
Title:

ET.

fe 8 REGNECENTRALEN RCSL No: 21-vo032
Edition: September 1977

Author: Edith RosenbergRC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

“SP
or mae

eR %

Keywords: RC4000, RC8000, SYSTEM80, database, SODA, DBMS, PRIMULA,

SYSDOK, programming language, interpreter, structured

programming,

Abstract! mis manual describes the DUET system, which comprises a
programming language, a compiler, and an interpreter for
execution of the compiled program. The programming language
DUET is primarily intended for administrative applications
especially transaction processing. It covers DBMS operations
as well as the reading of input and the printing of output.

English edition: 215 pages

Users of this manual are cautioned that the specifications
ht ® fs contained herein are subject to change by RC at any timeCopyright © AS Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-

cal or arithmetic errors whicn may appear in this manual
and shal! not be responsible for any damages caused by
reliance on any of the materials presented.

Printed by A/S Regnecentralen, Copenhagen

A Table of Contents Page

: 1. Introduction 6
|

° 2. System Outline 8

| 3. Duet language 14

; 3.1 Duet Program Structure 12

3.1.1 Duet Head 17

3.1.2 Duet Blocks 18

3.1.3 Duet Instructions 24

3.1.4 Duet Operands 26

3.2 Duet Operations 32

- 3.2.1 Execute 33

3.2.2 Modify 39

3.2.3 Compute 49

| 3.2.4 Assign - of 51
3.2.5 If - then 54

3.2.6 Case - of 55

3.2.7 Action - of 56

3.2.8 For - do 58

3.2.9 While - do 59

| 3.2.10 Getline 60

| 3.2.11 Read 62

A 3.2.12 Print 70
3.2.13 DB-operations 80

3.2.14 Select 85

3.2.15 Exit 90

3.2.16 Algol 91

3% Madr Luis ian chutboprera how
4. The Duet Compiler 93

Program Text and Listing 94

Activation of the Compiler 97

Resource Demands 109

Duet Log 112

4.5 Error messages 114

Table of Contents

5. The Duet System in a Control Program

5.1 Duet Texts & Algol Block Structure

5.2 Initialization & Termination

5.2.1 Init duet!

5.2.2 Init _duet2

5.2.3 Init duet maskine

5.2.4 Close duet

uo ww Error Procedures

5.3.1 Duet Data Errors

5.3.2 Duet Programming Errors

5.3.3 Duet System Errors

5.4 Algol Special Actions

5.5 Reserved Algol Names

5.5.1 Application - Known Algol Names

5.5.2 Inaccessible Algol Names

Appendix A. Syntax Description of the Duet Language

Index

Page

133

134

138

139

141

143

146

147

148

152

161

167

170

171

180

185

198

21-V031:

21-V019:

21-V018:

21-D005:

21-V024:

21-T006:

References

1. RCSL

2. RCSL

3. RCSL

4. RCSL

5. RCSL

6. RCSL

7. RCSL 28-D017:

Database80

SODA

DES80-SODA-LD

(Danish edition)

Connected Files System

DES80 - Consultant Guide

(Danish edition)

Teledata

Informal

1. Introduction

Duet System The Duet system is a general datamatic tool for

implementing programs on RC4000/8000, e.g. for

SYSTEM80.

The Duet System Comprises

Duetabler - a compiler, DUETABLER, which compiles programs

written in the DUET language, and

- an interpreter, DUET INTERPRETER, which - being

copied into the user's control program -

executes the Duet program

Duet Language The Duet language involves special facilities for

read in control of data, which makes it considerably

easier to write read in checking programs in Duet

than in Algol.

Printing Furthermore, printing of results is especially easy

to implement in the Duet language, where the

printing system is based on the Primula procedures

(which are also applied in GENIUS).

SODA-dbms Access to the database records is achieved by means

of the Soda-dbms (ref. 2), and therefore the Duet

language is closely connected with the ld-description

Soda-ld of the Soda System, Soda-ld.

The Duet language has been described in detail in

section 3, and the compiler in section 4.

Duet Inter- The Duet interpreter is the interpreter which

preter executes the Duet program. It is unable to work alone,

Control and has to be copied into the user's control program

Program which takes care of the starting and the termination

of the run.

SYSTEM80

Independent

Systems

1. Introduction

At present two such completed control programs are

available in SYSTEM80:

- the 'Telescop' of the data entry system

(DES80) and

- the 'Teleop' of the Teledata System.

DES80 (ref. 3 and 5) only needs coding of pure Duet

programs whereas for Teledata (ref. 6) user

adaptions programmed in Duet can be produced and

incorporated into the existing Skeleton Duet program.

At this point the Duet programs must obey the rules

determined by the control program and the Skeleton

program.

It is, however, possible to make perfectly new

application systems by means of the Duet System

with an independent Duet program and a control

program. Section 5 concerns directions for the

establishment of a control program.

System Outline

This section gives an outline

and its connection with other

of the Duet system

tool systems:

(> J
description

—_—_
database 80 Ld-

compiler description

Soda-Ld duetprogram

compiler text

duetabler

compiler

Controlprogram

z duet.
DB ~ Soda- interpreter

output,

if any

Figure 2.1: Outline of the Duet system's relations to

its surroundings.

Database80

db-descrip-

tion

Soda-1ld:

ld-descrip-

tion

Duetabler:

Duet program

Duet inter-

preter

Soda-dbms

Duetblocks

Duetarray

2. System outline

Figure 2.1 shows the Duet system with its

necessary surroundings. A complete application

system comprises a control program with the

respective ld-file and Duet file.

The first step in establishing such an application

system is making a data description of the actual

database by means of 'database80'. (ref. 1).

Then the relevant subset of the data base must be

described in a local data description, which is

compiled by the 'soda-ld' into an ld-file (ref. 2).

The Duet compiler 'Duetabler' reads a Duet program

together with the respective ld-file. The Duet

program is checked for syntactical and semantical

errors and in case there are no errors a binary Duet

program, a Duet file, is generated.

This translated Duet program can be executed by a

control program, which comprises the interpreter:

‘Duet interpreter' and the Soda-dbms. It requires

access to the ld-file as well as to the Duet file

during the run.

The Duet program consists of smaller units: Duet

blocks. These are read, when needed by the Duet

interpreter into a virtual store: Duet array, the

size of which is decided by the control program. A

Duet block is referred to from another Duet block by

indicating the block number and an entrypoint, which

defines the wanted part of the Duet block.

There are several advantages by this division of the

Duet program into blocks:

Variable

d-array

Duet

Instruction

Execute list

-10-

2. System Outline

- It becomes very easy to implement user

adaptions. The adaption point of the Duet

skeleton program is merely a reference to some

entrypoint in a particular adaption block where

the user adaption is programmed.

- The control program may run in a smaller

process as it is not necessary to have space

in the core for the entire Duet program at the

same time.

- The Duetabler compiler is able to compile Duet

blocks one by one and connect with an existing

Duet file. This facility reduces the compile

time when changes are wanted in the Duet

program or new user adaptions are to be inserted.

The Duet program can access all the variables

declared in the variable section of the ld-

description and they may be referred to either by

their name or number.

The variables exist in a mutual array: the d-array,

in which the variable addresses have been allocated

by the Soda-ld compiler. Since the Duet program uses

these addresses, in every variable reference, it is

necessary to re-compile the entire Duet program after

any changes in the variable section of the ld-

description.

Each Duet block in a Duet program consists of a

number of named Duet instructions. The principle

regarding how to execute these instructions by

means of so-called execute lists, has been explained

in detail in section 3.1.

-11-

The Duet Language

This section describes the syntax and semantics of

the Duet language. The description is based on

examples, whereas a formal description of syntax

is to be found in appendix A.

-12-

Duet Program Structure *eanqonz4s werbordjeng ey JO SUTTINO OTPeEUBYOS =1°¢ omMbTyuOTIONIASUT yeNp YoOoTq Joenp weazboid jenpuoT}etedo Jenp 4seTuoT}eredo yenp puoossuotTzeredo yenp 4SATF pue 3xS0Tq HOOT JSnpUOTIONTSUT JenpYOOTA enpaueu jenp uoTIONIASUT YenpyooTa FeNppeey 3enppeey jenp

A

Duet

Instruction

Duet opera-

tion

Duet Name

Execute List

-13-

3.1 Duet Program Structure

Figure 3.1 shows the schematic structure of a Duet

program as consisting of a Duet head and one or

more Duet blocks.

Each Duet block consists of a block head, a number

of Duet instructions and a biock end.

Finally a Duet instruction consists of a Duet name

and one or more Duet operations. The Duet name

which consists of the letter 'd' followed by an

integer, identifies the instruction within the

current block. The name is used when the duet

instruction is to be executed, analagous to the way

in which a procedure identifier is used when a

procedure is called from an Algol program

The sequence of the Duet instructions inside a Duet

block is arbitrary, analogous to the order of

procedure declarations in an Algol block. However,

when a Duet instruction is activated, the operations

are always executed in the same order as they appear

in the instruction, just like the statements in an

algol procedure body.

The Duet instructions are executed in a sequence,

which is defined dynamically during the run of the

program. This is done by the execution of a special

operation, called an execute list, which contains a

list of Duet names (local for the current block).

The Duet instructions, mentioned in the list, will

be executed in the same sequence as they appear.

Duet

Operator

Duet

Operand

Duet Stop

-14-

3.1 Duet Program Structure

d315: execute d12 7 execute list

d240

d316

s

> modify v_name := 'screws' 7 variable assign

number :+ 1

s

> compute v33(index) := v45 * (v12 + v16)

s

> print <1 1 t6> : 'balance' ; print

<10 n5.2> : balance

s

> if balance>1000.00 then d318 ; conditional

7 Operation

Figure 3.2: example of Duet instruction

Figure 3.2

consisting

Every Duet

shows an example of a Duet instruction

of five operations.

Operation is headed by a Duet operator

which designates the following format. After this,

follows one or more Duet operands seperated by

appropriate delimiters keywords, or numerical

Operators.

Some Duet operators demand a fixed format with a

specific set of Duet operands, whereas other

Operators can contain a variable number of operands.

In the latter case the operands are organized in a

list, the elements of which are normally separamted by

line feed.

separate line with the terminator

Duet Stop.

Such a list is always terminated with a

‘s' - the so-called

Comment

Execution

of Duet

Program

-15-

3.1 Duet Program Structure

All lines in a Duet program may be terminated by

a semicolon and a comment text which ends at the

line feed. In the printing from the Duetabler

compiler, such comments will be edited in a coloumn

(see section 4.3). Empty lines may be inserted

(perhaps with a comment) anywhere in the program.

The execution of the instructions within one block

as well as within the entire Duet program is

performed in a number of dynamically defined levels.

Whenever an execution of a Duet instruction is

ordered from an execute list, the control is

transferred to a new level - in practice a pointer

is stacked at the current point in the execute list,

which makes it possible later, when the referred

instruction is executed, to continue in the list.

When the last instruction of an execute list has

been executed, return inversely to the previous

level and when the basic level is reached, i.e.

the fictive level where you were before starting;

the execution of the program, alternatively the

block is terminated. Therefore the execute list is

the most fundamental element in the Duet language

and the understanding of the function of the execute

list is consequently basic in order to sense the

possibilities of the Duet.

Figure 3.3 illustrates the principle of the level

oriented execution of a Duet block. We suppose that

the instruction d1 has just been activated from a

position called 'p'. To the left is the Duet program

which is executed and the scheme rightmost shows

how the Duet instructions are scanned.

-16-

Duet Program Structure

)
“Lp UT buTqazeqzs ‘werbord yond Jo eseTd e Jo uoT{NDexXY :¢°¢ aIMHTy3.1

s

s

L =! ¢a AyTpaw :gp
gp

ZZP UE O=EA FT 29D
9EP ayNdexe Ep

ep

s

Ss

L =? ga Aytpau gp
gp

LLA €3 peer :7zp
ZZP US O=EA JT 29EP

9ep ayndexs Ep
EP

ZL» TObTe :Gzp
SzP

LiA peez :77p@7P S4NoSexs *8LP
8Lp eqnoexs0 =: ¢€A AzZTpau
nw

*LP

Z@P ust O=EAcL

LIA €3
€pScPecP

BLP jTobtTepeoro4ndexoSANDSXSS4NDexoAytTpau 79EPWw

AAS78LD(oa)

Tv

Duet program

number and

- name

-17-

Duet Head

A Duet program consists, as shown in figure 3.1,

of a Duet head and one or more Duet blocks.

The Duet head contains information for identifying

the Duet program; used both when compiling and when

running the compiled Duet program.

duet program 25/'teledata online'

localdata 23

Figure 3.4: Duet head

Figure 3.4 shows the Duet head for a Duet program

number = 25 and Duet program name = 'teledata online';

and this Duet program makes use of the local

description no. 23. The Duet program name must not

exceed 17 characters.

Block

number

Entrypoint

-18-

Duet Blocks

The Duet blocks have been introduced for two

reasons. Partly to permit a local naming of the

Duet instructions and partly as the basis of a

user-/program controlled segmentation, which might

be necessary if the program exceeds the 500 - 1000

Duet operations (2048 words of compiled program)

which a Duet program, consisting of a single block,

can contain.

All the Duet blocks in a program have a block

number, which identifies the block unambiguously.

This block number is used by references from an

execute list to non local Duet instructions, that

is, instructions in another block.

As it is possible to compile each block seperately

and as the Duet names are local within a block,

such references to non local instructions are made

by symbolic entrypoints, which are defined in the

head of each block.

Each Duet block contains a block head, a number of

Duet instructions, and a block end (cf. figure 3.1).

-19-

3.1.2 Duet Blocks

begin 4: user 35 3} block no. 4 belongs to

; user 35

-> 1 = d3

-> 3 = d50

-> 10 = dé

duet instructions

end 4 ; Same no. as in the

; block head

Figure 3.5: block head and block end.

In figure 3.5 you can see a block head and a block

end for a Duet block with 3 entrypoints. Each

entrypoint defines an entry number corresponding to

a definite Duet name which must exist within this

block.

The following value intervals apply to block number,

user number, and entry number:
ni

[\

14 <= block number <# 255)\

0 <= user number <f 127

1 <= entry number < —)

\

The definition of the user number (user <user number>)

can be left out if the user number = 0.

More entry numbers can point to the same Duet

instruction. Entry number 0 is always implicitly

the first Duet instruction in the block and cannot

be redefined.

-20-

3.1.2 Duet Blocks

Activation When a Duet block is activated it is done, as

of the Duet mentioned above, by reference from an execute list

block in another block. The reference contains two pieces of

information: a block number and an entry number.

The Duet interpreter now investigates whether the

indicated Duet block is already available in the

core storage.

If the block is in the core storage, the Duet

instruction, belonging to the indicated entry

number, is activated at once. In this case, the

activation of a Duet block does not take much more

time than the activation of a local Duet instruction

in the original block.

Duet array If, however, the block is not present in the core

storage it is automatically fetched from the Duet

file to a Duet array the size of which has been

defined by the control program.

If there are one or more sufficiently large, free

sections in this array, the block is placed at the

beginning of the smallest of these sections. Then

everything proceeds as if the block had been there

all the time.

If there, however, is no free section, the system

must provide it by overwriting old Duet blocks in

the array. All block references are counted ina

blockcounter, which becomes the measurement of how

desirable it is to avoid an overwriting. In the

placing it is also attempted to keep the amount of

these free minor places as low as possible in order

to avoid an actual ‘garbage collection'.

Check of

block

number

Check of

user

number

-21-

3.1.2 Duet Blocks

If the wanted block does not exist in the Duet file,

the system will react with a Duet programming error

(see section 5.3.2).

Before starting the execution of a Duet block, the

Duet system checks whether the user number in the

new block is legal compared to the old block:

From a block with user number 0 the program can

activate any block, but once a block with user

number <> 0 has been activated, this is stored

as a user number for checking. After this, there

are only allowed references to blocks with the same

user number or with user number 0. The user number

for checking can be neutralized (reset to zero) by
een

letting the control program call the initialization

procedure 'init_duetmaskine' (see section 5.2),

after which it will be possible to process another

user's blocks.

The purpose of this checking is to prevent a user

adaption from executing another user's program.

Figure 3.6 illustrates this checking.

-22-

DUET 21-V03

3.1.2 Duet Blocks

2

begin 1: user 0

> execute

> execute Cb(3)*
\

a
\

AN

begin 3: user 72

> execute @(4))

> execute G(10p

begin 4: user 35

> execute
a

> modify/block_no:= 6

> execute (6)

> execute C b(block_no) '

> modify block \no:= 17 UC
7

begin 10: user 0

a.

~

a
v

n
i

en A

begin 17: user 72 begin 6: user 35

oe block reference for user 35

—_—_——__—_ block reference for user 72

illegal block reference for user 72

Figure 3.6: Checking user number in block

references.

In the example, block 1 is a program block, common

to all users. Block 10 is a common adaption block

while the other blocks are individual user adaptions.

It is not allowed to activate block 4 from block 3.

It is legal to jump to block 6 from block 10 if block

10 has originally been called from block 3.

1.4.78

w

Return

-23-

3.1.2 Duet Blocks

When the selected Duet instruction in a block

reference has been completed, the program will

return to the previous block where it continues

the processing of the execute list.

When a Duet program is activated the entry will be

to the first Duet instruction in the block with

the lowest number.

nena ~

Duet name

Duet

operation

-24-

Duet Instructions

The format of a Duet instruction is shown rightmost

in figure 3.1.

The Duet instruction is identified by a Duet name

which can be referenced from Duet operations in

other instructions.

The Duet name is declared at the beginning of the

first Duet operation in an instruction by the letter

'd', followed by an integer, and a colon (see figure

3.7).

d32: execute d33

d17

s

> get s 2

> if soda_result > 0 then d99

Figure 3.7: an example of a Duet instruction

A Duet name must be declared in the interval

d1 <= duetname < “1023)
ae

and the compiler checks that the Duet names are

unique within each block.

After the Duet name follows the Duet operation(s)

that are included in the instruction. Each Duet

operation must be terminated with a line feed and

the start of the next operation is to be marked with

the character '>'. An arbitrary number of Duet

Operations may be included in an instruction; in

principle, it is possible to let the whole block

consist of one long Duet instruction.

-25-

3.1.3 Duet Instructions

Each Duet operation consists of a Duet operator and

one or more Duet operands, dependent on the type of

the operation. The Duet operations are described

systematically in section 3.2 and the possible

operand types are described in the following section.

-?26-

3.1.4 Duet Operands
—

The Duet operations may include different types of

Operands: variable references, constants, and Duet

names which have all been described in this section.

Furthermore, references for record sets and record

types are used by db operations, as it has been

described in section 3.2.13.

Variable The Duet program recognizes and can refer to all the

references variables that are declared in their associated

local data description (see references 2 and 3)
—

without necessitating that field variable declarations

have been generated for them.

Variable Variables can be referenced indiscriminately by name

name or by number. For a reference by name is used the

full variable identifier from the variable

declaration (note especially that also underlined

space is important as distinct from what applies to

the Algol programs).

Variable To a variable reference by number you only write the

number letter 'v' followed by the number of the variable.

This method of reference can, however, not be used

in Duet programs that are based on a data entry local

data description where the variable numbers are

anonymous.

Subscripted If a variable is declared as an array, a subscription

variable in the variable reference is usually required, as

shown in figure 3.8.

Simple

variable

Variable

type

-27-

3.1.4 Duet Operands

variable references by name:

price_index

item_price (price_index)

variable references by variable number

vi ; Simple variable

v25(2) subscribed variable with~

constant index

v25(v1) 3; subscribed variable with

; variable index

v28(v25(v1))% subscription at several levels

Figure 3.8: variable references.

The subscript may be constant or a variable, which

again may be subscripted in an arbitrary number of

levels. If the subscript is a constant, an index check

is executed during the compilation. When the subscript

is a variable, the index check cannot be executed be-

fore the run time but the compiler checks the all index

variables are declared without decimals.

A variable without an array specification is called

a simple variable. Certain Duet operations demand

that the referring variable is simple.

Many Duet operations make demands on the variable

type of a variable reference. In this manual, the

following designations for variables with type

restrictions are used, as shown in figure 3.9, below.

Constants

Numerical

constants

Automatic

normalization

-28-

3.1.4 Duet Operands

variable designation legal variable types

text var

numerical var

(numvar)

word var

int, Var
Sass

bit var

rec no var

text

word, long, real, date,

result

word, date, result

word var without decimal

denotati
 a

recno, result _recno

Figure 3.9: variable designations

The other type of Duet operands are constants in which

the Duet language distinguishes between numerical

constants, character constants, and text constants.

Numerical constants are ordinary integers or decimal

numbers. Decimal numbers can be stored by the

compiler either as a floating point number (real) or

as an integer with implicit decimals, dependent on

the context in which the constant occurs.

The running Duet system will always provide automatic

normalization, i.e. it will take into account the

differences in the number of decimals between the

operands to the left and right of an operator, cf.

figure 3.10.

~29-

i

3.1.4 Duet Operands

> if v17 = 100 then

> if v17 = 100.000 then

Figure 3.10: automatic normalization

The two conditions in the figure are the same

whether v17 is defined with 0, 1 or with 2 decimals.

OTM Spill However, in principle the Duet system does not check

whether spill arises by variable assignment, or not.

So users who want such a check, must compile the

Duet system with spill.yes (cf. section 5).

Character Character constants - or the so called short texts -

constants are written as one, two or three characters enclosed

in decimal points, as shown in figure 3.11. The

characters may be letters, digits or special characters,

but not decimal points. These characters are packed

with their ISO values in 24 bits, right justified with

possible zeroes to the left.

pn

a. =[{o] 0 [97 |

ab. =[o] 97 [98 |

.abe. = {97 | 98 [99 |

.?. =[{ 0 | 0 [63 |

-1X:. = [49 | 120 [58 |

a aa,

8 bits 8 bits 8 bits

Figure 3.11: character constants.

Text

constants

Duet names

-30-

3.1.4 Duet Operands

A character constant is per definition numerical and

it can be used in all situations where numerical

constants are permitted. The numerical constants

mentioned in the manual include both numbers and

character constants.

Text constants are written as a text and bracketed

by apostrophes, as shown in figure 3.12. Such a

string can be empty and the upper limit of the

amount of characters is only determined by how much

a line can comprise.

It is stored like in Algol, i.e. justified left and

terminated with as least one zero character.

‘long text with special character?!

‘short'

a ; empty text

Figure 3.12: text constants.

All constants, referenced in a block, are stored

together with the compiled Duet instructions so

that the constants only take up space in the core
storage as long as the current block is present in

the Duet array (cf. section 3.1.2).

Duet names make up the third type of Duet operands.

The declaration of Duet names has been described in

section 3.1.3, here it only concerns references to

Duet names.

-31-

3.1.4 Duet Operands

A Duet operation can refer to another Duet

instruction in the same block by indicating its

Duet name.

> execute d17

d32

s

> if v35 = 1 then dO else d33

Figure 3.13: Duet reference

The Duetabler compiler checks that all the

referenced Duet names are declared within the block.

Apart from the declared Duet names there is a

standard Duet instruction called dQ. This is an

empty instruction: nothing is executed when referring

to dod
somes

Value Finally; in the Duet language the concept, value

elements element, exists which covers a combination of the

mentioned types of operands.

Numerical A numerical value element is thus either a numerical

value element constant, a character constant, or a numerical

variable (simple or array element).

Text value A text value element is either a text constant or a

element text variable (simple or array element).

-32-

Duet Operations

In the following section, the separate possible

Duet operations are described systematically.

Below is an outline of all the Duet operations,

classified according to their functions:

Executing operation

Variable assignment

Conditional operations

Repeating operations

Reading operations

Printing operations

Database operations

Other operations

execute

modify

compute

assign

if-then-else

case-of

action-of

for-do

while-do

getline

read

print

get

next

lookup

create

put

delete

newset

select

exit

algol

3.2.1

Local Duet

reference

-33-

Execute

The fundamental executing Duet operation is the

execute list whose function has been described in

section 3.1.

d7: execute d123 ; local duetreference

a8, d36, d15

b (16,5) ; block reference

b (adp block,2) ; - , var .blockno

b (v15,v16) 3 - , var.blockno

° H and entryno

b (18), d4 ; - , without entryno

Figure 3.14: Execute list

In figure 3.14 the format of an execute list is

shown. It is initiated with the operator 'execute'

and terminated with a Duet stop; the character 's'.

Between these, an arbitrary number of action

references can be placed; either more in one line,

separated by commas or one in each line without any

comma.

An action reference can either be a local Duet

reference or a block reference.

A local Duet reference is only a Duet name ('‘d'

followed by an integer), i.e. a reference to

another Duet instruction in the same block (see

section 3.1.3).

When executing the execute list, a local Duet

reference will cause a temporary transfer of the

control to the referred Duet instruction.

-34-

3.2.1 Execute
—

But the position in the current execute list is

stored and when the instruction has been executed,

the control is returned, so that the next reference

in the list can be executed.

Block A block reference is used for execution of a Duet

reference instruction in another block. A block reference

is indicated with a 'b', followed by a block number

and an entry number in brackets. Both the block

number and the entry number can be indicated as an

integer constant or a variable reference. In the

latter case, the contents of the indicated variable a

at the run time, determines which block/entry is

being activated.

The entry number can be left out in the block

reference; in that case the first Duet instruction

in the block is implicit.

Note, that the block reference only can occur in

an execute list. All other Duet operations can only

refer to local Duet names.

The compiler cannot check whether a block reference we

is legal or not. Partly because the single blocks

are compiled independent of each other so that no

checks are executed across the block limits.

Consequently, the block reference must be checked

by the Duet system at the run time, as it has been

described in section 3.1.2.

When reaching the Duet stop in the execution of an

execute list, this is finished. It is then investigated

whether there are more operations in the current

instruction and if that is the case, the execution of

these are continued. If not, a return to the previous

level in the dynamic execution hierarchy is performed “TM

(cf. section 3.1).

3.2.1.2

Program

point

declaration

-35-

Program Points

A Goto operation cannot be expressed in Duet. It

contradicts the hierarchical execution of the Duet

program's execute lists, whose principle is that

when an instruction has been executed in its outmost

consequence, the program will return to the

previous level. The execution of an instruction may

include transfer of the control to new levels but

if the program does not end in an infinite loop it

will, sooner or later, return to the original

instruction.

In certain situations, however, one may need to

short-circuit the execution and return directly to

one of the previous levels, e.g. by data errors; or

to exit from a program loop before its stopvalue has

been reached.

This can be done by the exit operation in connection

with a program point in the execute list.

> execute d3

as

a13

p2: d13, d22

d36

Ss

Figure 3.14: Execute list with a program point.

A program point is declared at the beginning of a

line in an execute list with the letter 'p'

followed by an integer in the interval 1-9, anda

colon.

-36-

3.2.1.2 Program Points

When an execute list is executed and a line with

a program point declaration is to be processed, a

marking of the specified program point is stacked

together with the pointer for the current position

Active pro- in the list. This makes it an active program point.

gram point

At any time there can thus be several active program

points and there can, at one and the same time, be

several (program points) with the same number. To

each active program point a level is attached,

which corresponds to the dynamic level in the

program at which the corresponding execute list has

been activated (corresponding to its current position

in the stack).

Returning from the last instruction in the line, to

which a program point has been attached, this is

made passive again in connection with the unstacking.

In the example, p2, at the current level, will only

be active as long as d13 or d22 or instructions

activated from them are being executed.

If d13 is activated from somewhere else, p2 will not

become active (unless p2 has also been declared a

program point in the activating operation).

Exit The exit operation (described in section 3.2.15) can

refer to a program point. When the exit is performed,

the Duet program will return to the nearest active

program point (relative to the current level).

From this point, the next line of the execute list is

continued without any regard to whether the previous

line or the execute lists activated on the intermediate

levels have been concluded or not.

Select

OMH%3.2.1.3

Suppression

specification

-37-

3.2.1.2 Program Points

If there is no active program point with the stated

number, the interpreter returns to the basic level,

i.e. the Duet program is terminated.

The operator 'select' (see section 3.2.14) can define

an automatic exit to a program point when data errors,

programming errors and/or system errors occur.

Different kinds of program points can be selected for

different kinds of errors.

Conditional Compilation

The execute list can be supplied with a suppression

specification which causes a conditional compilation.

> execute d35

t1 pv: d123, d8, b(18)

d32

d13

t2 b (block_no, entry_no)

s

Figure 3.16: Execute list with suppression

specifications.

A suppression specification is indicated by the

letter 't' (for test) followed by an integer in the

interval 1-9.

In a normal compilation such a line will be suppressed

and so it is not included in the compiled program.

But if an ‘include' parameter is specified for the

compilation of the Duet program (cf. section 4.2) the

line will be compiled if the t-value in the line is

less than the suppress value of the include parameter.

-38-

3.2.1.3 Conditional Compilation

As shown in the example, you can also suppress a

line where a program point has been declared. In

this case the program point will never become active.

Neither the suppression specification nor the program

point declaration can be written in the same line as

the execute operation. If these are wanted for the

first reference in the execute list, this reference

must be specified on a new line, as shown in figure

3.17.

> execute

ps: d32

d33

Figure 3.17: Program point at the 1 st Duet

reference.

ve

Left side:

var.ref.

ia
MAE

-39-

Modify

The modify operation can assign variables of all

kinds by a simple transfer of a value to a variable.

Furthermore, the operation can be used for

accumulation in numerical variables. However, no

execution of calculations can take place, and

assignment is performed without the use of working

locations, thus making modify the fastest kind of

assignment.

The format of the modify operation is a list with

a variable length, terminated with a Duet stop.

Figure 3.18 shows some of the possibilities in a

modify list. /

ate CUds

> modify index := 3

arrayvar(index) := simple word

counter :+ 1

saldo :- payment

textvar := 'text constant!

array2 := array!
oF

array :

Ss

Figure 3.18: Modify list

Each line consists of a left side, an assign operator,

and a right side.

The left side is normally a reference to a simple

variable or to an element of an array variable. In

the latter case the index must be an integer constant

or a simple integer variable (cf. section 3.1.4).

Assign

operator

Right side:

value

element

-40-

3.2.2 Modify

Consequently, subscription is not possible in more

than one level at the left side.

The assign operator can be := for ordinary assign

and :+ or :- for accumulation.

The right side must be a value element, i.e. a

constant or a variable reference. At the right side

one may subscribe at several levels and a sequence

of special operators are available, which have been

described in the following subsections.

The right side must correspond to the left side, as

regards types. In this way a numerical value element

can only be assigned to a numerical variable and a

text element only to a text variable.

The following detailled description of the modify

Operator can be divided into groups according to the

kind of the right side:

1. numerical assign

2. text assign

3. anonymous assign

4 - special assign

-_

Digits

3.2.2.1

-41-

Numerical Assign

Figure 3.19 shows the possible kinds of numerical

assign.

>modify index := 3

counter :+ 1

saldo :- payment

array(index) := simple var

code := .xy.

item_group := digits) (6,4) of item_no

rest := item_no/mod)}item_group

kind := item_no; // Ditem_group

s

Figure 3.19: Numerical assigns

For numerical assign, all three assign operators can

be used with the following meaning:

= numvar := ritht side

+ numvar := numvar + right side

Hid numvar := numvar - right side

The left side must be a numerical variable reference,

i.e. a reference to a simple variable or an array

element of the type: word, long, real, date or

result.

The right side may be a numerical constant, a

character constant or a numerical variable reference.

Furthermore, the operator 'digits' can be used at

the right side. Its function is illustrated in

figure 3.20.

-42-

3.2.2.1 Numerical Assign

item no = 7/253]124

| csgies (6,4) of item no

Figure 3.20: digits

The digits operator extracts a group of digits from

a variable. The variable is regarded as a decimal

number, in which the digits are numbered from the

right so that the least significant digit gets the

number 1. The result of
oer

digits (a,b) of c

where a>=b, is an integer consisting of the digits

from the digit position 'a' to the digit position

"b' (both included). The result of the operation in

figure 3.20 is thus 253.

Note: no regards are taken to implicit decimals in

the variable on which 'digits' operates.

The result of

digits (2,1) of balance

where balance is declared with 2 decimals will then

be these decimals.

Integer Finally the right side can be supplied with an

devision, operator for integer division (//) or rest calcula-

mod _tion (mod). These binary operators can operate on

integer constants and/or integer variables and they

also demand the left side variable to be of integer

type ('word' or 'long' without any decimal indica-

tion), see figure 3.20b.

Automatic

& normaliza-

tion

-4 3-

3.2.2.1 Numerical Assign

>modify rest := 12 mod index

day := date mod 100

year := date // 10000

Figure 3.20b: mod and //

Numerical assign provide for automatic normalization,

i.e. differences in the number of decimals between

the left side and the resultant right side and

differences in type are automatically taken care of,

(except for integer division and modulo calculation).

>modify w_2_dec = 123.4

w_integer := 123.4

w_var = l_var

w_var := Y_var

s

Figure 3.21

In the example, figure 3.21, w 2 dec (declared with

2 decimals) will, after the operation, have the

value 12340 (which means 123.40) while the w_integer

contains 123.

It is allowed to assign a ‘long value’ or a ‘real

value' to a word variable but the interpreter does

not check whether the variable can contain the value

or not (cf. section 3.1.4).

-44-

3.2.2.2 Text Assign

'falkoner alle 90!

txtvar(1)

>modify address :

txtvar (2) i

tlvar_name name (v17)

ulvar_name name (var(var_no))

s

Figure 3.22: Text assign

For a text assign only the assiqn operator := can

be used and the left side must be a reference to a

variable of the type 'text' (simple or array

element).

The right side in the text assign can either bea

text constant or a reference to a text variable.

name Furthermore, the operator 'name' can be used at

the right side. This operator delivers, as a result,

the name of the specified variable in accordance

with the language code used for the ld-compilation.

This variable can be specified directly as in

name (v17)

which gives the name of the variable v17.

name (var) The variable can also be specified indirectly by the

var', e.g.operator

name (var (v32))

Here, v32 contains the variable number of the variable

whose name is wanted.

-45-

3.2.2.2 Text Assign

The compiler checks that the left side variable is

large enough to contain the resulting text at the

right side.

-46-

3.2.2.3 Anonymous Assign { (1.4)
si =

!
AL

>modify sort_crit := var (user_key)

s

Figure 3.23: Anonymous assign

var The anonymous assign can be executed by means of

‘var' specified as the first operator at the right

side. In the example, figure 3.23, the variable

"user_key' must contain a variable numer which

indicates the variable to be assigned to "sort_crit'. J

The left side must be numerical (and should be a

"long'). As the compiler cannot check the type of

the resulting right side, the following conventions

apply to the assignment:

result.right side

word are delivered as a numerical

long value with regard to the

real receiving variable's type Ne

date jand number of decimals

text 6 first characters]) are delivered

bits 4 first bytes as a bit
pattern without

recno 2 bytes any decimal

conversion

If the appointed right side variable is an array —

variable, its first element is used according to the
ate er

same rules.

3.2.2.4

= Transfer of

array

-47-

Special Assign

Special assign means an assign to something which is

not a single numerical variable or a text variable

That concerns

- a transfer of a complete array

- a reset to zero of a complete numerical array

- an assign to a bit variable and

~ an assign to a recno variable

>modify array_1 := array_2

key_aggr := record key

saved_recno := recno_result

array 2 := 0

s

Figure 3.24: Special assign

The assign operator in special assign can only be :=.
fadienbeeiadininn” Antec Ae

For transfer of a whole array you must write an array

identifier at both sides of the assign operator,

without any indication of the subscript.

In this type of moving, an absolute type correspon-

dence between the left - and right side is demanded.

For numerical values it is also necessary that the

two arrays have been declared with the same number

of decimals, whereas it is required that the length

of the single elements are identical in both arrays,

concerning arrays of the type text/bits.

The numerical

array reset

to zero

Assign bit

variables

Assign recno

variables

Ve

-48

3.2.2.4 Special Assign

If the arrays have different lengths only as many

elements. as defined by the shortest array are
ee ean

transferred. Finally no more than 2047 words can
Nt

be transferred altogether.

The resetting to zero of a complete array can be

done by writing an array identifier without a

subscript at the left side and the number 0 at the

right side. However, this possibility only concerns

numerical arrays.
ener

A bit variable can be transferred to another bit

variable if the two variables. are of the same

length. —
So pemenen en Ba

Finally a variable of the type recno can be

assigned either with the value of another recno

variable or with the number zero.

fafy - - ;

MD: @ BALE Che Ch ln re Oa.0

-49-

3.2.3 Compute

The compute operator can be used for the assignment

to numerical variables of the value of general

numerical expressions employing the ordinary

numerical operators and brackets.

The value of such a numerical expression can be

assigned to several variables, as in Algol. However,

‘compute’ cannot be used for text assign.

The format of the compute operation is a list of

variable length terminated with Duet stop (the

character 's'), see figure 3.25.

>compute v1 := v12(3) := 5

saldo := balance - payment(ser_no)

price(price_codet+2) := 22*(v13(v1)+v17)

s

Figure 3.25: Compute list.

Each line, which constitutes an assign in itself,

consists of a left side, an assign symbol (:=) and

a numerical expression at the right side.

Left side: The left side is a reference to one or more simple

general numerical variables or to elements of numerical

var.ref. arrays. The subscript of an array element can here -

as the only place in the Duet language - be a

general numerical expression according to the same

rules that apply to the right side. If more variable

references appear on the left side, these are

seperated by the assign symbol.

Right side:

numerical

expression

Real

working

register

Priorities

-50-

3.2.3 Compute

The right side is a numerical expression.

References to numerical variables (simple or array

elements, as on the left side), numerical constants

(integers and decimal numbers) and character

constants can appear as operands. The Operands are

separated by the usual numerical operators,

+o * YS

and by brackets.

The right side may degenerate into one numerical

variable or constant but in these cases it is

normally cheaper to use the modify operation.

All calculations ina compute list are performed by

means of a_real working register with usual regard

to possible decimals in the Operands. However, if

any of the operands are long values with more

significant digits than 36 bits can contain, the

computation will cause a loss of accuracy.

The calculation of an expression in the compute list

is carried out according to the following (normal)

priority rules:

1) subexpressions in brackets before the

surrounding expressions

2) operations with * and / before operations

with + and -

3) from left to right.

SS

3.2.4

Selective

assign

Assign list

Assign

variable

-51-

Assign - of

This operation, called selective assign, is used to

assign a simple integer variable governed by the

value of a test variable.
Oy

=

>assign value cote := test_var of

xy. 3 3 OSA Lr LCE pe ¢
973 : code

v32 : .abc.

s

Figure 3.26: Selective assign

The operation contains a (variable length) assign

list of test values (to the left of :) and their

corresponding assign values, see figure 3.26. Both

test values may be simple integer variables, integer

constants or character constants but none of them

must exceed 24 bits.

The variable that is to be assigned must be a simple

integer variable. The test variable, however, may be
acme te

an arbitrary numerical variable, simple or array .

element; only it must not be of the type ‘real' or

have a decimal indication. The assign variable and

the test variable may be the same variable.

The assign list may either be terminated with Duet

stop (as in figure 3.26) or with an alternative

value or an alternative action (figures 3.27 and

3.28).

-52-

3.2.4 Assign - of

>passign v2 := v1 of

1 : 100

2 : 0

else v35

Figure 3.27: Selective assign with an

alternative value

>assign type := code of

-Ov. : 1 ,

-ok. 2 lap

-Ok2.: 2

else d19 ; error action

Figure 3.28: selective assign with an

alternative action

The operation works in the following way: The value

of the test variable is successively compared with

the test values in the list. When meeting a test

value which is equal to the value of the test

variable the comparisons are stopped and the assign

variable is given the corresponding assign value.

If none of the test values apply to the testvariable,

the reaction depends on whether the assign list is

terminated with a Duet stop, an alternative value or

an alternative action.

Alternative

value

Alternative

action

(@ Duet stop

-53-

3.2.4 Assign - of

An alternative value is stated with 'else' followed

by a simple integer variable, an integer constant or

a character constant; and this value is always

assigned to the assign variable if none of the test

values fitted.

If an alternative action is stated, i.e. 'else'

followed by a Duet name, this Duet instruction will

be executed if no test value was found.

Finally, the Duet stop can be stated. This corres~

ponds to an empty alternative action like ‘else do’.

In this case nothing is executed.

Numerical

relation

~-54-

if - then w

A conditional execution of a Duet instruction can

be effectuated by the if - then operation, whose

format is shown in the examples in figure 3.29.

>if v32(v14(2)) <>0 then d19 else d20

>if balance < credit_maximum then d930

>if code = .t13. then d14 else 365

Figure 3.29: if - then operations.

Between 'if' and 'then' a single numerical relation

must be stated, in which the symbols below can be

used as relation operators:

smaller than

VOA greater than

u equal to

<>: different from

No compound symbols can be used (i.e. <=) neither w

any compound relations (i.e. 'and' and 'or'). The

left side of.a relation must be a numerical variable

reference (simple or array element). The right side

may furthermore be a numerical constant or a character

constant; that is, a usual numerical value element.

If the condition is fulfilled (the relation is true),

the Duet instruction stated after 'then' is executed.

If the condition is not fulfilled, the Duet instruction

stated after 'else' is executed.

If 'else' is left out, nothing is executed in the relseyy

situation, corresponding to 'else d0'.

-55-

Case - of

The case branching in Duet resembles, in its functions,

the Algol case statement.

> case test_var of

1: d32

d318

do

4: d32

else d27

Figure 3.30: case operation

The format of a case operation is shown in figure

3.30. The numbers in front of the Duet names are

redundant comments. They can be left out but if a

number is stated, the compiler checks whether it fits

its location in the list.

The test variable can be an arbitrary numerical

variable, simple or array.erlement; only it must

neither be of type ‘real' nor be declared with

decimals.

In the execution of a case operation the Duet

instruction is activated, whose location in the list

of Duet names corresponds to the value of the test

variable.

If the value of the test variable is less than 1 or

larger than the amount of Duet names in the list,

the instruction after 'else' is always executed.

The case list may be terminated with the Duet stop

("s') instead of 'else', which corresponds to 'else

do’.

3.2.7

Selective

-56-

Action - of &

This operation, called selective branching, resembles,

in principle, the selective assign (section 3.2.4).

It causes an execution of a Duet instruction,

conditioned by the value of a test variable.

Where the range of the case branching (cf. section

3.2.6) is limited to a sequence of consequtive

positive integers from one and upwards, then the

range in selective branching is almost unlimited.

However, a search must be made in a list of the

single relevant values. The current situation must rr

then determine which, of these two possibilities,

is the most advantageous.

> action text_var of

~Xy- : di9

973 : a318

vi2 : do

else a27

Figure 3.31: selective branching.

The operation contains a (variable length) action list

of testvalues and corresponding Duet actions. The

list is terminated with Duet stop ('s') or an alterna-

tive action (as in figure 3.31).

The test variable can be an arbitrary numerical

variable, simple or array element, only it must not

be of the type 'real' or be declared with decimals.

Simple integer variables, integer constants and

character constants can be used as test values. The

test values must not exceed 24 bits.

-57-

3.2.7. Action - of

In the execution of an action-operation, the test

variable is compared successively with the test

values of the list. If a test value is found which

equals the value of the test variable, the

comparisons are stopped and the corresponding Duet

instruction is activated.

If none of the test values match the test variable,

the operation is ineffective unless an alternative

action has been stated with ‘'else'. In this case the

instruction, stated there, is executed.

-58-

For - do —

Program loops are made in the Duet language by the

‘for - do' operation or by the 'while' operation

(section 3.2.9).

> for control_var := start, stop do d32

> for v17 := 3,5 do d100

Figure 3.32: for - do operations

The format of a for - loop is shown by the examples

in figure 3.32.

The control variable must be a simple integer variable

while the start - and stop value may be integer

numerical value elements.

The operation is executed in the same way as the

Algol sentence

T

Tj
for control_var := start step\ 1 yuntil stop do....; CS

>

ee
——

only with the difference: that in Duet, the stop

value is computed once and for all before starting

the loop. It is thus not possible to interrupt the

loop from within by changing the value of the stop

element.

An interruption of the loop from within can, however,

be caused by changing the value of the control variable

or by the exit operation (see section 3.2.1.2 and

3.2.15).

-59-

While - do

A while - loop in the Duet has the format, shown in

figure 3.33.

> while testvar <>0 do d313

Figure 3.33: while operation

A numerical relation must be indicated between 'while'

and 'do' and it must fulfil the same syntactical

demands as the relation in the if - then operation

(cf. section 3.2.5).

The operation works in the following way:

f

If the relation is true, the stated Duet instruction
—

is executed and the relation is re-tested. When the

relation gives the result: false, the Duet instruction

is not executed and this terminates the operation.

3.2.10

read_general

End of string

-60-

Getline

The 'getline' operation causes a call of the reading

procedure ‘'read_general' which reads a text string

from the zone 'readz'. (This zone must be opened by

the control program to the input text area).

> getline textvar

Figure 3.34 getline

The parameter to the getline operation is a text

variable in which all of the read text string is

delivered. Furthermore, the text is separated into

fields to be used by the reading operation 'read'

(cf. section 3.2.11).

Getline terminates the reading when meeting a

Character in the input, which, in the system's

character set table has been defined as an 'end of

string' character (see section 3.2.11). This is

normally the characters line feed (ISO value 10, nl)

and end medium (ISO value 25, em).

If there is no 'end of string' character the reading

will terminate after 150 characters, corresponding to

the longest line 'read_general' can read.

If the text variable stated as parameter for 'getline'

is tog. small to contain the whole input line, only

part ‘Of it will be transferred to_the variable. Yet
the whole line is always available for interpretation
by the Duet operation ‘read’.

-61-

3.2.10 Getline

In certain program types it is more appropriate to

let the application program activate the reading of

text strings by calling the ‘read_general' procedure.

In this case, the corresponding Duet program must

not use the getline operation.

« . tl u

3.2.11

3.2.11.1

Character

set table

-62-

Read

A text string delivered by the getline operation or

‘read_general' can be looked upon as a sequence of

fields which can be recognized successively by the

Duet operation ‘read’.

The read operation can

- read a field from the input string

(numerical field, text field or

character field) and

- perform a value check of the field.

or

- assign a field's standard value.

Classification of fields

The interpretation of a line is controlled by a

character set table which is defined by the Duet

system's initialization procedure ‘init duet2',

(but may be redefined by the control program). For

each ISO value the table determines a character

class and an internal character value.

The internal character value is equal to the ISO

value in the standard table, except for capital

letters (ISO value 65 - 93) which are altered to

small letters (97 - 125).

The character class is used for determining the

termination of the text string, as well as the

limits between the fields and the kind of the fields

in the test string. Figure 3.35 shows the existing

character classes and their standard initialization.

Comment

field

Text fields

Numerical

field

Character

field

-63-

3.2.11.1 Classification of fields

order | meaning character

<9 illegal

9 blind

10 end of string nl em (new line/end medium)

11 text delimiter ' (apostrophe)

12 comment delimiter " (quotation marks)

13 digit 0123456789

14 ordinary delimiter sp, (space and comma)

15 sign/standard mark - (minus)

16 decimal point . (point)

>16 other characters letters, special characters

Figure 3.35: character classes

A comment field is a number of characters given

between two comment delimiters (quotation marks).

‘Read' always skips any comment fields.

A text field is a number of characters stated between

two text delimiters (apostrophes).

A numerical field consists of digits, possibly with

a decimal point and/or a prepositioned minus character.

A post positioned minus character cannot be read.

A character field consists of at most three single

characters (a letter or a special character followed

by letters, special characters and/or digits). These

characters are packed as a character constant by

"read'.

end of string

Ordinary

delimiter

3.2.11.2

Read mode

-64-

3.2.11.1 Classification of fields

The end of string character (nl/em) cannot be

included in any field. This means that if the

terminating text-/comment delimiter is missing,

the text/comment is terminated by an end of string

character.

Ordinary delimiters (sp/,) may be included in text

fields and comment fields but they terminate

numerical fields and character fields.

Read Specifications

The 'read' operation is controlled by a read

specification which contains a read mode and a

reading variable. For each call of 'read', one

field of the input string is interpreted and the

value of this field is transferred to the reading

variable if it matches the stated read mode.

> read n2 customer_no 7 read numerically

> read t1 address ; read text

> read c13 code } read character group

—read voce l Ls ceatne variable
term.code

no. of characters

Figure 3.36: read

The read mode indicates the nature of the expected

field and the way in which it is to be read and be

represented in the reading variable.

n

numerical

text

chars

Terminator
——

code

-65-

3.2.11.2 Read Specifications

n indicates the reading of a numerical field,

i.e. an integer or a decimal number with a sign,

if any. The reading variable must be numerical

and the value is delivered in accordance with

the variable type and number of decimals.

t stands for the reading of a text field with

surrounding text delimiters (apostrophes). In

the reading variable, which must be of the type

‘text', the characters between the two text

delimiters are delivered in a normal text form.

c indicates the reading of a character field

(chars). For this purpose, the maximum number

of characters allowed in the field, must be

specified (1, 2 or 3). The reading variable must

be an integer variable (word) in which the

characters are represented in the same way as a

character constant in the Duet program (see

section 3.1.4). A field starting with a digit

cannot be read as a character field.

The terminator code defines which type of delimiter

is allowed as terminator for the current field. The

following codes apply:

0: the terminator is not read and is not

checked.

1: the terminator must be an ordinary delimiter

(char.class 14),

2: the terminator must be an end of string

delimiter (char.class 10).

3: the terminator may be an ordinary - or an end

of string delimiter.

-66-

3.2.11.2 Read Specifications —_

Resultvar After the reading operation the result variable

readterm ‘result.readterm' states which terminator was

read:

result.readterm = no terminator readOQ:

> 0: ISO value for terminator.

If the terminator is read, all the coherent terminators

are read up to the next field or perhaps up to the end

of string. In this case only the last terminator is

stored and checked.

Several Several read specifications can be stated in one

read spec ‘read' operation; by which is meant that several

different kinds are allowed for the current input

field, see figure 3.37.

> read ni text_no, t1 text, c13 code

Figure 3.37: 'read' operation with several

read specifications

In the execution of a read operation it is checked

if the input field fulfils the syntactical demands,

which corresponds to the read mode in the first

read specification. If this is not the case, a

reading is attempted in accordance with a possible

additional read specification in the current

Operation. 'Read' continues in this way, until the

field has been found syntactically correct, or

there are no more read specifications. In the latter

case an error reaction is activated by calling the

procedure: 'duet_data_fejl' (cf. section 5.3.1).

-67-

3.2.11.2 Read Specifications

> read s, ¢13 line_code

Figure 3.38: 'read' specification with reading

of a prepositioned delimiter

In front of the first read specification you can

state ste This means that if an ordinary delimiter

(SP/,), which has not yet been read, is positioned

in the current location of the input string, then

the following field is not read.

This marking is only significant when readi

first field of the line or if the 'read' operation,

last executed was reading with the terminator code

0.

3.2.11.3 Check of value spectrum

When a field has been found syntactically.correct, a

possible value check is executed, determined by the
value spectrum of the reading variable in the ld-

description. It is checked that the value of a

numerical variable is inside its permitted value

spectrum. The number of characters read to a text

variable is checked to be inside the permitted

interval.

For variables without any value limits the only check

is that the value can be contained in the current

variable.

3.2.11.4

Explicit

standard

mark

Implicit

standard

mark

{

stdassign

-68-

3.2.11.3 Check of value spectrum

If the read value is outside the permitted value

spectrum an error reaction is activated.

Standard Value

If only a single character of the class standard

mark (minus character) is given as a field in the

input string, no actual reading is executed.

Instead, a standard value is marked for the first

specified reading variable if this is declared

with a standard value in the ld-description. If not,

an error reaction is activated. —

The same possibility of an automatic standard value

marking exists if you continue reading of fields,

after the input string has been exhausted. This will

be regarded as if a standard value had been stated

for the field.

This facility makes it possible (without any special

syntactical marking) to shorten those lines in the

input, in which all the remaining fields should

receive a standard value.

The processing of the standard mark depends on the

value of the variable 'stdassign':

- stdassign <> 0: the standard value specified

for the read variable in the ld-description is

assigned to the variable.

- stdassign = 0: the value of the reading variable

is not altered as a standard value is supposed

to have been assigned to the variable previously,

e.g. by a db-operation (cf. section 3.2.13).

Resultvar

-69-

3.2.11.4 Standard Value

The variable 'stdassign' is reset to zero by the

call of ‘init _duetmaskine'. It may be changed by

the control program after this call but it may also

be changed dynamically from the Duet program by

using the 'select' operation (see section 3.2.14).

After the reading opertion, the result variable

‘result.readspec' specifies, which read specification

has been executed:

result.readspec = 0: standard value or

prepositioned delimiter

read

> O: the number of the effectuated

read specification

(If the result variable has not been defined, this

piece of information will simply disappear).

3.2.12

‘primula'

-70-

Print

The print operation is used for printing results

(by means of the 'primula' system). The printing

is carried out via a line buffer of 132 positions,

which may be assigned in an arbitrary sequence.

By a special print command this line buffer is

transferred to a result area via a zone in the

zone array 'prinz'. The control program defines how

many zones this zone array contains and opens each

zone to its respective result area (cf. section

5.2.1 and 5.5.1).

With the 'select' operation (which has been

described in section 3.2.14 the current zone within

the zone array is selected and this choice is valid

until the next call of 'select'. The call of the

‘init_duetmaskine' procedure always selects prinz(1)

as print channel.

The format of the print operation is a list of

variable length, terminated with a Duet stop (the

character 's') as shown in the example, figure 3.39.

> print <p 1 t23> : cust name; form feed

<25 n8> : cust_no

d335 : ; compute balance

<21 25 n6.2>: balance

< 125 c9> : .=.

s

Figure 3.39: print list

-71-

3.2.12 Print

Each line is either a Duet name or a print line

consisting of a layout and a value specification.

Duet name If the line is a Duet name it must be the name of a

Duet instruction in the same block and this Duet

action will be executed in the same way as in an

execute list. No block references can be written.

It is not allowed to write more than one Duet name

in one line.

©) Print line A print line consists of a layout specification

which describes how the printing is to proceed and

a value specification which states what is to be

printed.

3.2.12.1 Layout Specification

The layout is surrounded by brackets <>. Between

these is stated either:

- a solitary horizontal specification

or

- a vertical specification

- a position specification

- a layout type and

- a layout parameter

Horizontal A horizontal specification is stated with the

specifica- character 'h' followed by a position indication

tion: basic which may be a numerical constant or a single

position integer variable in brackets. Hereby a basic

position is specified which, during the run, is

added to all the position values until meeting a

new horizontal specification,

-72-

3.2.12.1 Layout specification

The basic position is reset to zero by the ‘init

duetmaskine' procedure.

Vertical A vertical specification indicates that the line

specifica- buffer must be transferred to the result area, after

tion which the printing of either a form feed, a vertical

tabulation or a line feed (ISO value, 12, 11 or 10,

respectively) proceeds. This is stated in the layout

with the character p, w or f, respectively - the

latter may be initiated with a parameter that

specifies the number of line feeds. The parameter

may be an integer constant or a simple integer

variable. In the latter case, the current number of

line feeds are not determined until during the run.

The numer of line feeds must not exceed 70, corres-

ponding to a full page A4-vertical.

Position The position indication determines the number in the

line buffer on the first character of the current

field. The indication may - like the horizontal

specification - be either an integer constant or a

simple integer variable in brackets. The value of

the position must be inside the range 1 - 127.

Layout type The layout type and the layout parameter determine

and layout the format and the size of the field to be printed

parameter in the linebuffer; and they also make certain demands

on the type of the value indicated by the value

specification.

t: text The layout type t indicates text printing and the

value must be of the type 'text'. The layout

parameter, which may be an integer constant or a

simple integer variable in brackets, indicates how

Many positions are available in the line buffer.

If the text is more extensive, it is shortened.

-73-

A 3.2.12.1 Layout Specification

c: char The layout type c indicates the character printing

(charprint). The value must be numerical and it will

be interpreted like a character constant (cf. section

3.1.4). The layout parameter must also here be an

integer or a simple integer variable in brackets

which indicates how many times the character constant

must be printed. (The character printing is thus

suited for e.g. printing of underlinings and the like).

If the character constant consists of more than one

character the whole character sequence will be

A repeated.

n: num The layout type n indicates a numerical printing and

demands the value to be numerical. The layout

parameter for this, is constructed by the following

elements, in the sequence shown below:

- a fixed-sign marking

- a zero representation statement

- a zero value statement

- number of principals

~- number of decimals

@rixca sign The fixed sign marking, indicated by a minus
character, means that the sign of a possible

negative value always must be printed in the

first field position. If the marking is left

out, negative values are printed with floating-

point signs, i.e. immediately before the first

significant principal digit.

zero repr. The zero representation statement specifies how

z * insignificant figures are to be printed. If

the character 'z' is stated, prepositioned zeroes

are printed and if '*' is stated, this character

a is printed instead of prepositioned zeroes.

zero value

b

Principals

number

Decimals

-number

-74-

3.2.12.1 Layout Specification

If the statement is left out, the prepositioned

zeroes are printed as blanks.

The zero value statement specifies, with the

character 'b', that the value zero should be

printed as a totally blank field, without regard

to a zero representation statement, if any.

The number of principals is expressed with an

integer stating how many character positions are,

at most, to be included in the principal part of

the number. If a floating-point sign is used the

minus character will take up one of these

positions. The principal specification is the

only parameter element which cannot be left out.

The number of decimals is specified with a point

followed by a number indicating the number of

decimal digits to be printed. These will always

be printed in full.

Figure 3.40 gives an informal outline of the layout

possibilities:

-75-

3.2.12.1 Layout Specification

integer

h

integer varn (g) J

horizontal

specification

integer 1 integer t integer \
(integer var) p (integer var) Cc (integer var)

*

w n “|, b|princ | .dec

u Jw J u J

vertical— layout parameter
specification layout type

position

Figure 3.40: layout

See also the examples in figure 3.39 and 3.42.

3.2.12.2 Value Specification

If the layout contains a layout type (t, c or n), a

value specification must be stated, whose type must

correspond with the layout type.

text value For a text layout (t) a text value must be stated,

i.e.

1) a text constant (one or more text characters

within apostrophes),

2) a text variable

3) a variable name, e.g. name (v32)

-76-

3.2.12.2 Value Specification ~_

numerical For a numerical layout (n) or a character layout (c),

value a numerical value must be indicated; this may be:

4) a numerical constant

5) a character constant (1, 2 or 3 text characters

between points)

6) a numerical variable

7) an expression of numerical variables and/or

constants

8) a digit group extracted from a numerical

variable by the operator, ‘digits’

9) an integer expression stated with the operator, —

"mod' or //.

The points 1-2 and 4-6 belongs to the concept

‘value element' (cf. section 3.1.4). The expression

in point 7 corresponds to what can be written after

the assign symbol in a compute list (cf. section

3.2.3).

The digits-operators and the name-operator have been

described under 'modify' (section 3.2.2).

The operators for the integer division and the modulo \D

have also been described under 'modify'; note, how-

ever, that in these operations the layout must not

contain decimals.

Automatic Numerical printing will always take place with an

normaliza- automatic regard to possible decimals in the value

tion to be printed, so that the layout's decimal point

always will follow right after the value's unit

position, as shown in figure 3.41.

-77-

3.2.12.2 Value Specification

> print <1 1 n&é> : var_2 dec

< 11 n5.2> : var_2 dec

< 21 n3.4> : var_2 dec

Ss

When var_2 dec contains the value 123.45, this

print operation will print the line:

123 123.45 123.4500

Figure 3.41: processing decimals in print.

Between the layout and the value specification, a

colon may be written (out of consideration for those

who are used to write GENIUS programs) but this

colon is not compulsory (out of consideration for

those who are accustomed to use the previous Duet

language) .

Figure 3.42 shows a more extensive example of a

print operation. The Duet compiler attends to the

printing of the value specifications and the comments

beneath one another, but it does not alter the

structure of the layouts. We recommend that you provide

a certain editing of the latter.

-78-

3.2.12.2 Value Specification

d10: print

d11: modify

> if

d12: modify

> print

da20: print

d11

<21 4 t30 >

< (v2)n5.2 >

<1 4+t30 >

< (v2)nb5.2>

< h(v1) >

d20

<h 0 >

<113t10 >

< 231 >

< 25 n3.1 >

< 30c1 >

<1 >

s

customer _name

balance - payed

name (v32)

payed

ee ee we

customer discount

(v13(2) - v3*100/v3
37 meee ee ee ee te ne

line counter :+ 4

Ss

line counter > max line then d12

page_no :+ 1

line counter :=

s

<p 5 t30>

< 50 t40>

< 55 n3 >

s

< 1n2 >

< 3 mz2>

< 6 mz2>

< 3c1 >

< 6cl1 >

s

0

‘list op customers and

page_no

digits (2,1) of date

digits (4,3) of date

digits (6,5) of date

46

46 mee te we ee

possible head line

text variable

new balance

variable name

basic pos. for date

print date

basic pos. zero

fixed text

colon

discount

p.c. character

exhaust the last line

payments'

day

month

year

point

point

Figure 3.42: print example

3.2.12.3

-79-

Printing with Standard Layout

In order to substitute the 'list' operation, which

could be used for standard printing of variables

in the old Duet language, two kinds of printing with

standard layout have been introduced. They are both

shown in figure 3.43.

<a 5,20> numvar

<a 5,20> txtvar

<1 1 t40> 'standard printing, fixed texts'

<s 5,25> ‘customer name', cust_name

<s 5,30> '‘'balance', balance

s

print <1 1 t40> 'standard printing with var.names'

Figure 3.43: standard layout

The standard layout contains a layout type, ‘a' or

‘s' and two position statements, integers separated

by commas. Only a simple variable can be stated as a

value specification.

The first position states the starting position for

printing a variable designation. By layout type ‘a'

the variable's name is printed whereas the stated

text constant is printed by the layout type 's'.

The specified variable is printed with a standard

layout which takes the variable's type and possible

number of decimals into consideration.

-80-

3.2.13 DB-operations

The Database-operations in Duet (db-operations) are

based on the DBMS-procedures of the Soda-system

(see ref. 2), as each db-operation in Duet calls the

Soda-procedure with the same name. The format of the

db-operations is as shown below in the examples in

fig. 3.44,

> get s1

> next s (setno)

> lookup s7

> put s (v2)

> delete s2

> newset s7

> create s3, i7

> create s (v15), i (v16)

Figure 3.44: db-operations

The first parameter indicates the set no. For create

furthermore, the record type must be specified. Both

set no. and record type can be indicated with

integers (e.g. s3 and i7), or by reference to a

simple integer variable (e.g. 's(setno)' and 'i(v16)'.

If the latter is the case the setno/record type is not

decided upon till the start of the run.

The examination of the individual db-operations

below is rather sketchy. For a close examination see

the Soda-manual (ref. 2).

get

next

lookup

create

a]

put

-81-

3.2.13 DB-operations

The operation 'get' fetches by direct access a

record from the Database, and makes this record a

‘current record' in the set. Values are transferred

from record fields to variables according to the

field associations in the ld-description containing

mere

The operation 'next' fetches either the next record

in the set after the one last read by 'next', or

the first record in the set, when 'next' is called

just after 'newset'. The record becomes ‘current

record’ in the set. The value is transferred from

record fields to variables by the same procedure as

in 'get'.

The operation 'lookup' checks whether the record

with the indicated keys is included in the set or

not. Even though the record exists, is will not

become a ‘current record', and no field transfers

are performed. 'Lookup' can only be used on sets

belonging to cf-master files (set type M).

The operation 'create' creates a new record and makes

this a 'current record' in the set. Variables

attached to the current record type are initialized

with a standard value according to the field

associations in the ld-description containing '*'.

The operation 'put' delivers the ‘current record' of

the set to the Database. After 'put' no ‘current

record' exists.

3.2.13 DB-oper

-~82-

ations

By ‘put! after "get/next' an existing record in the

Database is replaced by a new version, and values

are transferred from variables to record fields

according to the field associations containing '>'

or '=>!',

By 'put' after

the Database,

‘create’ a new record is inserted into

and values are transferred from

variables to record fields according to the field

associations containing
‘a>! or 't=>!

The location of the new record in the file depends

on the set type as shown in the table, fig 3.45.

set type | file type | previous | record is inserted

activity

M cf-master ~ according to keys

B bs-file ~ always at the end

of file, (at eof)

cf-list, ~ insertion is not

allowed

newset as the first in

the chain

L cf-list next in front of prev.

subscrip- "current record'

ted

end-of- at the end of the

chain chain

Figure 3.4 5: location of new records when

inserted into the Database.

delete

newset

result.soda

-83-

3.2.13 DB-operations

With the operation ‘delete’ the ‘current record' of

the set is deleted from the Database. After this no

‘current record' exists any longer in the set.

No field transfers are performed. If the set belongs

to a bs-file, all the succeeding records in the set,

if any, are consequently deleted.

Finally the operation 'newset' is designed to

initialize a sequential scan of the file. No

‘current record' exists in the set after 'newset',

and no field transfers are performed. The starting

position for a later sequential reading is

defined by the set type as shown in fig 3.46.

set type ; file type position is defined

M cf-master according to keys

identspec exists:

B bs-file according to keys

no identspec:

at the start of the file

cf-list, sing. |newset is not allowed

cf-list, subscr.Jat the front of the chain

Figure 3.46: position after 'newset'

The result of the db-operation is accessible through

the result variable defined as 'result.soda' with the

following values:

result.soda = 0: db-operation ok

= 1: record does not exist

2 : error in db-operation

-84-

3.2.13 DB-operations

Result 1 is accepted as a result to operations

"lookup' (the wanted record does not exist) and

"next' (end of chain/end of file), while this result

after 'get' will cause the call of the error

procedure 'duet data _fejl'.

The result values 2 and forward always cause the

call of an error procedure, either ‘duet_data_fejl',

"duet_program_fejl', or 'duet_system_fejl' depending

on the type of error (cf. section 5.3).

—

result.recno After the insertion of a new record in a cf-list file

or a bs-file the result variable result.recno

contains the position of the new record. This position

may later be used as a key for direct access to the

file/set.

-85-

3.2.14 Select

The 'select' operation is a garbage action by which

various run parameters can be altered dynamically

during the execution of the Duet program.

The following items can be selected:

- print channel for result-, error - or test

output,

- reaction on error situations,

- reaction on reading of standard mark, and

- set/clear test variables

The format of the select operation is a list of

variable length terminated with a Duet stop (the

character 's'). Each line in the list executes one

of the above-mentioned actions, and the various

actions can be mixed arbitrarily among each other

as in figure 3.47.

> select print on 3

test a :+ 0, 2, 23

print test on 4

return on data error

exit p9 on system error 11, 12

no stdassign on read

Ss

Figure 3.47: example of a select list

In the following passage various possibilities are

discussed in their respective subsections.

3.2.14.1

channel no.

out

-86-

Select print

The print channel (i.e. subscript in the zone array

‘prinz') for result output, error messages and

test output, can be selected by 'select print'

the format of these lines is shown in figure 3.48.

> select print on v32

print data error on 6

print program error on 9

print system error on v16

print test on 0

s

Figure 3.48: select print

The channel number can be stated with an integer

in the interval 0-9, or with a simpel integer

variable. The Duet interpreter checks that the

channel number does not exceed the number of zones

in 'prinz'.

The channel number 0 means: print on the zone 'out'.

This possibility, however, is only available for

error messages and test output. The result output

can only be printed on one of the 'prinz'-zones.

Standard values for channel numbers are used when

the select print has not been called. Standard

channel for result output is 1 (prinz (1)) and

for error messages and test output 0 (out).

These standard channels are selected each time the

procedure ‘init _duetmaskine' is called; the test

channel, however, is only selected once when calling

‘init_duet2'.

3.2.14.2

-87-

Select exit/return

The reaction after an error message is selected by

‘select exit' and 'select return'. The standard

reaction to any error is an exit from the Duet

interpreter (cf. section 5.1). This can be changed

selectively for each of the error types so that the

Duet program either exits to a program point (cf.

section 3.2.1.3) or returns in order to continue

the program. The possibilities are shown in figure

3.49.

> select exit p3 on data error 2,7,5 exit to p3

return on data error 6,8 3 proceed unchanged

ws

exit pO on data error 11 exit out of program7

7exit p0 on system error exit for all system

errorswe

return on program error proceed after allee

; duet-program errors

Figure 3.49: select error reactions

pO cannot be defined as a program point. Here it is

used to state an exit from the Duet interpreter.

If one or more integers are stated after the error

type (data error, program error, system error) the

reaction applies exclusively to the error number,

specified that way. If the error number is omitted

the reaction applies to all errors of the type in

question.

3.2.14.3

3.2.14.4

Select stdassign

-88-

—

This defines whether, or not, the standard value is

to be assigned to the read variable by reading the

standard mark.

There are only two possibilities as shown in figure

3.50.

> select stdassign on read ; Standard value

s 7; is assigned

> select no stdassign on read; standard value —

s ; is not assigned

Figure 3.50: select stdassign

Select test

Some bits in the test variables: testa, testb, ---

testg, testh can be set and cleared by means of the

"select test' as shown in figure 3.51.

—

> select test a := on

test b := off

test c := 0,1,3,7

test d :+ 3,4

test e :- 21,22,23

test f := duet_testvar

test g :+ vi7

test h :- vi6

s

Figure 3.51: select test

~89-

3.2.14.4 Select test

Note: a space is required between 'test' and the

names of the test-variables ('a', ‘b', etc.).

assign The following assign operators can be adapted:

operator

:= for ordinary assign

:+ for addition of further bits and

:- for deletion of single bits

test bits After the assign operator follows a designation of

ans) the test bits which are to be set, added or deleted

in the test variable. The test bits are numbered

from the right with the numbers 0-23.

‘On' or 'off' can be stated; they reset all testbits

to 1 or to zero respectively. This possibility can

only be used together with the assign operator :=.

Test bits may also be written as one or more

integers separated by commas by which the bit
—

numbers, of the test bits which are to be set/added/
enna

deleted, are stated.

Finally a simpel integer variable can be stated.

Here the bit pattern, which is contained in this

variable, is set/added/deleted in the test variable.

The test variables testa, testb, testc and testd are

ns, St = . ‘ aoa +

The test bits

test d := 1, 2, 12

can be useful for the programmer, when debugging a

*ires,

1

new Duet program. The setting of these bits pro-

vides a dynamic trace or monitoring of the running

program with the following test printing:

“ bit 1: perform <duetname>
bit 2: operation <opt.name>

bit 12: return <duetname>

-90-

3.2.15 Exit

. > exit pa 7 exit to the program point p4

Figure 3.52: exit

The format of the exit operation is shown in figure

3.52. dt causes a return to the~nearest, active
program point with the same number as described in

section 3.2.12.

The program point must be stated within the

interval p1 - p9.

3.2.16

algol

special

action

Algol

-91-

The 'algol' operation is the user's escape

possibility, by which Algol-coded special actions

in the control program can be activated. This

facility is used for program parts unfit for coding

in the Duet language.

> algol 3 ('text constant' 12345,

name(v27),

adr(v27), adr(var(v16),

customer_no).

> algol 15

Figure 3.53: algol

For the 'algol' operationan integer must be stated,

indicating the number of the wanted special action.

Pur ppemmorel a parenthesis can be stated, containing

parameters separated by

commas and possible line-feeds. These parameters

must be interpreted by the special action as

described in section 5.4.

The permitted types of parameters are:

1)

2)

3)

4)

5)

6)

7)

text constant

text variable

name of the variable specified

by means of the 'name' operator

numerical constant

character constant

numerical variable

address of the variable specified

by means of the ‘adr' operator.

adr

adr

()

(var ())

-92-

3.2.16 Algol

The 'name' operator has been described under modify

(section 3.2.2.2).

The 'adr' operator states that the address of the

variable, referred to, is requested. If the variable

is an array, or if it is to be used as a return

parameter (i.e. is assigned by the special action)

it is necessary to use the 'adr' operator. It can

be used as shownin figure 3.54.

> algol 2 (adr(simple_var),

adr (array var),

adr(var (simple _var)),

adr(var (array _var (subscr))))

Figure 3.54: Algol action with adr-

specified parameters

After 'adr(' a variable name (or -number) can be

stated directly. A subscript must not be given to

an array variable. The address which will be

delivered to the special action will then be the

field address of a specified, simpel variable,

alternatively the field address of the first element

of an array variable.

If 'tadr (var(' is written instead, the specified

variable must contain the variable number of the

wanted variable. In that case it is the field

address of this variable, stated indirectly, which

is computed.

Execute

Modify

Compute

Assign Case

Action

Read

Print

Select

| @ Algol

-93-

DUET 21-V032

Maximum limits in duet operations

An execute list can contain 127-255 duet references,

depending on the number of block references and

program points appearing between the local duet refe-

rences.

A line containing the declaration of a program point

can contain no more than 7 duet references.

A modify list and a computelist can contain at most

127 references to variables and/or constants.

An assign, case, or action list can contain 127 test

lines.

A read operation can contain up to 3 read specifica-

tions.

In a print list no more than 127 layout elements can

be specified. As layout elements are counted each of

the following types:

duet reference

(new page)

(line feed)

(horizontal specification)

(numerical layout)

(text layout)QQ ¢ BD YF FS (character layout)

A standard layout counts as 2 layout elements (a line

feed and a numerical or text layout).

The select operation can contain a maximum of 127

lines.

The algol operation can be specified with at most

7 parameters.

-94-

4.1 Program Text and Listing

The Duet program text can be read either from a

text file common text file on a disc or from a Sysdok file.

If the program text is stored ina Sysdok file, it

is recommended to place the separate Duet blocks in

co-ordinate subsections. By a partial compilation

of a single block the subsection in question can be

specified, and the time the compiler would use to

skip the other Duet blocks could be saved. In this

case, however, the Duet head can not be checked.

editing When keying the program text it is not necessary to WO

edit the lines as they appear in the examples in

section 3. The compiler will take care of the

editing itself, when the program is listed.

form feed The listing will also be equipped with form feeds

corresponding to the type of paper on which listing

is being made. Apart from that, you can force a form

feed in front of a Duet operation by writing the

-t+- new-page symbol '-+-' and/or a stopcode character

(IsO-value = 12). In front of a block-start only a

stopcode character is allowed. A change of section

in a Sysdok file will not cause a form feed, however.
once —

In the listing all lines are printed with two line

external and numbers. The external line numbers are printed first

internal i.e. Boss lineno. or Sysdok lineno. After that

lineno. follows an internal lineno., which numbers the lines

in a block from 1 and onwards/upwards. By error

messages always the internal lineno. is being

referenced.

When editing, the single lines are divided into

columns as shown in fig. 4.1.

-95-

4.1 Program Text and Listing

d132: assign code := testvar of ; comment

<a. 23

11 2: 2

else d15

> execute d17

p2: d32, d18 3 program point

t3 d998 ; test write out

s

; empty line

> print <1 17 n 5.2>: amount)

< 26 t2> : 'd.kr'

s

instr. operator- operand column comment column

colum column

Figure 4.1 Line editing

The editing is performed so that line parts of the

same type are always printed

Within the operand - and the

must perform the editing, if any,

spaces to get the

assign list).

In a printline, however,

(e.g.

below one another.

comment part the user

insert

placed under one another in an

the compiler performs some

editing as the print values here are edited below one

another, but any editing within the layout must be

controlled by the user.

comment lines

-96-

4.1 Program Text and Listing

Pure comment lines can be printed in two ways: If

the comment character(;) is the very first in the

line, the comment is justified left starting in the

instructions column. If however there exist one

space in front of the ';', the entire comment is

printed in the comment column. This can be used to

distinguish between a heading comment and ordinary

comment lines.

input

-97-

Activating the Duetcompiler

In a run with the Duetabler, there are included 2 or

3 input files and a maximum of 4 output files, as

shown in fig. 4.2.

old

duet

file

duetabler

error message /

log print out / listing test print
/ outs

/

new

duet

file

Figure 4.2: Survey of input for and output from

Duetabler.

The input files are:

- a textfile or a Sysdok file containing the

Duet program text,

- an ld-file (in the form of a descripfile)

containing a compiled ld-description,

- perhaps an old Duet file from an earlier

compilation of the Duet program.

4.2 Activating the Duetcompiler

output The output files, of which only the first is always

created, are:

- current output, where error messages, if any

and a log printout, are written

- a disc area where the new Duet file is created,

- a disc area for a possible listing, and

- a disc area for test output, if any.

The use of these files are specified by fp-parameters

when calling the compiler, as described below. The

fp-parameters are mentioned in groups, where each

group begins with a key-word followed by one or more

parameters separated by points. Fig. 4.3 contains a

survey of all parameter key-words.

-99-

4.2 Activating the Duetcompiler

parameters concerning source text:

sysdok

section

vers

duettext

user

init

include

parameters concerning listing:

list

listout

paper

parameters concerning ld files:

descrip

ldfile

ldsection

parameters concerning duet files:

oldduet

newduet

parameters concerning compilation specification:

insert

change

delete

translate

size

parameters concerning test print outs:

test

testout

Figure 4.3: outline of parameter key-words.

Sysdok file

Sysdok

section no.

-100-

4.2 Activating the Duetcompiler

Most parameter groups can be left out, in which case

standard values are used, as described for each

parameter group. If a parameter type is mentioned

more than once, the last will be valid except in

case of the parameter types insert, change, delete,

translate, and test, where further repetitions will

supplement earlier appearances.

For examples of calling the compiler see section

4.3.

Below is a description of each parameter group.

Parameters concerning source text:

The source text for the Duet program can be read

either from a Sysdok file or from an ordinary text

file. When read from a Sysdok file the following

parameter groups should be mentioned:

sysdok.<sysdokreg_ name>

section.<section_number>

vers.<version_number>

The Sysdok parameter states which Sysdok file the text

is to be read from.

Standard: sysdok.sysdokfile

The section parameter states which section in the

Sysdok file the text is to be read from. The section

number is given in the usual Sysdokmanner with the

main section and subsection numbers, if any,

separated by decimal points. The parameter cannot be

left out, if the text is read from a Sysdok file.

-101-

A
4.2 Activating the Duetcompiler

version ‘vers' states, the version of the Sysdok section to

be translated.

Standard: last version

2 textfile When reading from an ordinary text file, the name of

the text area, from where the Duet program is to be

read, is stated with:

duettext duettext.<duettext name>

ae)

Standard: If this parameter is left out, the compiler

reads from the Sysdok file. If the parameter is

stated, no Sysdok parameters must then be stated.

The parameters below may be stated whether, or not

there is read from Sysdok or a text file:

user number user.<user number>

ais)

indicates the user number of the compilation. Only

Duet blocks belonging to one user can be compiled in

a single run, and the ld description used must belong

to the same user or to a common user (user no = 0).

A

Standard: user.0.

initials init.<initials>

states the initials of the programmer, who has

activated the Duet compilation to be printed in the

A Duet log. Standard value (= empty teststring) should

not be used.

include

list

listout

-102-

4.2 Activating the Duetcompiler

include.<suppress limit>

The suppress limit is aninteger in the interval 0-9.

This parameter denotes suppression of those test-

lines in an execute-list, which are equipped with a

test-number larger than the suppression limit.

Standard: include.0, i.e. no test lines are included.

Parameters concerning listing:

yes

list.

no

listout.<listout_name>

<boss_ paper format>

paper.

<lines ver page>.<characters per_line>

The list parameter states whether a listing of the

Duet program is created or not. (Possible error

messages are in either case printed on ‘current out',

as well).

Standard: list.no

The listout parameter states the name of the disc-

area on which an edited listing is to be written. If

the area does not exist already, it will be created

as a temporary file, which is automatically converted

on the local printer. If the area exists already, the

user himself must provide for the converting. Phts-

perameter-will_autrematicatty see=the_paraneter Liss

paper

-103-

4.2 Activating the Duetcompiler

The paper parameter indicates, how the edited Duet

program is to be printed. A single integer can be

stated, giving the Boss paper format, or 2 integers

which decide the number of lines per page and the

number of characters per line.

In the edited listing form feeds are printed:

1. when <lines per page> are execeeded

2- before each block start

3+ by new-page symbol ('-+-' or stop code in

input

<boss_ paper format>:

62)

40)

0: monitor paper (<lines_per_page>

2: A4-horizontal (<lines_per_page>

(A4-vertical = 1 is not allowed)

<lines_per_page>.<characters per line>:

These numbers can be stated explicitly instead of

the Boss paper format. However, <character_per_line>

is not used for the moment. If <lines_per_page> are

less than 15, form feed rule no. 1 is cancelled,

which results in a more compact listing.

Standard: when reading from the Sysdok file: as stated

in the Sysdok file's owner information.

When reading from text file: paper.0.

ld file

old- and

new Duetfile

-104-

4.2 Activating the Duetcompiler

Parameters concerning the ld-file:

{descrip | -<1d_file_name>{.<1a_version_no>}4
(ldfile “

ldsection.<ld_section_no>

indicates the name and section of the description

file, where the compiled ld-description is stored.

The words 'descrip' and 'ldfile' can be used at

pleasure. The parameter 'ldsection' cannot be left

out.

Standard for ld-filename: descrip.descripfile ,

° 5
oS

Parameters concerning the Duet file: 5” Of &

y

39? Pe” 52” Poy
indicates the names Ss aaa © ss” or a” te,

: ce 4 2 Oo OF, .
respectively. If? sO a7 LS 2” -ied, this

version number 3% .@ rom 6 —o% oo with the
oe :

: > v OU“ y
version numb eo “& eS 4 na

gy a)aa 2 -
oe

If the 'newduet 4 Se -ft out, the ‘'oldduet'
4 ‘

is not allowed eit o Duet file is created.

The compilation run . en become only a check of

Duet blocks.

If newduet is stated, but not oldduet, a new Duet file

is created with version number 1, consisting of

correctly compiled Duet blocks.

-105-

4.2 Activating the Duetcompiler

If both newduet and oldduet are stated, blocks from

the old Duet file are merged with the correctly

compiled blocks.

Parameters concerning the compilation specification:

*

insert { .<piockno>

*

change {.<btockno>} 4
*

delete { -<piockno> 4
*

translate { «<blockno>}%
4

or

4

insert

change -all

translate

7

These parameters, which must be stated after the

Duet file parameters, indicate which Duet blocks are

to be read by the compiler. If ‘insert.all',

"change.all' or 'translate.all' are state, all Duet

blocks found in the source text are compiled.

34 ne compela horn speecttcakeonr are staked

block no.

size

-106-

4.2 Activating the Duetcompiler

insert The specified blocks are inserted in the

Duet file. This is only allowed if

‘newduet' is stated. If 'oldduet' is also

stated, the specified blocks must not be

found in the old Duet file.

change The specified blocks are replaced by

freshly compiled Duet blocks. This is

only allowed if both 'oldduet' and

‘newduet' are stated.

delete The specified blocks are deleted from the

Duet file. This is only allowed if both

‘oldduet' and 'newduet' are stated.

translate The specified blocks are checked by the

compiler, but are not inserted in the

Duet file. Is always allowed.

A block number can only appear once. Blocks found in

an old Duet file, if any, but not mentioned in the

list, are transferred unchanged to the new Duet file.

The same holds for blocks specified under translate,

and for incorrect blocks.

size.<extension per _cent>

This parameter states in percentages the expansion

of all the compiler's internal tables. It should

only be used, if the compilation terminates with an

index-error; a new run can be attempted using the

size-parameter. The maintenance group must be

notified, when the use of the size parameter becomes

necessary. Size 100 means a doubling of all tables.

Standard: size.0.

—

-107-

4.2 Activating the Duetcompiler

Parameters concerning test output:

These parameters must only be used in agreement will

the maintenance group, when an error in the Duet

compiler occurs.

testa)

testb >

testc -yes

testd -no

24
teste .-<number> 4

testf snot {-<nunbex>} #4
testg

testh J

Indicates which testbits are to be inserted in the

respective test variables. Testbits are numbered

from 0 to 23.

Standard: no textbits

1

testout.<testout_name> -extend 0

Indicates the name of the area, where the test output

is printed. If '.extend' is stated, the area is

extended, if necessary, to contain the test output.

If not, the test output is written cyclically in the

area. The testout area is neither created nor

converted automatically.

Standard: testout.testout

-108-

4.2 Activating the Duetcompiler

If syntactical errors are discovered ina

parameter group, an error indication is printed in

the form of:

£*< if a new parameter group appears as an

illegal termination of the previous

parameter group, or

<*> if an error is found in a keyword or in

a parameter in the parameter group in

question.

After errors in the fp-parameters, whether they are

syntactical errors or errors in consistency checks,

the run is terminated.

-109-

4.3 Resource Demands

The resource demands for the compilation job vary

with the size of the Duet program, and the figures

below should therefore only be regarded as a guide.

Only Boss parameters exceeding the standard are

included.

size

perm

80000 In 100000 bytes no extra segment

transports take place. Minimum is 60000.

can be reduced, if some of the output

files are not created.

In 80000 bytes it takes app. 1 minute to

compile a maximum size Duet block and

app. 20 sec. to skip one. In 60000 bytes

the corresponding times are 7 and 3

minutes.

A Duet block of maximum size takes up the

space of 5-8 segments in the Duet file.

If this already exists additional space

for an expansion, if any, must be taken

into account.

-110-

4.3 Resource Demands

Examples of jobfiles.

job eah 28xxxx size 80000 area 8 time 30,

perm disc 100 1

mode list.yes

duetfile = set 1 disc create new duet filewe

scope user duetfile

duetabler,

duettext.eahduet, 7 source text

init.eah,

user.0,

lidfile.eahdescrip ldsection.30, ; ld-file

list.yes paper.2, ; listing

new duetfile

the whole duet file

newduet.duetfile, ~

insert.all, ~

finis

Figure 4.4 Create a new Duet file

The example in fig. 4.4 shows the creation of a new

Duet file in 'duetfile' from a program text in

"eahduet'. The listing on A-4 horizontal is created

in 'listout', which is automatically converted on the

local printer.

-111-

4.3 Resource Demands

job pl 28xxxx size 80000 area 8 time 3 0

mode list.yes

oldduetfile = move duetfile

listout = copy 0 7 create list out area

duetabler,

sysdok.eahsysfile section.22.1 ; source text

init.pl,

user.0,

ldfile.eahdescrip ldsection.30, ; ld-file

list.yes ; listing

oldduet.oldduetfile, ; Old duet file

newduet .duetfile, 7 new duet file

change 1.7,

delete.2

convert listout std

finis

Figure 4.5: change the Duet file

Fig. 4.5 shows the correction of a Duet file. The

Duet blocks 1 and 7 are re-compiled, while block

2 is deleted. The other blocks remain unchanged. In

order to keep the newest version of the Duet file

in the same area, 'duetfile' is moved to 'oldduetfile'!

before the compilation.

The Duet program text is read from section 22.1 in

the Sysdok file 'eahsysfile'.

The listing is to be printed on the central printer,

hence the listout area is created before the

compilation.

-112-

Log Print Out

As a conclusion of a Duet compilation, where a new

Duet file is created, a Duet log is written, showing

the result of the run and the contents of the old

and the new Duet file. An example is shown in fig.

4.6.

The 'blocksize' contains two numbers. The first one

states how many words the compiled block takes up.

This number.must not exceed 2047.

The other number states the length of the block

including numerical constants and text constants.

This figure is of importance to the dimensioning of

the Duet array in the control program (cf. section

3.1.2 and 5.2.1).

The rest of the information is selfexplanatory.

-113-

4.4 Log Print Out

duetabler log duetblocktest eah.7 7.03.1977 - 16.03

binary files: area version date ident

new duetfile: newduetfile 7 eah 070377.1603 31 duetblocktest

old duetfile: eahduetfile 6 pl 030377 .1619

localdata : eahdescrip 0 eah 070377.1320 30 variableld

textfile : section

sysdok : eahsysfile 24 22. duetblocktest

duetabler

block command old + block user duet- ld- date blocksize

no version ! no vers. vers. duet/total

1 insert : 1+ O 7 eah 0 070277.1603 16/23

2 copy 6pl ! 2 0 6pl 0 030377 .1619 22/29

3 change 6pl ! 3+ 0 7 eah 0 070377 .1603 9/16

4 transl 4isc! 4 0 4 isc 0 030377.1400 6/14

5 insert : 5+ 0 7 eah 0 070377 .1603 6/14

6 -insert :

7 -change ‘

8 -delete :

9 -transl :

10 insert : 10+ QO 7 eah) 070377.1603 144/219

11. insert £ 11+ 0 7 eah 0 070377.1603 80/98

12 -insert :

13 -change :

14 -transl H

15 -delete :

total used 8 segments of 36

- : error: no change/insert/delete

+ : block inserted or changed

Figure 4.6: Duet log

-114-

Error Messages
—

All error messages from the Duet compiler are

printed on 'current output', as well as ina

possible program listing.

In the listing the error message will have the form

shown below:

*¥**** <error no> : <error text> { <erroz paraneter> 5

and the incorrect line will be printed unedited, —

beginning with **.

In ‘current output' the error will be printed as

follows:

<lineno><charno><text> <error no> : <error text> {<error paraneter>} 3

the incorrect line will then be written out. <text>

is the syntactical unit, causing the error, and

<charno> states where in the line this unit begins. Co

<lineno> is the interval line number.

At this point before each error is described in

error numerical order, we shall state some general

remarks.

After an error the compiler will try to continue the

compilation, as soon as possible. By many errors,

however, it is necessary to skip the rest of the line.

This is stated in the explanation to each error.

-115-

4.5 Error Messages

In some error situations it is necessary, however,

to skip until the beginning of the next Duet

operation. In that case the succeeding lines will

be cancelled and labelled error type 1: SYNTAX,

even though they might not be incorrect.

If an error is discovered during the compilation

of a Duet block, the latter is not delivered to a

Duet file, if any, and this block will be marked

in a special way on the Duet log (cf. section 4.4).

Errors in one block will not affect the compilation

of the other blocks. Compilation time can therefore

be saved, if only the altered blocks are recompiled,

after the error correction.

1: <text>

<text> is the last read syntactical unit.

This syntactical construction is not allowed.

The rest of the line is skipped.

2: ILLEGAL VARIABLENO <v_no>

A variableno. must not exceed the largest variable

number used in the ld-description. In order to

continue the compilation, a reference is simulated

to a simple word var without decimals.

-116-

4.5 Error Messages

3: UNDECLARED VARIABLE <text>

The last read syntactical unit is an identifier or

a variable no., which does not correspond to a

variable declared in the ld-description. In order to

continue the compilation, a reference is simulated

to a simple word var without decimals.

4: ILLEGAL ERROR NUMBER <error_no>

System error. Contact the maintenance group.

5: ILLEGAL OPERAND VALUE <value>

Is used where: suppression specification > 9

Duet program point > 9

select print channel > 9

select ... on error: illegal error no.

select test: testbit > 23

select test: testbit double specified

number <> 0 in 'modify array := 0'

number <> 0 in 'modify recno := 0'

Algol action no < 1

The rest of the line is skipped.

6: NOT SIMPLE VARIABLE <var_name><var_no>

Neither array variable nor array element are allowed

here.

-117-

4.5 Error Messages

7: ILLEGAL VARIABLE TYPE <var_name> <var_no> <var_type>

This variable type must not be used in the given

context.

8: ILLEGAL NUMBER <no>

A numerical constant is stated outside the range of

a 24-bits word. The error appears in connection

with test values/assign values in an assign- or

action list.

9: UNDEFINED DUETNAME <d_name>

The Duet name referred, is not declared in any Duet

instruction within the block.

10: ILLEGAL NUMBER OF DECIMALS <var_name> <var_no>

The variable has not been declared with decimals and

can therefore not be used:

as subscript

for reading in of a character field

as a test variable in assign,

action, case, and for

The rest of the line is skipped.

-118-

4.5 Error Messages

11: ILLEGAL BLOCKNO <block_no>

The block no must not exceed 255.

If the error appears in a block head, the rest of

the program text is skipped.

By error in a block reference the compilation is

continued.

12: ILLEGAL USERNO <user_no>

The user no. must not exceed 127.

13: USERNO INCOMPATIBLE WITH LD DESCRIPTION <user_no> <ld_user>

<user_ no> userno. in block head

<ld_user> userno. in ld-description

The user no. in block head and ld-description must be

the same, unless one of the numbers are 0.

14: ILLEGAL ENTRYNO <entry_no>

An entry number must not be defined outside the

interval 1-63, and not be referenced outside the

interval 0-63.

-119-

4.5 Error Messages

15: ENTRYPOINT PREVIOUSLY DEFINED IN LINE <line_no>

<line_no> the linenumber, where the entrypoint

is first defined.

16: ILLEGAL END NUMBER <block_no> <end_no>

<block_no> from the block head

<end_no> from the end-line

The two numbers must be identical

17: NB! BLOCKSIZE APPROACHING LIMIT <size> <max_size>

<size> the length in words of the compiled

Duet block.

<max_size> the maximum block length in words.

The space available for possible block extensions

is limited.

This is only a note, which does not affect the

creation of a Duet file.

18: DUETNAME PREVIOUSLY DEFINED IN LINE <line_no>

19:

<line_no> the line number, where the Duet name is

defined for the first time.

not used.

-120~

4.5 Error Messages

20: ILLEGAL NUMBER OF CHARACTERS <no>

With a read specification of type c, a maximum of

three characters can be read.

The rest of the line is skipped.

21: ILLEGAL TERMINATOR CODE <code_value>

Only the terminator codes 0, 1, 2, 3, are alowed in

a read specification.

The rest of the line is skipped.

22: TOO MANY READSPEC

No more than 3 read specifications are allowed ina

‘read' specification.

The rest of the line is skipped.

23: ILLEGAL CASENO <case_no> <no>

<case_no> the read number

<no> the expected number

There is a discrepancy between the number of Duet

actions in the case list and a specified case

number.

The rest of the line is skipped.

-121-

4.5 Error Messages

24: TOO MANY DUETREF IN ONE LINE

In an execute list no more than 7 Duet names are

allowed in a line which has a Duetpoint attached

to it. Ifa Duet point is to include more than 7,

Duet actions, these must be specified in a separate

execute list.

The rest of the line is skipped.

25: ILLEGAL USE OF DO

dQ is not allowed in: the entry point definition,

the execute list,

the if-operation after 'else'.

The rest of the line is skipped.

26: NB! DUETBLOCK TOO BIG <size> <max_size>

<size> length in words of the compiled Duet

block.

<max_size> maximum block length in words.

The block must be split up into two smaller blocks.

27: ILLEGAL DIGITS SPEC <no_a> <no_b>

In ‘digits (a,b) of' it is required that a>=b.

-122-

4.5 Error Messages

28: ILLEGAL SUBSCRIPT VALUE <subscr_values>

A constant subscript value has been specified out-

side the limits of the array variable in question.

The rest of the line is skipped.

29: ILLEGAL SETNO <set_no>

The Duet compiler does not check that a set is

defined in the ld-description, but only that the

set number is within the interval 1-max_def_setno.

The rest of the line is skipped.

30: ILLEGAL RECOCRDTYPE <no>

o7

The record type is not allowed.

The rest of the line is skipped.

31: ILLEGAL CHARACTER <text>

the last read syntactical unit contains an

illegal character.

The rest of the line is skipped.

-123-

4.5 Error Messages

32: ILLEGAL BYTE <text>

the last read syntactical unit cannot be recognized.

33: ILLEGAL DUETNAME <d_name>

the Duet name must not exceed d1023.

The rest of the line is skipped.

34: TOO MANY DIGITS IN NUMBER <no>

the number of digits in a number must not exceed 15.

The rest of the line is skipped.

35: ILLEGAL IDENT <text>

the last syntactical unit read is identified as a

variable identifier, but the variable is not known.

The rest of the line is skipped.

36: not used.

-124-

4.5 Error Messages

37: LISTAREA CANNOT BE CREATED <area_name> <no>

<area_name> name of the listarea

<no> the error value from the creation attempt.

Resources (segments, catalogue entries, or area-

processes) for the creation of an area for listing

are not available. The Duet program is compiled

without listing.

38: BLOCKEND MISSING <block_no>

<block no> the Duet block, last compiled.

The Duet program text is terminated (end_medium/

end_of_ section) without a block end.

39: DOUBLE USED VARIABLE NAME <var_name> <var_no>

Two variables in the ld-description declared with

the same name. System error. This error should have

been caught by the ld-compiler Contact the

maintenance group.

40: ASSIGN SYMBOL MISSING

:= is missing in a line of a compute list.

-125-

4.5 Error Messages

41: ILLEGAL DELIMITER <text>

<text> the illegal syntactical unit.

Syntactical error in a numerical expression, the

rest of the line is skipped.

42: ILLEGAL OPERATOR <text>

<test> the illegal syntactical unit.

Syntactical error in a numerical expression.

The rest of the line is skipped.

43: ILLEGAL OPERAND <text>

<text> the illegal syntactical unit.

Syntactical error in a numerical expression, the

rest of the line is skipped.

44: ‘'OPTSTAK' OVERFLOW <no>

Too many bracket levels in a numerical expression.

The rest of the line is skipped.

The expression should be split up, and the inter-

mediate results explicitly stored.

-126-

4.5 Error Messages

45: ‘OPDSTAK' OVERFLOW <no>

see 44.

46: WORKVAR OVERFLOW

A numerical expression is too complicated to be

computed with the 4 existing working registers.

The rest of the line is skipped.

47: ILLEGAL OPERATOR COMBINATION

Syntactical error in numerical expression, the

rest of the line is skipped.

48: ILLEGAL LENGTH OF TEXT/AGGR <length1> <length2>

By 'modify array1 := array2' it is required that the

length of a single element in both arrays is the

same.

<length1> the number of text characters/aggregat bytes

<length2> per element in the two arrays.

By 'modify' of simple text-/bits variables it is

required that the length of the left side variable

is >= the length of the right side variable.

The rest of the line is skipped.

-127-

4.5 Error Messages

49: SYNTAX <text>

50: not used.

<text> the last read syntactical unit.

This syntactical construction is not allowed.

The compiler goes on to read the next syntactical

unit in the line.

51: NOT DUETFILE IN OLDDUETFILE

The area specified as 'oldduet' does not contain any

Duet file. No new Duet file is created.

52: ILLEGAL VERSION OF OLDDUET <version> <old_version>

53: not used.

<version> specified as an fp-parameter.

<old_versionm> version of the old Duet file.

If the Duet version is specified as an fp-parameter,

the two version numbers must be identical.

54: DUETWORK CANNOT BE CREATED

Resources (segments, catalogue entries, or area-

processes) for the creation of aworking area for

compiling Duet block area not available.

No new file is created.

-128-

4.5 Error Messages

55: MISSING SUBSCRIPT <var_name> <var_no>

The variable specified is an array variable, the

subscript must be stated. The rest of the line is

skipped.

56: ILLEGAL VERTICAL OPERAND OR POSITION

In a print lay-out no more than 70 line feeds are

allowed at a time (corresponding to one page).

The print position must be stated in the interval

1-127.

57: ILLEGAL NUMBER OF PRINCIPALS OR DECIMALS

In a print lay-out no more than 15 principals and 7

decimals are allowed. If the decimals are stated,

neither the principals nor the decimals must be 0.

58: POSITION + FIELD LENGTH > 132

The field cannot be printed within the given line

buffer of 132 characters.

59: BLOCK LOCATION ERROR

System error by updating of 'newduet'.

Contact the maintenance group.

-129-

4.5 Error Messages

60: BLOCK SEQUENCENO ERROR

Block numbers in the text must appear in an

ascending sequence. The block is skipped.

61: SYNTAX OR ILLEGAL VARTYPE <text>

<text> is a variable no. or - name.

Is either a variable stated, where it is not

allowed, or the variable type in question is

illegal.

The rest of the line is skipped.

62: SYSTEM ERROR: VARIABLE NAME ADDRESS CONFLICT <no> <adr>

System error during the creation of tables for

recognizing variable names. Contact the

maintenance group.

63: SYNTAX ERROR BEFORE BLOCKSTART <text>

<text> is the last read syntactical unit.

Before block start only empty lines and comment

lines are allowed. The rest of the text up to the

next block start (begin <block_no>:) is skipped

without any further print out.

-130-

4.5 Error Messages

64: UNKNOWN DUETBLOCK SPECIFIED FOR TRANSLATION <block_no>

The specified Duet block does not exist in the

Duet program text.

65: SYSTEM ERROR: MISSING GOTO IN BYTEACTION <no>

A programming error in the Duetabler-compiler,

contact the maintenance group.

66: INSERT DUETBLOCK: EXISTING BLOCKNO <block_no>

The specified Duet block is compiled (syntax

checked), but is not inserted in 'newduet'.

67: ILLEGAL USERNO FOR CHANGE/DELETE DUETBLOCK <block_no>

The specified Duet block belongs to another user.

In case of 'change' the block is compiled (syntax

checked) but is not delivered to 'newduet'.

68: UNKNOWN DUETBLOCK SPECIFIED FOR DELETE <block_no>

The specified Duet block does not exist in 'oldduet'.

-131-

4.5 Error Messages

69: TOO MANY MOVEWORDS IN MODIFY ARRAY <no>

The total number of words to be moved in a single

modify line must not exceed 2047.

The array must either be moved one element at a

time, or it must be split up in shorter arrays in

the ld-description.

The rest of the line is skipped.

70: DUET PROGRAM HEAD MISSING

When compiling to create a new Duet file the

program head must be read too.

71: PROGRAM NO IN TEXT DOES NOT MATCH WITH OLDDUET <program_no> <old_proram_no>

<program_no> program no. read in Duet program

text.

<old_program_no> program no. in old Duet file.

The two numbers must be identical.

72: DUET PROGRAM NAME TOO LONG

The Duet program name must not contain more than 17

characters. The name is cut off to 17 characters.

-132-

4.5 Error Messages

73: SPECIFIED LD-NUMBER DOES NOT MATCH LD-FILE <ld_no> <old_1ld_no>

<ld_no> ld-number read in the Duet program text.

<old_ld_no> ld-number stored in 'oldduet'.

The two numbers must be identical.

74: SYNTAX ERROR IN DUET PROGRAMHEAD

The compilation is terminated.

75: ILLEGAL LEFT SIDE VARIABLE <var_name> <var_no>

By modify with modulo or an integer division the left

side variable must be a numerical integer variable

declared without decimals.

The rest of the line is skipped.

-133-

The Duet System in a Control Program

A compiled Duet program, stored in a Duet file,

can be executed by a control program, containing

the interpreter the 'Duet interpreter'.

control pro-

gram text

x
algol- control

vardecl

text, if any [| compiler program

Duet inter-

preter text

figure 5.1: The executing Duet system.

This section describes how a control program is

established.

The 'teleop' from the Teledata system and the

"telescop!’ from Data Entry system are examples of

such control programs. Therefore readers, who are

going to code Duet programs for these systems, only

have to make a superficial reading of this chapter.

-134-

Duet Texts and Algol Block Structure

The Duet interpreter consists of three texts which

in suitable places must be incorporated into the

control program with the 'algol copy' as shown in

figure 5.2. Furthermore, a potential declaration

file, generated by the Soda-ld compiler, must be

incorporated.

—

5.1 Duet Texts

-135-

and Algol Block Structure

end

|begin
a

<*external block of the control program*>

° declarations in the external block

algol copy.duettext1; <*duet declarations*>

. initialising in the external block

init_duetl;

\begin| <*internal block of

<*duet initialising*>

the control program*>

: declarations in the internal block

procedure duet_algol(no);

algol copy.duettext2;

algol copy.vardecl;

<*must be declared by the user*>

<*duet declarations*>

<*variable decl. from soda-1d*>

. initialising in the internal block

init_duet2; <*duet initialising*>

control program

. the duet interpreter

before

algol copy.duettext3; <*executing duet interpreter*>

. user's termination

close duet;

end internal block;

external block;

<*close the files of the data base*>

figure 5.2 The structure of a control program

-136-

5.1 Duet Texts and Algol Block Structure

The three texts are called:

duettext1

duettext2

duettext3

These texts incorporate the dbms-procedures of

the 'soda' system in the form of 5 texts

sodatext1

sodatext2

sodatext3

tflytproc

ldfields

and the Duet interpreter calls the external

procedure

read_general

and the 'primula' procedures, which can be found

in textform in

prim

These files must all be present on disc, when the

control program is compiled. The 'primula' pro-

cedures are compiled by the call 'i prim' before

the call of the Algol compiler.

duettext1 "duettext1' contains partly declarations of

variables, which are used as an upper limit for

the array declarations in the 'duettext2' and

partly the initializing procedure ‘init duet1'

and the error printing procedure 'print_data_error'

duettext2

duettext3

-137-

5.1 Duet Texts and Algol Block Structure

‘print_data_error' is declared in block1 in order

to give the user the possibility of changing the

wording of the data error messages by declaring a

similar procedure in an internal block.

Finally 'duettext1' incorporates the texts 'sodatext1'

and 'ldfields' from the Soda system.

‘duettext2' contains a declaration of all the

remaining variables and procedures of the Duet system.

Furthermore it incorporates 'sodatext2', which

incorporates both 'sodatext3' and 'tflytproc' from

the Soda system.

‘duettext3' contains the actual interpreter, i.e. the

executing part of the Duet interpreter.

-138-

Initialisation and Termination

The Duet interpreter is initalised by calling the

activates the Duet interpreter several times, the

‘init_duetmaskine' procedure must also be called

before each new activation. (The first time, is

‘init_duetmaskine' called from ‘init duet2').

After the last activation of the Duet interpreter

the control program must terminate the DBMS and the

‘prinz' zones by calling the 'close_duet' procedure.
ts eran

duetlog
f
f

-139-

Integer Procedure 'init_duet1(z)'.

The ‘init _duet1' procedure reads the control records

in from the ld- and Duet files and this causes an

initialisation of a number of array limits.

Furthermore a Duet log is written on the zone, which

is specified as parameter for the call. It can either

be the zone ‘out' or 'fejlud'. The latter must be

opened by the control program.

(_
Before the call oftinit_duett! Ahe control program

must have initialised the following variables:

duet_areal the number of words which are

reserved in the Duet array for

duet_reg_ navn the name of the Duet file.

duet_version if these are different from 0

ld_version they must be equal to the actual

versions of the Duet- and ld

file.

ld_reg_ navn name- and section number of the

ld_afsnit nummer descripfile, containing the ld

file.

max_kanal the number of zones in the zone

array 'prinz'.

sd_extend_buf the size of the buffer extention

reserve, requested per cf-master-

file (for possible use of extend_

cf).

5.2.1 Integer Procedure ‘init duet1(z)'.

-140-

The return value of the procedure is a bit pattern

which states the result of the call. If all bits are

zero the result is ok. The single bits have the

following significance:

= =

a oe a oe

shift

shift

shift

shift

shift

shift

shift

shift

shift

no ld file in 'ld_reg_navn'

1 : the ld file is not formed by Soda-ld

2 : the ld description is not correctly compiled

3 : illegal version of the ld file

4 : the ld-control record cannot be found

12: check sum error in the Duet control record —

13: no Duet file in 'duet_reg_navn'

14: not used

15: illegal version of the Duet file

16: the Duet area is too small for the largest

Duet block

-141-

Integer procedure ‘init _duet2';

The ‘init _duet2' procedure reads in the rest of the

ld- and Duet files, resets all variables, declared

in the ld-description, to zero and initialises the

character set table for the use of the read operation.

Furthermore the 'prinz' zones are initialised for

possible 'primula' print, and the ‘init _duetmaskine'

is called (cf. section 5.2.3).

Before calling the ‘init _duet2' the user program

must have executed the following initialisations:

prinz all zones in the zone array must be

opened_to disc areas or tape files, but

the zones must not be used for output

until after ‘init_duet2'.

readz must be opened to the input area, if

input is to be read.

After calling the 'init_duet2', the following

variables can be redefined by the control program,

if necessary:

alfa the character set table can be changed,

after which the 'intable (alfa)' must be

called once more (cf. 'read', section

3.2.11 and section 5.5.1)

max print_pos (=132) the length of the line buffer for

print

max_ref (=20) see section 5.5.1.

test_kanal (=0) test output is printed as standard

on the zone 'out', but with the ‘test_

kanal' it can be diverted to one of the

zones in 'prinz'.

-142-

5.2.2 Integer procedure ‘init _duet2';

Furthermore the variables, assigned by the ‘'init_

duetmaskine', can be redefined, see the next section.

The return value of the procedure is a bit pattern

which indicates the result of the call. If all bits

are zero the result is ok. The value '1 shift 3'

indicates that the Duet file does not contain any

blocks, correctly compiled. All other error bits are

due to system errors. If such errors appear, please

contact the maintenance group.

same

The value '1 shift 23 + 40' indicates that a bs-

file specified in the ld-description does not,

exist at runtime.

The value '1 shift 23 + 41' indicates a block-

length-error in a bs-file. (If a cf-masterfile

or a cf-listfile referred in the ld-description

is missing at runtime, the program is terminated

by an alarm message) .

-143-

Procedure ‘init _duetmaskine';

The 'init_duetmaskine' procedure puts the Duet

interpreter into a neutral state. It is called

from the 'init_duet2' procedure before the first

activation in the Duet interpreter and can be

called from the control program before subsequent

activations, if any.

It initialises the following variables which after-

wards can be redefined by the control program as

required:

kanal = 13 ‘prinz' zone no. for result

print outs.

;
|

error messages are printed as

i}data_fejl_kanal

program _fejl_ kanal . i oo oO ~

asystem _fejl_kanal

standard on the zone 'fejlud',

but by changing the channel

number it can be diverted to one

of the zones in 'prinz'

(cf. 'select', section 3.2.14).

data_fejl_akt (1: max_data_fejl)

program _fejl_akt (1: max_programfejl)

system_fejl_akt (1: max_systemfej1l)

are all reset to zero, signifying:

exit from the Duet interpreter

by all errors. Can be changed

to a positive number, signifying:

-144-

5.2.3 Procedure 'init duetmaskine';

max instruction

std_assign 0

exit to the program point; or

changed to a negative number,

signifying: continue after the

error.

(cf. 'select', section 3.2.14).

8 388 607;

Is the upper limit for the num-

ber of Duet instructions which

can be executed within one

activation of the Duet inter-

preter: If the activation of

Duet names exceeds this number

the Duet system presupposes an

indefinite loop in the Duet

program. This control, however,

will only have any influence if

the control program redefines

the max_instruktion' to a lower

number.

when std_assign = 0 no standard

value is assigned when reading

the standard mark. It can be

changed to 1 by the control pro-

gram or by the Duet operation

‘select', if a standard value

assign is requested.

(cf. 'read', section 3.2.11).

-145-

5.2.3 Procedure 'init_duetmaskine';

instruktions tal := 0;

the instruction counter is

reset to zero. After exit from

the Duet interpreter it can be

read, from this variable, how
ne

many Duet instructions have

been executed.

close_soda

-146-

Procedure 'close duet';

The 'close_duet' procedure must be called by the

control program before the termination of the run,

i.e. after the last exit from the Duet interpreter.

It closes all files in the database, and the

necessary information about bs files is preserved

in the cataloque tail.

Furthermore, the writing of each of the 'prinz'

zones in terminated in this way:

- the line buffer is transferred to the zone (thus

printing an extra - possibly empty - line),

- end medium is written on the area and

- the zone is closed.

The zone - 'fejlud' must, however, be closed by the

control program, as access to that zone might be

requested after 'close duet'.

If the control program wants to provide for the

termination of the 'prinz' zones the procedure of

the Soda system 'close_soda' can be called instead

of 'close duet'.

~147-

Error Procedures

In all error situations the Duet interpreter

activates one out of three error procedures, namely

‘duet_data_fejl', 'duet_program_fejl' or

"duet_system_fejl' depending on whether the

situation is caused by an error in the input, in

the Duet program or in the surrounding system.

The error procedure prints a message on the

selected error message zone, after which it either

returns or exits from the Duet interpreter or exits

to a program point in the Duet program. (see section

3.2.14, 'select' and section 5.2.3,

‘init _duetmaskine').

-148-

Duet Data Error

The procedure 'duet_data_fejl' is called in case of

an error in input. It calls the print out procedure

‘print_data_error'. This procedure is declared in the

outmost block, but it can be redefined by the con-

trol program on another block level (cf. section

5.1), if the error messages are required in another

language, e.g. Danish.

The standard format of data error messages is:

—

KKKKK <a

. a 2

rror text> {<error-parancter> } 1

Ve a CK

In the error messages originating from the 'read'

operation, the first error parameter is always the

name of the reading variable, which is stored in

‘lesvar_navn'.

Below, the error messages are described in

alphabetical order:

mala An <UAL Want >

DECIMALS MISSING IN <var_name>

A decimal point has been read after a numerical

field, but no decimals are read-

DA

-149-

5.3.1 Duet Data Error

‘ ; , 4 hen y ;

L At bea Shevt ~ Cast fetlhd 4 2 Ue ew,

ILLEGAL DELIMITER AFTER <var_name>

The last read field has not been terminated with an

ordinary delimiter as required in the reading

specification.

. ns ’ 4s a) ;

| CAA bo: LEX OV C4 ral Bt 1A AAW
a

ILLEGAL DELIMITER OR LINE TOO LONG AFTER <var_name>

The last read field is neither terminated with an

ordinary delimiter nor an end of string delimiter.

t ba ; PAA ls i¢ t afte, sy bare
4

ILLEGAL FIELD AFTER <var_name>

The contenst of the data field after the last

correct field does not correspond to the type in

the stated read specification(s).

JER

/ 4 f > (3 / a,AALS. KL LY ij f LUA are> § <UaAlit >
aN

ILLEGAL VALUE FOR <var_name> <value> P pto < heblted

LU > Ahhald

The value of the read field lies outside the value

spectrum allowed for the reading variable in

question. <value> states the value read for a

numerical field, or the number of characters read

for a text field.

avd all Cm ate,

-150-

5.3.1 Duet Data Error

laren, ra L ae » fvel aa Ch Ata F a LV, LA CLA, 2

0S LINE TOO LONG AFTER <var_name>

The last read field has not been terminated with an

‘end of string! delimiter (line feed) as required

in the read specification.

p41 RECORD WITH THE SPECIFIED KEY DOES NOT EXIST <set_no>

—

Unknown record attempted read with 'get'

D412 RECORD WITH THE SPECIFIED KEY PREVIOUSLY CREATED <set_no>

The record is rejected by put after 'create'

COWL fA 4 4 o A, 1448) ¢ :

+ “ y)

f STANDARD MARK ILLEGAL FOR <var_name>
é.

_

A standard mark has been read to a variable, which wo

does not allow standard value.

Co, al
LAA PEL

r.t. Crabrasvrh Sha, ry #

bAs SYSTEM ERROR: OPERATION P.T. ILLEGAL

This Duet data error is always activated after a

Duet. program error or a Duet system error.

-151-

5.3.1 Duet Data Error

The Lane Ln Cay Maw > not Fepursate hl
DS TEXT TERMINATION MISSING AT <var_name>

A text field has been interrupted by an end of string

delimiter (line feed) prior to the terminating text

delimiter (apostrophe).

DG CUby-M anes +00 lone, — Wale. mor ema Char)
TEXT TOO LONG AT <var_name> <max_length>

The read text field is longer than the specified

reading variable

<max_length> states the largest text length allowed.

tea bans Aen alr bn <uarnener, mabe wae <b axe
D4 TOO MANY DECIMALS IN <var_name> <max_decim>

The field in the input has more decimals than the

reading variable in question allows.

A <max_decim> states the largest number of decimals

allowed.

SS StMAWL > .
a

<*SETNO SETNAMEXD>

fe 1k> CETTEM MASTERS >, qe 17> <EORDER MASTERS >+

<* 2e> <EREFERENCE ITEM I>, gk 18e> <PORDER LINEL>,

Se 3x> <SITEME >, gk 19e> <EVOUCHER HEAD>,

<k Ak> <EPART ITEM3 >, Ck 20%> <EPARENT ORDER LINED >,

Ke Se> <EPARTS LIST REFE>- gk 21%> <PORDER HEANI >»

<k Bbe> <IECUSTOMER MASTERI D>, <e 22e> <IPART ITEM LINES >-

ee 7k> <SHIGH LEVEL CUSTOMERID>, <* 23%> <EVOUCHER LINE?>-
<k Bk> <ICUSTOMER HEADI >, <x 24%e> <:USER ARMING >,

<x De> <SECUSTOMER STRUCTURE REFS>, <k 25> <2ODLINE OF ITENE>,

Se 10%> <SUSER INFs>, <k 26e> SHORDER LINE COPY!D>,

<k 11e> <SADMIN MASTERS >> Kk 27e> <SORDER LIST ELEMENTI>-

<e 12e> <EWHERE USED LIST REFs>- ge 28> <ECUSTOMER COPYI>s

A <e 13e> <SHIGH LEVEL CUST REFS>, fk 29%e> <EACCOUNT ENTRY&>»

“ok 14> KETERMINAL ADMED, gk 30e> <SVOUCHER SCAN LINES>,

<x 15%> <PADMIN EXTRAZ>, <* 34%e> <EDISCOUNT LINEI>-

<k 16> KECUSTOMER >,

Duet Program Error

-152-

The procedure 'duet_program_fejl' is called when

the Duet Interpreter detexts any illegal

constructions in the Duet program.

yf
wen

The standard format for program error messages is

***** PROGRAM ERROR eno: CALL FROM: BLOCK INSTR. OPT (ADR PIL ART)

XXXXXX XXX XXX XXXXXX XX XX XX

{ <error text> <error paraneter> } ,

eno

CALL FROM

BLOCK

INSTR

OPT

ADR

PIL

ART

Below the

is the current error number

is either DUET or the name of a

db-operation.

indicates the current block no, Duet name

and Duet operation at the errorneous loca-

tion in the Duet program

internal values in the Duet interpreter

which may assist the maintenance group a

in case of errors in the Duet system.

Duet program errors are described in error

number order.

1. ILLEGAL BLOCK NO OR BLOCK MISSING <block_no>

Attempt to activate a non-existent Duet block (cf.

execute, section 3.2.1).

-153-

5.3.2 Duet Program Error

2. ILLEGAL BLOCKREF, USER CONFLICT <block_no> <user_no>

Attempt to activate a Duet block belonging to another

user.

<user_no> is the user no of the illegal block. (cf.

execute, section 3.2.1).

3. ILLEGAL ENTRY POINT <entry_no>

Attempt to activate a Duet block with entry at a non-

existing entry-point. (cf. execute, section 3.2.1).

4. Not used

5. ILLEGAL VARIABLE NUMBER <var_no>

By an indirect variable reference a non-existing

variable is referred.

6. INDEX <index_value>

An array variable is referred with an illegal

subscript value.

-154-

5.3.2 Duet Program Error

7. ILLEGAL CHANNEL NUMBER <channel_no>

With select print a non-existing zone in the zone

array 'prinz' is chosen i.e. channel_no > max_kanal

or channel _no = 0 for result print-outs (cf. select,

section 3.2.14).

8. INSTR. COUNT EXCEEDED <inst_count> <max_inst>

The instruction counter exceeds 'max_instruktion',

perhaps due to an infinite loop in the Duet program.

9. ILLEGAL SET NUMBER <set_no>

Illegal set no in db-operation.

10. USAGE CONFLICT <set_no>

db-operation in disagreement with the usage-

specification of the set declaration in the ld-

description.

-155-

5.3.2 Duet Program Error

11. RECORD STATE ILLEGAL FOR THIS OPERATION <set_no> <record_state>

illegal db-operation in relation to the record

state of the set.

<record state>:

after open

after get

after put (direct access) or after error

after delete (direct access)

after create

after newset

after next

after put (sequential)ony nu fF WY | CO after delete (sequential)

9 after end of chain by delete

10 after end of chain by next

11 after end of chain in an empty chain

12 after end-of-set

12. MOVE ERROR <set_no> <text> <addr> <value>

Error by move between variables and fields in

connection with a db-operation.

<addr> and <value> is always the address of and

value of the current variable.

<text> is a further explanation of the error cause:

-156-

5.3.2 Duet Program Error

SPILL DURING TRANSFER FROM VAR

The value of a variable cannot be contained in the

current field.

INDEX

The value of a variable used as subscript is outside

the limits of an array or exceeds the current number

of repetitions for a repeating group.

ILLEGAL NUMBER OF REPET. IN RPG

Number of repetitions by creation of a repeating

group is outside the legal interval.

13. SET CLOSED FOR SEQ. ACCESS BY NEWSET ON ANOTHER SET <set_no>

14. DAUGHTER RECORDS ASSOCIATED WITH CURRENT RECORD

Deletion of a masterfile record is not allowed when

the record has any daughter records connected to it.

15. Not used

-157-

5.3.2 Duet Program Error

16. CURRENT RECORD REMOVED FROM DB <set_no>

A record read with get or next cannot be found in

the file at put or delete.

17. MOTHER RECORD MISSING IN SIDE CHAIN <set_no>

By insertion of a new record into a list file the

secondary mother record which was entered by create,

is missing.

18. MOTHER RECORD REMOVED FROM DB <set_no>

The mother record for a set (set type L) has been

removed after newset.

19. ILLEGAL STATE FOR MOTHER SET <set_no> <record state>

No current record in the mother set exists in the

data base at newset (settype L).

20. ILLEGAL CURRENT RECORD TYPE IN MOTHER SET <set_no>

At newset (settype L) the current record in the

mother set is a record type which cannot function

as a mother to current set.

-158-

5.3.2 Duet Program Error

21. RECORD TYPE ILLEGAL IN SET <set_no> <record_type>

The specified record type at create does not belong

to the set.

22, PRINTVALUE EXCEEDS FIELD RANGE <channel> <value>

The number of digit positions is too small for the

value to be printed. In the result area the value

is printed as '????'.

<channel> indicates the current result zone

<value> is the too big value

23. ILLEGAL PRINTPOSITION <start_pos>

The start position for print is specified outside

the line buffer.

24. PRINT FIELD EXCEEDS LINE BUFFER <start pos> <number>

The calculated last position of a field is outside

the line buffer.

-159-

5.3.2 Duet Program Error

25. ILLEGAL BS. OPERATION, POSITION AFTER EOF <set_no>

At get or newset (settype B) the specified position

is after end-of-file.

26. ILLEGAL DELETE POSITION <set_no>

Current Record in the set (settype B) cannot be

deleted because another set in the same file has a

current record after this position.

27. SET NOT OPEN FOR SEQUENTIAL ACCESS <set_no>

Newset has not been called or end-of-set is reached.

28. ILLEGAL SPECIAL ACTION <algol_no>

An undefined Algol special-action is activated from

the Duet program.

29. ILLEGAL NO OF PARAMETERS <algol_no> <no>

Illegal number of parameters specified for the

activated Algol special-action.

-160-

5.3.2 Duet Program Error

30. ILLEGAL TYPE OF PARAMETER <algol_no> <param_no>

Illegal parameter type specified for an algol

special action.

Add the following new duet program error:

31: illegal zero division

can be caused by modify (integer division) and

compute (ordinary division).

~161-

Duet System Errors

The procedure 'duet_system_fejl' is called, if the

Duet Interpreter detects any inconsistencies in the

Duet program, the ld-description, or the database.

In case of system errors, the maintenance group

should normally be notified.

The standard format for system error messages is:

*#**** SYSTEM ERROR eno: CALL FROM: BLOCK INSTR OPT (ADR PIL ART)

<errortext> { <errorzaranctex>) 3

p0.0.0.0.0.4 XX XXX XXXKKXK XX xx xx

0

The information in the system error line is the same

as the information in a program error line (see

section 5.3.2). Below the system errors are described

in error number order.

The information in <> states the names of the

variables, which are being printed, as a further

indication of the system error.

1. DUETREL <duetrel> <duetstop>

There is an inconsistency in the binary Duet program

in connection with the activation of a Duet

instruction.

-162-

5.3.3 Duet System Errors

2. BIT23 = 0

There is an inconsistency in the binary Duet program

in connection with the execution of a Duet instruc-

tion.

3. *DUETNAME'

There is an inconsistency in the binary Duet program

in connection with the execution of a Duet instruc-

tion.

4. VALUE OF 'UDTRYK' <val> <duetstop>

There is an inconsistency in the binary Duet program

or an error in the Duet Interpreter's procedure

‘udtryk'.

5. BIT23 = 1 <duetstop>

There is an inconsistency in the binary Duet program

or an error in the Duet Interpreter's procedure

‘udtryk'.

-163-

5.3.3 Duet System Errors

6. LD-TABLES <setno>

There is an inconsistency in the binary ld-descrip-

tion.

7. CHECKSUM <setno> 5

Checksum error in a database record; there is an

inconsistency in the database.

8. RECORDLENGTH <setno>

There is an inconsistency in the database: The length

of a record which is read with 'get', 'next', or

‘lookup! does not correspond to the db-description.—~

9. CONNECT MISSING IN SIDE CHAIN <setno>

There is an inconsistency in the database: the list

file record in question has not been connected to all

the secondary mothers.

-164-

5.3.3 Duet System Errors

10. FILE EXPANSION IMPOSSIBLE <resultcf>

By put, a file expansion with '‘extendcf' has

failed.

<resultcf> states the cause:

2 The file has been extended, but the zone

buffer is too small (the variable

"sd_extend buf' must be initialised

with a larger value, if many records

are to be inserted in one run),

>10000 Lack of resources.

11. RECORD CREATION TOO EXPENSIVE <resultcf>

Insertion of a new record (put after create) has

failed.

<resultcf> states the cause (see ref. 4).

12. DELETION OF LAST RECORD IN FILE

There must always be at least one record ina

cf-masterfile.

13. SKIPWORD

There is an inconsistency in the binary Duet program

in connection with an exit to a program point.

-165-

5.3.3 Duet System Errors

14. OVER/UNDERFLOW <staktrin>

Error in the Duet interpreter by stacking or

unstacking. The cause might be too many levels of

execute-operations.

15. ERROR IN BLOCK TRANSFER <blockno> <errortext>

Error discovered when reading a Duet block.

<errortext> states additional cause:

BLOCKLENGTH ERROR

BLOCKNO ERROR

CHECKSUM ERROR

RECORDNO ERROR

They all state an inconsistency in the binary Duet

program

BLOCK/LD VERSION INCONSISTENCY

The Duet block has been compiled with another

version of the ld-description than the one the

running system operates with.

-166-

eal

5.3.3 Duet System Errors

16. MOVE ERROR <text>

An inconsistency arisen during transfer between

variables and fields in connection with a db-

operation.

<text> is a further explanation of what caused the

error:

ILLEGAL ENTRYADDR IN 'FLYTTETAB'

ILLEGAL MOVEINSTRUCTION: <type> <addr>

they both state an inconsistency in the binary ld-

description.

17. ILLEGAL TYPE OF VALUE ELEMENT <type>

There is an inconsistency in the binary Duet program

or an error in the Duet interpreter's procedure

‘take value'.

duet_algol

-167-

Algol special actions

The algol special actions in the Duet program are

performed by letting the Duet Interpreter call the

procedure 'duet_algol(no)' with the Algol action

number as parameter.

This procedure must be declared by the control pro-

gram at the block level, which 'duet_text2' is

copied into.

The procedure may have the appearance shown in fig.

5.3.

procedure duet_algol (no) ;

value no; integer no;

case no of

begin

begin <*action1*>

begin <*actionx*>

end

end duet_algol;

Figure 5.3: procedure duet_algol

-168-

5.4 Algol special actions

Each single Algol action must interpret its

parameters itself by repeatedly calling the Duet

Interpreter's integer procedure 'takevalue'.

duetparam The variable 'duetparam' indicates the number of

parameters stated, and thus how many times

'takevalue' must be called.

takevalue The return value of 'takevalue' states how the

parameter has been read and the name of the program

variables in which the value is stored, as shown in

VA reaicel -
the table fig. 5.4.

bt ghé 5
hp value] value stored value stored as a

Lid takevalue | type | as an integer | floating-point number

0 real ~ reg

2 word d.w, verdi reg

; 3 long | d.l, verdi reg

\e° 4 text | d.t ~

5 adr(| procedure 'varadr' has been called

Figure 5.4 the result of 'takevalue'

varadr The procedure 'varadr' is called from 'takevalue',

when the parameter has been specified as Tadr(...)'.

In this case 'type' states where the resulting

variable is to be found, as shown in fig. 5.5.

Furthermore 'lgd' states, how many words the variable

f) s
Lene veerddi

é

-169-

5.4 Algol special actions

variable variable is

"type! type found in ‘lgd'

0 text d.t. text length in words

1 ~ ~ ~

2 word d.w 1

3 long d.l 2

4 real d.r. 2

5 recno d.w 1

6 date d.w 1

7 bits d.t aggregate length in

words

Figure 5.5. The result of 'varadr'

NB!: If the variable is an array variable it is

always the address of the 1.element which is

being computed.

goto Normally an Algol special action must not contain a

'goto' which leads out of the procedure. If the

processing of the Duet program is to be continued,

the 'duet_algol' must necessarily return, to where

it was called from. It is allowed, however, to go to

a label outside the Duet interpreter and thereby

interrupt the Duet program.

error The Duet program errors no.s 28, 29, and_.30 can be

called from the 'duet_algol' procedure, if the

latter detects any errors in the call of the special

action.

-170-

Reserved Algol names

Below is an index of all Algol names, which are

declared globally by the Duet text.

Furthermore, all names declared by the Soda_dbms are

recerved. (cf. ref.

The index is split

Algol names, which

1) must/may be

2) can be used

3) must not be

2).

up into three lists compressing

used by the control program

as working variables

touched

The variables in the first list are arranged

according to their use, while the two other lists

are arranged alphabetically.

takevalue

act 2 RF
reg

verdi

lgd

type

duetalgol

duetparam

-171-

Application - known Algol names

Names concerning Algol-special actions

(cf. section 5.4 and 3.2.16)

procedure takevalue;

is called from Algol-special actions to fetch the

parameters of the action.

long field 1;

real field XY;

integer field WwW;

integer array field t;

real reg;

long verdi;

integer lgd;

integer type;

contain return values from call of 'takevalue', as

described in section 5.4. Apart from that they can

be used as working variables without any restrictions.

integer array d(-3:maxc) ;

is the basic array, in which all variables, declared

in Soda-ld, and all constants are placed. These can

be referenced from Algol-special actions by fielding,

either with a field variable generated by the Soda-ld

compiler, or by one of the standard field variables

w, 1, r, or t assigned by the procedure 'takevalue'.

procedure duetalgol (no) ;

Must be declared by the control program for executing

Algol-special actions.

integer duetparam;

States the number of parameters for an Algol-special

action.

read_general

readz

linie

felter

felt_type

line index

-172-

5.5.1 Application - known Algol names

Names concerning reading

(cf. section 3.2.10 and 3.2.11)

external procedure read_general (readz, linie, felter,

felttype, linieindex) ;

reads an input line, to be used by the operation

read, as described in the Duet operation 'getline'.

Usually the reading is coded in the Duet program,

but with some type of program it is more convenient

to let the control program itself read in the data

lines. In these cases the control program must call

'read_general' with the above - mentioned parameters,

and the Duet program must not use the operation

"getline'. This concerns e.g. both 'teleop' and

‘telescop'.

zone 'readz' (128, 1, stderror) ;

must be opened by the control program before calling

‘init_duet2' (cf. section 5.2.2). Is used as a

parameter in a possible call of 'read_general'.

real array linie (1:25);

long array felter (1:150);

integer array felt_type (1:150);

integer linie index; 4 Kal

are used as parameters for 'read_general'. In the

array 'linie' the input line is delivered as a

text.

-173-

5.5.1 Application - known Algol names

alfa integer array alfa (0:127);

is initialised by 'init_duet2' with the standard

character class table for reading (cf. section

3.2.11, specially fig. 3.35). The control program

can change the contents of this table and must then

call the procedure 'intable (alfa)'.

Each element in alfa must have the format,

character _class shift 12 + character_value

std_assign integer std_assign;

see section 5.2.3.

Names concerning print ('primula' printing)

(cf. section 3.2.12 and 5.2.1-4).

rinz zone array pring (max_kanal, 128+38,1, prinzproc) ;Pp -_ E

Each zone in 'prinz' must be opened to an output area

before calling ‘init _duet2' (cf. section 5.2.2).

max_kanal integer max_kanal;

defines the number of zones in 'prinz'. Must be

initialised by the control program before calling

‘init_duet1'.

max_printpos integer max_printpos;

defines the length of the 'primula'-system's line

buffer in each of the prinz-zones. Is initialised

by 'init_duet1' to 132, but can be redefined in the

outer block of the control program.

-174-

5.5.1 Application - known Algol names

set_primula procedure set_primula (zone_no);

integer (zone_no;

utility procedure, which makes use of 'write' possible

on the 'prinz'-zones. Before calling 'write' the con-

trol program must call

end_print (prinz (zone_no));

and after ‘write' terminate with

set_primula (zone_no);

kanal integer kanal;

defines which 'prinz'-zone is to be used by print.

Is set to 1 by the 'init_duetmaskine'. Can be

altered by the control program or by the operation

"select', but must not be reset to zero (cf. section

3.2.14 and 5.2.3).

Names concerning the execution of the Duet program

duetareal integer duetareal;

Must be initialised by the control program before

calling 'init _duet1'. Defines the size (in words) of

the Duet array which the Duet blocks are read to.

(cf. section 3.1.2 and 5.2.1).

max ref integer max_ref;

defines 'the half life' of the array 'block_use', in

which the Duet system notes how often each single

Duet block is referenced. Using this registration it

is possible to have the most frequently used blocks

remain in the core store (in 'duet_array') (cf.

section 3.1.2).

>

instruktionstal

max_instruktion

duetreg navn

duet_version

ldreg_navn

1d_afsnit_num

ld_version

fejlud

-175-

5.5.1 Application - known Algol names

To avoid having a block, which, over a period, has

been used frequently, but then is not referenced

for some time, remain in the core store, the counters

in 'block_use' are halved each time 'max_ref' block

references have been executed.

'max_ref' is by ‘init _duet2' initialised to 20.

integer instruktionstal;

integer max_instruktion;

the instruction counter and its upper limit (cf.

section 5.2.3).

Names concerning initialising

(cf. section 5.2)

real array duetreg_navn (1:2);

integer duet_version;

must be initialised by the control program before

calling ‘init _duet1' with area name and version no.

of the compiled Duet program.

veal array ldreg_ navn (1:2);

integer ld_afsnit_nummer;

integer ld_version

must be initialised by the control program before

calling ‘init _duet1' with area name, section number,

and version no of the compiled ld-description.

zone fejlud (128, 1, stderror)

must be opened and closed by the control program to

be used for writing the Duetlog and possible error

messages, if these are not redirected to ‘out'/'prinz'

-176-

5.5.1 Application - known Algol names w

init _duet1 integer procedure init _duet1 (z);

zone Z;

The initialising procedure in 'duettext1'. It must

be called by the control program with ‘out! or

'fejlud' as parameter; the 'prinz'-zones must not

be used. See section 5.2.1.

init _duet2 integer procedure ‘init _duet2';

init_duetmaskine procedure 'init_duetmaskine';

Initialising procedures in 'duettext2'. See section

5.2.2 and 5.2.3. @

close duet procedure close duet;

Termination procedure for closing zones.

See section 5.2.4.

Notice: Variables which must be initialised are also

found under print and execution of Duet program.

Names concerning error messages

(cf. section 5.3)

datafejl akt integer array datafejl_akt (1:max_datafejl);

datafejl_kanal integer datafejl_kanal; w

programfejl akt integer array programfejl_akt (1:max_programfejl

programfejl kanal integer progranfejl kanal;

systefejl_akt integer array systemfejl_akt (1:max_systemfejl);

systemfejl_kanal integer systemfejl_kanal;

are initialised by the ‘init duetmaskine'. They can be

altered with the 'select' operation or by the control

program. See section 5.2.3.

-177-

5.5.1 Application - known Algol names

max datafejl integer max datafejl;

max_programfej1 integer max _programfejl;

max systemfej1l integer max systemfejl;

The upper limits for the 'fejlakt'-arrays. They

must not be assigned by the control program.

print dataerror procedure print _datafejl (z, error no);

zone 2; integer error no;

lesvarnavn long array lesvarnavn (1:4);

fejlverdi long fejlverdi;

contains, when 'print_datafejl' is called, the

name of the Soda variable, which was last used for

reading, plus the illegal value.

Names concerning tests

testa integer testa;

testb integer testb;

testc integer testc;

testd integer testd;

teste integer teste;

testf integer testf;

testg integer testg;

testh integer testh;

testvariables, which might be assigned, when

needed, by the control program and/or by the Duet

operation 'select' (cf. section 3.2.14).

testkanal integer testkanal;

defines where the test output is printed (cf. section

5.2.2).

duetdato

duettid

duetsystem_vers

duetsystem_dato

duetsystem_init

systemtest

nl

sp

tipotens

trykbits

-178-

5.5.1 Application - known Algol names

Other names

integer duetdato;

integer duetid;

are assigned with ISO-date and hour for start of run

(hour-minute-seconds) by ‘init _duet1'.

They are printed on the Duet log.

integer duetsystem_version;

integer duetsystem dato;

real array duetsystem_init (1:2);

contain version no and date of publishing plus the

initials of the person responsible for the current

edition of the Duet system texts. Is printed on the

Duet log by ‘init dueti'.

long array systemtext (1:4);

contains the name Of the Duet program (from the

Duet head), which is printed on the Duet log.

boolean nl;

boolean Sp;

are assigned by 'init duet1' with respectively

‘false add 10' and 'false add 32'.

integer array tipotens (0:6);

is assigned by ‘init duet2' with the tenth powers

1, 10, 100,, 1000000.

procedure trykbits (z, number, word);

zone z; integer number, word;

prints the contents of the parameter 'word' as a

bit pattern. The parameter 'number' states how many

bits of 'word', counted from the right that is to

be printed.

a

porte nnn en ---- ---------- Fold here -----~----------------------------(

A

Affix

postage

here

A/S REGNECENTRALEN

Marketing Department

Falkoner A11é 1

2000 Copenhagen F A

Denmark

READER's COMMENTS DUET
~

RCSL No: 21-V032

A/S Regnecentralen maintains a continuous effort to

improve the quality and usefulness of its publications.

To do this effectively we need user feedback - your

critical evaluation of this manual.

Please comment on this manual's completeness, accuracy,

organization, usability, and readability:

Nish

Do you find errors in this manual ? If so, specify

by page.

How can this manual be improved ?

Other comments ?

wi

Please state your position:

Name: Organization:

Address: Department:

Date:

Thank you

RETURN LETTER - CONTENTS AND LAYOUT

~213-

Index (continued)

zero repr

zero representation

zero_value

zero value statement

A-192

3-73

3-74

-212-

Index (continued)

value

value check

value element

value_spec

value specification

value spectrum

var

vardecl

variable

variable name

variable number

variable reference

variable type

varref

var_spec

vartext

version

vertical _spec

vertical specification

vertical tabulation

verdi

w

while

while opt

word var

working register

write (between print)

A-189

3-62,

3-31,

A-193

3-71,

3-67

3-44,

5-135

2-10,

A-197

3-26,

3-91

3-26

3-26

3-27

A-197

A-188

A-193

4-101

A-191

3-71,

3-72

5-171

5-171

3-59

A-190

3-28

3-50

5-174

3-67

3-40, 3-76

-211-

Index (continued)

test_line A-195

test output (from the Duet 3-85, 3-86,

interpreter) 5-177

test output (from the compiler) 4-107

test_value A-189, A-190,

A-195

test value (assign/action) 3-51, 3-57, 3-75

testvar A-195

test variable (assign/action) 3-51, 3-55, 3-56

test variable (test outputs) 3-88, 5-177

textchar A-197

textconst A-197

text constant 3-30, 3-76, 3-91

text delimiter 3-63, 3-65

text field (in input) 3-63

text file (program text) 4-94, 4-97, 4-101

textlength A-192

text printing 3-72

textvar 3-28, A-197

text variable (textvar) 3-28, 3-65, 3-75,

3-91

tflytproc 5-136

t-layout 3-72

tno A-187

to_value A-190

translate 4-105, 4-106

type 5-168, 5-169,

5-171

user 3-19, 4-101

user adaption 2-10

user number 3-19, 3-21, 4-101

-210-

Index (continued)

soda_dbms

soda-ld

sodatext1,-2,-3

source text

spill

standard layout

standard mark

standard value

std_assign

std_assign_ line

std_layout

std_layoutype

std_line

suppression specification

syntactical description

Sysdok lineno.

Sysdok file

system_fejl_akt

system_fejl_kanal

t

take value

teleop

telescop

term_code

terminator code

testassign_ symbol

testbit

test channel

test_kanal

testkanal

1-6, 2-9, 3-80,

5-170

1-6, 2-9, 5-134

5-136

4-100, 4-105

3-29

3-79

3-68, 3-85, 3-88

3-62, 3-68, 3-81,

3-88,

3-69, 5-144, 5-173

A-195

A-193

A-193

A-193

3-37, 4-102

A-185

4-94

4-94, 4-97, 4-100,

4-103,

5-143, 5-176

5-143, 5-176

5-171

5-168, 5-171

1-7, 5-133

1-7, 5-133

A-191

3-64, 3-65

A-195

3-89, A-195

3-86

5-141

5-177

-209-

Index (continued)

result area

result_channel

result output

result variable

return line

right side

sd_extend_buf

section number

select

select exit

select_line

select_opt

select print

select return

select stdassign

select test

selective assign

selective branching

set

set_no

set_primula

set_spec

set type

shortcar

simple _numvar

simple textvar

simple_var

simple variable

simple wordvar

size

s-layout

3-70

A-194

3-86

3-66,

A-195

A-188

5-139

4-100

3-37, 3-69,

3-84

3-70,

3-85 (cont.),

5-177

3-87

A-194

A-194

3-86

3-87

3-88

3-89

3-51

3-56

3-80

A-194

5-174

A-194

3-82,

A-197

A-197

A-197

A-197

3-27

A-197

4-106

3-79

(cont.)

-208-

Index (continued)

print _spec

prinz

program fejl_akt

program_fejl_kanal

program point

program text

put

put_opt

quotation mark

rx

read

read_general

reading variable

read_mode

read_opt

read_spec

read specification

readvar

readz

real working register

rec no var

record field

record type

reg

relation

relopt

reset to zero of numerical array

resource demands (for the compiler)

A-191

3-70,

5-141,

5-173

5-143,

5-143,

3-35,

4-94

3-81

A-194

3-63

5-171

3-60

3-60,

5-172

3-50

3-64,

A-190

A-190

3-64,

A-191

3-60,

3-50

3-28

3-81

3-80

5-171

3-54,

A-189

3-47

4-109

3-86,

5-146

5-176

5-176

3-87,

3 62,

A-191

3-66,

5-141,

3-59,

5-147

5-136,

3-67

5-172

A-189

=

-207-

Index (continued)

numerical printing

numerical value

numerical variable

num_expr

num_operand

num_opt

numvar

oldduet

paper

parameter

parameter list

passive program point

pno

pos 1

pos 2

position

prepositioned delimiter

prim

primula

principals

print

print_action

print channel

print_data_error

print_error_ line

print_line

print line

print_opt

print_result_line

(in input)

3-73

3-76

3-28,

A-188

A-189

A-189

3-28,

A-197

4-105

4-103

A-196

A-196

3-36

A-187

A-193

A-193

3-71,

3-67

5-136

3-70,

3-74,

3-76, 3-91

3-76, 3-91,

3-72, A-192

5-136

A-192

3-70 (cont.)

A-191

3-70,

5-136,

5-177

A-194

A-191

3-71,

A-191

A-194

3-85, 3-86

5-148,

4-95

Index (continued)

max_datafejl

max_instruction

max_kanal

max_print_pos

max_programfejl

max_ref

max_systemfejl

modulo

modify

modify line

modify opt

modify symbol

mod_spec.

name

name_spec

next

newduet

newset

newset_opt

nl

n-Layout

no

no_of chars

no_of lines

no_of rep

normalization

np

num_const

numerical field (in input)

numerical constant

numerical expression

5-176, 5-177

5-144, 5-154

5-175

5-173, 5-139

5-141, 5-173

5-176, 5-177

5-141, 5-174

5-176, 5-177

3-76

3-39 (cont.)

3-76

A-188

A-188

A-188

A-188

3-44, 3-76,

A-188

3-81

4-105

3-81, 3-83

A-194

A-197

3-73

A-192

A-191

A_191

A-192

3-28

A-197

A-197

3-63

3-28, 3-76,

3-49, 3-76

,

,

3-91

1 ee ay atte, cg op +18 Gee “near ema

-205-

Index (continued)

jobfile for compilation 4-110, 4-111

1 5-171

layout A-191

layout_param A-192

layout parameter 3-71, 3-72 (cont.)

layout specification 3-71 (cont.)

layout type 3-71, 3-72 (cont.)

3-75, A-192

ld_sectionno 4-104

ld_afsnit_nummer 5-139, 5-175

ld-description 2-9, 3-81 (cont.)

ldfields 5-136

ldfile 4-104

ld-file 2-9, 4-97, 4-104,

5-139

ld_ident A-186

1d_no A-186

ld_reg_navn 5-139, 5-175

1d_version 5-139, 5-175

leftside A-138

lgd 5-168, 5-169

line buffer 3-70

line feed (in Duet program) 3-15

lineno. 4-94

list 4-102

listing 4-93, 4-94, 4-98

Llistout 4-102

log print out 4-112, 5-139,

5-178

lookup 3-80

lookup_opt A-194

lesvar_navn 5-148, 5-177

-204-

Index (continued)

get

getline

getline opt

get_opt

Goto

horizontal specification

if

if_opt

implicit standard mark

include

index

informal

init_duet]1

init _duet2

init _duetmaskine

initials

insert

instruktions tal

integer division

integer variable

internal lineno.

itype_no

itype_spec

3-81

3-60

A-190

A-194

3-35,

3-54

A-189

3-68

3-37,

A-197

A-185

5-135,

5-138,

5-176

3-62,

5-138,

5-176

3-69,

3-86,

5-138,

5-176

4-101

4-105,

5-145,

3-76

3-28

4-94,

A-194

A-194

5-169

4-102,

5-136,

5-139,

3-86, 5-135,

5-141,

3-70, 3-72,

5-135,

5-143,

4-106,

5-175

4-114

~203-

Index (continued)

error_no

error type

execute_line

execute list

execute_opt

execution of Duet program

exit

exit _line

exit_opt

expansion percentage

explicit standard mark

external lineno.

fejlud

fejlverdi

field association

field transfer

fixed_pos

fixed_sign

fixed sign

for

form feed (in print)

form feed (in the Duet program

listing)

for_opt

fp-parameter

fp-parameter key-word

from_value

A-195

A-194

A- 187

2-10, 3-13, 3-15,

3-33 (cont.)

A-187

3-15

3-36, 3-58

A-195

A-195

4-106

3-68

4-94

5-139, 5-146

5-177

3-81 (cont.)

3-81 (cont.)

A-192

A-192

3-73

3-58

3-72

4-94

A-190

4-98 (cont.)

4-99

A-190

-202-

Index (continued)

Duet program name

Duet program number

Duet program text

duet_ref

Duet reference

duet_reg_navn_

Duet stop

Duet system

duet_system fejl

Duet system error

Duet texts

duettext1

duettext2

duettext3

duettext_name

duettid

duet_version

editing (program text)

else action

else _ line

end of string

end of string delimiter

entry _ no

entrypoint

entry spec

error messages (from the compiler)

3-17

3-17

4-94

A-187

3-30, 3-33

5-139, 5-175

3-14,3-33, 3-39,

3-49, 3-51, 3-55,

3-56, 3-70, 3-85

1-6

5-147, 5-161

5-161 (cont.)

5-134

5-135, 5-136

5-135,5-136, 5-137,

5-167

5-135, 5-136,

5-137

4-101

5-178

4-104, 5-139,

5-175

4-94 (cont.)

A-190

3-52, 3-56, A-189

3-60, 3-63

3-65

3-19

2-9, 3-18, A-186

A-187

4-98, 4-14 (cont.)

error messages (from the Duet 3-86

interpreter)

-201-

Index (continued)

Duet algol

duetareal

Duetarray

duet_block

Duet blocks

Duet compiler

duet_data_fejl

duetdato

Duet file

duet_head

Duet head

duet_instr

Duet instruction

Duet interpreter

Duet log

Duet name

duet_no

Duet operand

Duet operation

Duet operator

duetparam

duetprg ident

Duet program

duetprogram

Duet program error

duet_program_fejl

5-139, 5-174

2-9, 5-139, 5-174

A-186

2-9, 3-18 (cont.),

4-93, 4-104, 5-174

1-6, 2-9, 4-93

5-147, 5-148

(cont.)

5-178

2-9, 4-93, 4-98,

4-104 (cont.),

5-139

A-186

3-17, 4-93

A-186

2-10, 3-13

1-6, 2-9, 4-93,

5-136

4-112,5-139,

5-178

3-13, 3-24, 3-30,

3-71

A-186

3-14, 3-26 (cont.)

3-10, 3-24, A-187

3-14

5-168

A-186

2-9, 4-97

A-186

5-152 (cont.)

5-147

-200-

Index (continued)

constant

control program

create

create_opt

current record

comment delimiter

d-array

database

data error (data_fejl)

data_fejl_akt

data_fejl_kanal

db-description

db-operation

db-opt

decimals

declaration file

delete (db-operation)

delete (duet block

delete opt

delimiter

descripfile

digit (group)

digitno

div_spec

d_name

Duetabler

Duet action

3-28

1-6, 1-7, 2-9, 3-22,

3-60, 3-62, 3-69,

3-70, 3-89, 5-133

(cont.), 5-167

3-81

A-194

3-81 (cont.)

3-63

2-10, 3-20, 5-171

3-80

3-66, 3-68, 5-148

(cont.)

5-143, 5-176

5-143, 5-176

2-9

3-80 (cont.)

A-193

3-73, A-192

5-134

3-83

4-105, 4-106

5-194

3-64, 3-65

4-104

3-42, 3-76

A-188

A-188

A-197

1-6, 2-9, 4-93,

5-133

3-71

-199-

Index (continued)

block_no

block_number

block_ref

block reference

block_spec

Boss lineno.

bs-file

case

case _line

case opt

cf-list file

cf-master file

change

channel

char_const

character constant

character field (in input)

char_print

character printing

character set table

character class

chars

c~layout

close duet

comment field (in input)

comment (in Duet program)

compilation job

compute

compute line

compute_opt

conditional compilation

A-186

3-18, 4-105 (cont.)

A-187

3-34

A-187

4-94

3-82, 5-146

3-55

A-190

A-190

3-82

3-81, 3-82

4-105, 4-106

3-86, 5-174, A-194

A-197

3-30, 3-76, 3-91

3-63, 3-65

3-73

3-73

3-62, 3-63, 5-141

3-63, 5-173

3-65

3-73

5-135, 5-138,

5-146, 5-176

3-63

3-15

4-110, 4-111

3-49 (cont,), 3-76

A-188

A-188

3-37

-198-

Index

action

action_line

action list

action_opt

active program point

adaption point

adr

a-layout

alfa

algol

algol_opt

algol special action

alternative action

alternative value

ap

apostrophes

array _var

assign_line

Assign list

assign opt

assign operator

assign value

assign variable

automatic normalization

basispos spec

basic position

bit var (iable)

block_end

Block_head

3-56

A-109

3-56

A-189

3-36, 3-90

2-10

3-91

3-79

5-141, 5-173

3-91 (cont.)

A-196

3-91, 5-167 (cont).

5-171

3-53, 3-56

3-53

A-197

3-30, 3-63, 3-65

3-26, A-197

A-189

3-52

A-189

3-40, 3-41, 3-44,

3-47, 3-49, 3-89

A-189

3-51

3-28, 3-43, 3-76

A-191

3-71

3-28

3-19, A-186

3-19, A-186

A

-197-

Appendix A

Basic concepts:

nl = <10> | ';' textchar(*) <10>) (+);

np = (ae | <12>) nl(*);

d_name -= 'd' NUMBER(1 TO 999);

varref -= simple var |

array var mC index ')';

simple var -= variable (: no arrayspec) ;

array _var -= variable (: arrayspec) ;

variable -= ‘'v' NUMBER(1 TO max var) |

var_ident;

index -= numvar |

NUMBER(1 TO max_index) ;

numvar -= varref (: vartype = word, long, real, date);

textvar -= varref (: vartype = text);

simple _numvar -= simple var (: vartype = word, long, real, date);

simple_textvar -= simple var (: vartype = text);

simple wordvar -= simple var (: vartype = word);

num_const -= NUMBER ('.' NUMBER) (.));

text_const -= ap textchar(*) ap;

ap -= <39>; <* apostrof: ' *>

char_const += '.' shortchar shortchar(.) shortchar(.) '.';

shortchar -= <letter, digit, ',-+:3!2?/_=<>*()%&'>

textchar -= <shortchar, '.'>

ane --

algol_opt

parameter list

parameter

name_spec

adr_spec

var_spec

-196-

Appendix A

‘algol' parameter list(.);

'(' parameter (',' parameter) (*)

num_const |

text_const i
char_const |
varref |

name spec |

adr_spec;

see modify opt.

‘adr' '(' (variable

see modify_opt.

| var_spec)

y's

yrs

print_error_line

error_type

channel

exit line

pno

error _no

return_line

test_line

testvar

testassign_symbol

test_value

testbit

std_assign_line

exit_opt

mo

-195-

Appendix A

= 'print' (error_type | 'test') 'on' channel;

= 'data' '‘error' |

‘program' ‘error' |

"system' ‘error’;

= NUMBER(O TO 9);

= ‘exit’ pno 'on' error type

(error_no (',' error no) (*)) (.);

see execute opt

= NUMBER(1 TO max error) ;

= '‘'return' ‘on! error_type;

= ‘test’ testvar testassign_symbol test value;

= tat | "bh | tor | "gq! |

tet Pte Po tgh Pot”

= ‘ext | 'e4t | tint;

= numvar | 'on' |['of' |

testbit (',' testbit) (*);

= NUMBER(0 TO 23);

= 'no'(.) 'stdassign' 'on' 'read';

-= ‘exit! pno;

see execute_opt

create opt

lookup_opt

get_opt

put_opt

delete opt

newset_opt

set_spec

set_no

itype_spec

itype_no

select_opt

select line

print_result_line

result_channel

-194-

Appendix A

-= ‘create’ set spec itype spec;

+= ‘lookup’ set_spec;

-= ‘get’ set spec;

Ui. ‘put’ set spec;

-= ‘delete’ set spec;

-= 'newset' set _spec;

-= ‘st set.no |

simpel_ wordvar ')';

ll NUMBER(1 TO max set) ;

-= 'i' itype no |

'i(' simpel wordvar ')';

-= NUMBER

-= 'select' select_line(*) 's';

(print result 1 ine ji
print_error_line i

exit_line |

return line |

test_line |

std_assign line) nl;

-= ‘print’ 'on' result channel;

-= NUMBER(1 TO 9);

<*record type*>

value_spec

name_spec

mod_spec

div_spec

digits spec

num_expr

std_line

std_layout

std_layouttype

posi

pos2

vartext

db_opt

-193-

Appendix A

-= IF layouttype = 't' THEN

(text const |

textvar :

name_spec)

ELSE

(num_const !

char_const !

numvar

num_expr

mod_spec :

div_spec :

digits spec) ;

see modify opt

see compute_opt

-= stdlayout vartext simpel var;

= '<' std_layouttype posi ',' pos2 '>';

+= fixed_pos;

-= fixed_pos;

-= IF std_layouttype = '‘'s' THEN textkonst;

+= create _opt

lookup_opt :

get_opt

put_opt

delete_opt

newset_opt ;

position

fixed_pos

layouttype

layoutparam

textlength

no_of_rep

fixed_sign

zero_repr

zero_value

principals

decimals

~192-

Appendix A

fixed_pos | '(' simp _wordvar ')

i NUMBER(1 TO 127);

-= TABLE layouttype = (

't! $8 textlength,

‘c! $ no of _rep,

Hl

'‘n'! $ fixed siqn(.) zero_repr(.)

zero_value(.) principals

('.' decimals) (.)

= no [| '(' simp wordvar ')';

-= no | '(' simp wordvar ')';

-= NUMBER(1 TO 127);

+= NUMBER(1 TO 15);

.= NUMBER(1 TO 7);

\;

read_mode

term_code

no_of chars

read_var

print opt

print_action

print_line

layout

ais basispos_spec

printspec

verticalspec

no_of_ lines

-191-

Appendix A

"

It

li

'n' termcode |

't' termcode |

‘c' term_code no_of chars;

NUMBER(0 TO 3);

NUMBER(1 TO 3);

IF read mode = 't' THEN textvar

ELSE numvar;

"print!

(print_action | print_line | std_line) (*)

dname nil;

layout value_spec(.) nl;

basispos_spec | print_spec;

'<' tht position '>';

'<' verticalspec (.)

(position layouttype layoutparam) (.)

(no_of_ lines | simp_wordvar) '1';

NUMBER(1 TO 70) ;

'o'3

-190-

Appendix A

action_line = test_value ':' dname nl;

test_value -= num_const | char const | simp _wordvar;

else_action = ‘else’ d_name;

case_opt -= ‘case! simp wordvar ‘of!

case line(*) (else_action | 's');

case_line -= (caseno ':')(.) dname nl;

else_action see action_opt.

for_opt -= ‘for' simp wordvar ':=' from_value ',' to_value

‘do' dname nl;

from_value -= numconst | char_const | nunwar;

to_value -= numconst | char_const | numvar;

while opt = '‘while' relation '‘'do' dname;

relation see if opt

getline_opt -= ‘getline’ simpel _textvar;

read_opt .= 'read' read spec (',' read_spec) (*);

read_spec -= read mode read_var;

ad

num_operand

num_opt

assign_opt

assign_line

test_value

assign_value

else line

if opt

relation

relopt

value

action_opt

-189-

Appendix A

-= num_const |

char_const |

|numvar

"(numexpr ')';

ee A

.= ‘assign' simp wordvar ':=' simp numvar 'of' nl

assign_line(*) (else line | 's');

-= test_value ':' assign_value nl;

-= num_const | char_const | simp _wordvar;

-= numconst | char_const | simp_wordvar;

-= ‘else’ (assign_value | d_name);

-= ‘if' relation 'then' d_name

('else' d_name) (.);

-= mnumvar relopt value;

ara | ee tgp! J ots";

-= numconst | char_const | nunwar;

-= ‘action’ simpel numvar 'of' nl

action _line(*) (else_action | s');

modify opt

modify line

leftside

modify symbol

rightside

mod_spec

div_spec

digits spec

digitno

name_spec

var_spec

compute_opt

compute _line

num_expr

-188-

Appendix A

i

‘modify'

(leftside modify symbol

varref

modify line Si

rightside) (.) nl;

! array var;

IF leftside = array var THEN

(array_var

ELSE

(varref :

num_const

text_const :

char_const :

mod_spec :

div_spec .

digits spec

name_spec :

var_spec)

numvar '‘'mod'

numvar

‘digits’

‘of!

‘y/s

'¢' digitno

nunivar;

NUMBER(1 TO 15) ;

‘name’

"var!

'(' (varref

'(' (numvar

(numvar

0)

(numvar ! num_const);

! num const) ;

'," digitmo ')'

: var spec) ')';

: var spec) ')';

‘compute’ compute _line(*) 's';

(numvar

es)

"=") (4)

num_operand

num expr;

(num_opt num operand) (*) ;

-187-

Appendix A

duet_operation += (execute_opt !

a modify _opt !

compute opt }

assign _opt :

if_opt :

action_opt :

case_opt :

for_opt :

while opt :

getline opt t

read_opt :

print_opt :

db_opt :

select opt :

exit opt :

algol_opt) ni;

execute_opt -= ‘execute’ execute line(+) 's';

execute line -= (tno(.) pmo(.) duetref (',' duetref) (*))(.) nl;

tno -= 't' NUMBER(1 TO 9);

pho -= 'p! NUMBER(1 TO 9);

duetref -= d_name | block_ref;

block_ref -= 'b(' block spec ',' entry spec ')';

block_spec -= block_no | simpel_numvar;

entry spec -= entry_no | simpel_nunvar;

duetprogram

duet_head

duetprg_ident

duet_no

1d_ident

1d_no

duet_block

block_head

block_no

entrypoint

entry_no

block_end

duet_instr

-186-

Appendix A

-= duet head duet_block (*) ;

-= duetprg ident nl ld_ident nl;

-= ‘'duetprogram' duet_no '/' textconst;

-= NUMBER;

t

-= (‘localdata' 1d_no) |

('dataentry' 'ld' ld no);

-= NUMBER;

.= block_head duet_instr(*) block_end;

= ‘begin' block no ':' nl

entrypoint (*) ;

.= NUMBER (1 TO 255);

= '>>' entry no ‘'=' dnane nil;

-= NUMBER(1 TO 63);

-= 'end' block _no nl;

-= nl(*) np(.) diname ':' duet_operation

(nl(.) '>" duet_operation) (*);

Appendix A

-185-

A Syntactical Description of the Duet Language

This appendix contains a formal syntactical

description of the Duet language. The syntax is

described by means of the Informal language (ref. 7),

but modified so that the (concatenating symbol -*

is replaced by space.

Below is an index of the symbols of the Informal

language, and their meaning. For a more detailed

explanation see ref. 7 and Appendix A of the Soda-

manual (ref. 2).

definition symbol for syntactical unit (SU),

termination of statement,

alternatives,

SU may be omitted or stated only once.

SU may be omitted or stated an arbitrary number of

times.

SU must occur at least once

SU is a constant text string

contents of a character set

restriction-symbol for data quantity

In the following syntactical description all basic

concepts are defined at the end while all other

syntactical units are defined immediately after the

position where they are mentioned the first time.

-184-

5.5.3 Inaccessible Algol Names

integer

integer

field

field

field

field

field

integer

integer

integer

integer

integer

label

label

label

procedure

integer

integer

integer

procedure

label

procedure

label

integer array

label

procedure

procedure

integer array field

procedure

procedure

refantal

reftal

resultat1

resultat2

resultat3

resultat4

resultats5

skipterm

slut_les

slut short

stak

stakpunkt

staktrin

stopadr

takenum

test_relation

tryk_identid

tryk_vertikal

typelengde

udi¢r

udtryk

varadr

vartextabase

varverdi

verdigrensekontrol

-183-

5.5.3 Inaccessible Algol Names

integer exitnr

long fejlverdi

integer fejlindex

procedure flytblok

label fortset

label fortset_execute

label fortset_layout

label fortset_modify

label genoptab_instruktion

integer gl_duetnavn

integer index

boolean in_if

integer instruktionstal

integer array klumpbasis

integer array klumpref

integer lokalbase

integer lesvar

integer maxblok

integer maxd

integer maxklump

integer maxstak

integer maxvar

integer maxvartext

procedure nyblok

label perform

integer position

integer primula_state

procedure print _duet-test

procedure print_flyttefejl

procedure print_programfejl

procedure print_systemfejl

blockprocedure prinz_ proc

integer punktblok

integer punktpil

integer array punktstak

-182-

Inaccessible Algol Names

procedure afstak

label aktion_fundet

integer array basispos

label bestem_element

integer array blokbasis

integer array blokbrug

integer blokbruger

integer bloklgd

integer array bloklengde

integer blokno

integer bloknr

integer array blokplac

integer blokslut

label checksoda

procedure checkverdi

integer dadr

integer duetadr

integer duetart

integer duetbasis

procedure duetdatafejl

integer duetnavn

integer duetoperator

integer duetord

integer duetpil

procedure duetprogramfejl

integer duetpunkt

integer duetrel

long array duetstak

integer duetstop

procedure duetsystemfejl

procedure duettest

zone duetz

label element_fundet

integer entrynr

label exit

-181-

5.5.2 Free working variables

integer spec

integer stop

integer setnr

long talverdi

integer term

integer termkrav

integer array field text

integer til

integer vadr

integer val

integer var

long varinf

integer varnr

long varord

integer word

-180- me i
{

Free working variables A |

integer adr F

integer adrtype j

integer aktion |
integer antal |

boolean b ‘

integer fejlbits

integer fejinr

integer formatinf

integer fra

integer ftype

long array field haf laa

integer i

integer array ia (1:20)

integer array field inf

integer j

integer k

integer klasse

integer kode

long array field laf

long lword

integer minus

integer mode

integer norm

integer nr A
integer opd

integer opdtype

integer operator

integer opord

integer opt

integer pil

real array field raf |

real reg1

,

takename

-179-

5.5.1 Application - known Algol names

real procedure takename (ra);

real array ra;

simulates 'increase' in a way which does not require

a subscript as a parameter. (Is identical with the

procedure 'hentnavn' in 'begin80', but has been

given its own name, in order not to bother those

users who employ 'begin80' in the outer block of

the control program).

