assign line

test value

assign value

else line

if opt

relation

relopt

value

action opt

-189-

Appendix A

.= num const

|
char const |
|

numvay
"(" numexpr ')';
R B L R BV
.= 'assign' simp wordvar ':=' simp numvar
assign line(*) (else line | 's');
.= test value ':' assign value nl;
.= num const ! char const ! simp wordvar;
.= num const ! char const ! simp wordvar;
.= 'else' (assign value | 4 name);

.= 'if' relation ‘'then' d name

('else' d name) (.);
.= numvar relopt value;

= |<l I l>l i |<>I l L ;

.= num const | char const | numvar;

.= 'action' simpel numvar 'of' nl

action line(*) (else action | 's');

Iofl

modify opt
modify line
leftside

modify symbol

rightside

mod_spec
div_spec

digits spec

digitno
name spec

var_spec

campute opt
compute line

num_expr

-188-~

Appendix A

Il

'modify' modify line 's';

(leftside modify symbol rightside) (.) nl;

varref ! array var;

IF leftside = array var THEN
(array var ! 0)
ELSE
(varretf
num const
text const
char const
mod spec .
div spec
digits spec
name_spec
var spec)
numvar 'mod’

(nmwvar ! num const);

numvar '//' (numvar ! num const);
'digits' U

'of' numwvar;

digitno ',' digitno ')'

NUMBER (1 TO 15) ;

'name' '(' (varref ! var spec) ')';
'var' '(' (numvar ! var spec) ')';
'compute' campute line(*) 's';

(mnunvar ‘':=') (+) num expr;

'='(.) num operand (num opt num operand) (¥);

duet operation

execute opt

execute line

tho

o

duetref

block ref

block spec

entry spec

Appendix A

(execute opt

modify opt
compute opt
assign opt
if opt
action opt
case opt
for opt
while opt
getline opt
read opt
print opt
db opt
select opt
exit opt

algol opt

'execute'

(tno(.)

pro(.)

-187-

execute line(+)

duetref

't' NWBER(1 TO 9);

'p' NUMBER(1 TO 9);

d name |

block ref;

'b(' block spec ',

block no |

entry no |

o

simpel numvar;

simpel numvar;

s';

duetref) (*)) (.)

entry spec ')';

nl;

-186-

Appendix A
duetprogram .= duet head duet block(*);
duet head .= duetprg ident nl 1d_ident nl;
duetprg ident .= 'duetprogram' duet no '/' textconst;
duet no .= NUMBER;
1d_ident .= ('localdata' 1d o) !

('dataentry' 'ld' 1d no);

1ld no .= NUMBER;

duet block .= block head duet instr(*) block_end;

block head .= 'begin' block no ':' nl
entrypoint (*) ;

block no .= NUMBER (1 TO 255);

entrypoint = '=>' entry no 's=' dname nl;

entry no .= NUMBER(1 TO 63);

block end .= 'end' block no nl;

duet instr .= nl(*) np(.) dname ':' duet operation

(n1(.) '>' duet operation) (¥);

Appendix A

-185~-

A Syntactical Description of the Duet Language

This appendix contains a formal syntactical
description of the Duet language. The syntax is
described by means of the Informal language (ref. 7),
but modified so that the (concatenating symbol -*

is replaced by space.

Below is an index of the symbols of the Informal
language, and their meaning. For a more detailed

explanation see ref. 7 and Appendix A of the Soda-
manual (ref. 2).

definition symbol for syntactical unit (SU),
termination of statement,

alternatives,

SU may be omitted or stated only once.

SU may be omitted or stated an arbitrary number of
times.

SU must occur at least once

SU is a constant text string

contents of a character set

restriction-symbol for data guantity

In the following syntactical description all basic
concepts are defined at the end while all other
syntactical units are defined immediately after the

position where they are mentioned the first time.

-184-

5.5.3 Inaccessible Algol Names

integer refantal
integer reftal
integer field resultat]
integer field resultat?2
integer field resultat3
integer field resultatd
integer field resultath
label skipterm
label slut les
label slut short
procedure stak

integer stakpunkt
integer staktrin
integer stopadr
procedure takenum
label test relation
procedure tryk identid
label tryk vertikal
integer array typelangde
label udigr
procedure udtryk
procedure varadr

integer array field vartextabase
procedure varverdi

procedure verdigraensekontrol

——

5.5.3 Inaccessible Algol Names

integer
long
integer
procedure
label
label
label
label
label
integer
integer
boolean
integer
integer array
integer array
integer
integer
integer
integer
integer
integer
integer
integer
procedure
label
integer
integer
procedure
procedure
procedure
procedure
blockprocedure
integer
integer

integer array

exitnr

fejlverdi
fejlindex
flytblok

fortsat

fortsat execute
fortsat layout
fortsat modify
genoptab instruktion
gl duetnavn
index

in if
instruktionstal
klumpbasis
klumpref
lokalbase

lesvar

maxblok

maxd

maxklump

maxstak

maxvar
maxvartext
nyblok

perform
position

primula state
print duet-test
print flyttefejl
print programfejl
print systemfejl
prinz proc
punktblok
punktpil
punktstak

Inaccessible Algol Names

procedure afstak

label aktion_ fundet
integer array basispos

label bestem element
integer array blokbasis
integer array blokbrug
integer blokbruger
integer bloklgd
integer array blokla&ngde
integer blokno

integer bloknr

integer array blokplac
integer blokslut

label checksoda
procedure checkveaerdi
integer dadr

integer duetadr
integer duetart
integer duetbasis
procedure duetdatafejl
integer duetnavn
integer duetoperator
integer duetord
integer duetpil
procedure duetprogramfejl
integer duetpunkt
integer duetrel

long array duetstak
integer duetstop
procedure duetsystemfejl
procedure duettest

zone duetz

label element fundet
integer entrynr

label exit

-181-

5.5.2 Free working variables

integer
integer
integer
long

integer
integer
integer
integer
integer
integer
integer
long

integer
long

integer

array field

spec
stop
setnr
talverdi
term
termkrav
text

til

vadr

val

var
varinf
varnr
varord

word

Free working variables

integer
integer
integer
integer
boolean
integer
integer
integer
integer

integer

long array field

integer

integer array

integer array field

integer
integer
integer

integer

long array field

long

integer
integer
integer
integer
integer
integer
integer
integer
integer

integer

real array field

real

adr
adrtype
aktion
antal

b
fejlbits
fejlnr
formatinf
fra
ftype
haf

i

ia (1:20)
inf

]

k

klasse
kode

laf
lword
minus
mode
norm

nr

opd
opdtype
operator
opord
opt

pil

raf

regl

J

A ey o L e e i ity Tl N

e e

Jpp—

[takename

=179-

5.5.1 Application - known Algol names

real procedure takename (ra);

real array ra;

simulates 'increase' in a way which does not require
a subscript as a parameter. (Is identical with the
procedure 'hentnavn' in 'begin80', but has been
given its own name, in order not to bother those
users who employ 'beginB80' in the outer block of

the control program).

