MONITOR, PART1
System Design

IS@)E(e)

RC8000 MONITOR
PART 1

SYSTEM DESIGN

Development Division

RC Computer A/S
A/S Regnecentralen af 1979

First Edition
November 1979
RCSL No. 31-D476

EDITQORS: Henrik Sierslev

Pierce C. Hazelton

KEYWORDS : RCBO0O0O/6000/4000, Basic Software,

Monitor, General Description

ABSTRACT Contains a general description of '_.
the RC8000 multiprogramming system.

(86 printed pages).

Copyright © 1979, A/S Regnecentralen af 1979
RC Computer A/S
Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by re-
liance on any of the materials presented.

FOREWORD

The RC8000 multiprogramming system is based on the
original system designed by Per Brinch Hansen, Sgren
Lauesen, and Peter Lindblad Andersen. It consists of a
monitor program that can be extended with a hierarchy
of operating systems to suit diverse requirements of

program scheduling and resource allocation.

The present publication is a general description ex-
plaining the philosophy and structure of the system. It
will be of interest to anyone who wishes to understand

the system without going into detail about exact con-

ventions.

The functions of the monitor and the basic operating

system are further described in the publications

RC8000 Monitor, Part 2, Reference Manual

RC8000 Monitor, Part 3, External Processes

Operating System s Reference Manual

Basic programming information will be found in RC8000
Computer Family Reference Manual, and a survey of spe-
cific operating systems in An Introduction to RC8000

Operating Systems.

This publication replaces Part I of Multiprogramming
System (RCSL No. 55-D140), the original monitor manual
edited by Per Brinch Hansen, whom the present editors

wish to thank for large portions of the text.

CONTENTS
1. SYSTEM OBJECTIVES ..vicevsanaccasesoscsansananscs 1
2. ELEMENTARY MULTIPROGRAMMING PROBLEMS .. ccecacnaan 5
2.1 Multiprogramming-cececesensectocccennnn 5
2.2 Parallel ProCeSSES ...ssseveesssesrscsserncscs 5
2.3 Mutual Exclusioncccecercccners ceses s . b
2.4 Mutual Synchronizationeeseceerenevences 8
3. BASIC MONITOR CONCEPTS .vvevevcreonvanasononases . 9
3.1 Introductioncceceerasennsaoraonenee 9
3.2 Programs and Internal ProCesSSesS ...savasase=s 10
3.3 Documents and External Processes-.--- 12
3.3.1 Peripheral ProCessesS-ceoeceseress 13
3.3.2 Areca ProCESSEeS ..-:eesseoaravsescaccnes 13
3.4 PseudO PrOCESSES ...eseencsessarsvesnsnrenscs 14
.5 Bases and the Protection System- 14
6 MONILOY «oevvecesssenssssssassosccensesnneses 15
3.7 SUMMALY «ovevecensssernsnocssssevnuassensnrnses 16
4. PROCESS COMMUNICATIONcescevsoncanencerceessrs 17
4.1 Message Buffers and QUEUES ...veeevsssrnonsns 17
4.2 Send and Wait Procedurescereeecosccce 18
4.3 General Event Procedurescceoencocecens 20
4.4 Advantages of Message Buffering ..cceeceeceens 24
5. EXTERNAL PROCESSEScceeevcerorenmnenusnsnerses 27
5.1 Tnitiation of Input/Outputc-eeeeens 27
5.2 Reservation and Releaseceev-envcvonc-e 29
5.3 Creation and Removal vesa s erans 30
5.4 LINKS eeeeecessnsosnsonsnsssosascesasosnsseoces 31
6. INTERNAL PROCESSES ...cc-ceusvecennecsarnrocncsmnss 33
6.1 Creation, Control, and Removalceoevecssss 33
6.2 Process Hierarchyccce-0en. ceersesne e 36
6.3 Process Statesic00ennn treseresenvesasen 39

iii

6.4 Interruptable Monitor Functionsee-0e00- 42

iv

7. RESOQOURCE CONTROL .t 4iviunneneonnnnneonecaennsnnans 43
7.7 Introduction ..uiiiiineiinennneanennennnnnnns 43
7.2 Time-Slice Schedulingeeeeeceenenncannns 43
7.3 Storage Allocation and Protection 46
7.4 Message Buffers and Process Descriptions 46
7.5 The Right to Use a Given DevicCe ...vevewoeean 48
7.6 Privileged FUNCEIONS ... viiennreeeneennnnnens 50

8. STORAGE OF FILES AND OTHER MONITOR FEATURES 51

8.1 Internal Interruptionccvvenennrrennnn.. 51
8.2 The Real-TimMe ClOCK vt vt ueenneennennnnennn « 53
8.3 Storage of Files on the Backing Store 54
8.3.1 File Structure,
Slices, and the Slice Table00ve.. 54
8.3.2 Catalogs and Catalog Entries 56
8.3.3 The "Directory Hierarchy"
and Read/Write Protection 58
8.3.4 Implementation of
the "Directory Hierarchy" 61
B.3.5 Area ProOCESSES ..t cvnrenrannnonennenns 63
RELATED PUBLICATIONS 4 ittt vcvennnnsenseoenesennnases 65
GLOS S ARY it ittt ittt essassstnansnannnsnaannennes 67

SYSTEM OBJECTIVES

This chapter outlines the philosophy that guided the
design of the RC8000 multiprogramming system. It empha-
sizes the need for different operating systems to suit

different applications.

The principal goal of multiprogramming is to share a

central processor and its peripheral devices among a
number of programs loaded in the primary store. This is
a meaningful objective if individual programs use only
a fraction of the system resources and the machine is
so fast, compared to the peripheral devices, that idle
time within one program can be utilized by other pro-

grams.

The present system is implemented on the RC8000, a
24-bit binary computer with instruction execution times
of from less than 1 microsecond to approximately 4 mi-
croseconds, depending on the model. It permits practi-
cally unlimited expansion of the primary store and
standardized connection of all kinds of devices. Multi-
programming is facilitated by concurrency of program
execution and input/output, program interruption, and

storage protection.

The aim has been to make multiprogramming feasible on a
machine with a minimum primary store of 64 K words and
a fast backing store (e.g. disc). Programs can be writ-
ten in any of the available programming languages. The
storage protection system guarantees non-interference

among parallel programs.

The system employs standard multiprogramming tech-
niques. The central processor is shared among loaded
programs. Swapping of programs in and out of the prima-
ry store is possible, but not enforced by the system.

Backing storage is organized as a common data bank, in

which users can store files. The system allows a con-

versational mode of access from conscles and terminals.

An essential part of any multiprogramming system is an

operating system, i.e. a program that coordinates all

computational activities and input/output. An operating
system must be in complete control of the strategy of
program execution, and assist users with such functions
as operator communication, interpretation of job con-
trol statements, allocation of resources, and applica-

tion of execution time limits.

For the designer of advanced information systems, it is
essential that the operating system will allow him to
change the mode of operation which it controls; if this
is not the case, his freedom of design may be seriously
restricted. Unfortunately this is precisely what many
operating systems do not allow, being based exclusively
on a single mode of operation, e.g. batch processing,
priority scheduling, real-time scheduling, or time-

sharing.

When the need arises, the user often finds it hopeless
to modify an operating system with rigid assumptions in
its basic design about a specific mode of operation.
The alternative - to replace the original cperating
system with a new one - is in most cases a serious, if
not impossible, undertaking, because the rest of the
software is intimately bound to the conventions imposed

by the original system.

This state of affairs would indicate that the main
problem in the design of a multiprogramming system is
not to define functions that satisfy specific operating
needs, but rather to provide a system nucleus that can
be extended with new operating systems in an orderly
manner. This is the prime objective of the RC8000 mul-

tiprogramming system.

The nucleus of the RC8000 multiprogramming system is a
monitor program with complete control of storage pro-
tection, input/output, and interrupts. Essentially the
monitor is a software extension of the hardware struc-
ture which makes the RC8000 attractive for multipro-
gramming. The following elementary functions are imple-

mented in the monitor:

o Scheduling of time slices among programs executed in

parallel by means of a digital clock.

o Initiation and control of program execution at the

request of other running programs.
o Transfer of messages between running programs.

o Supervision of data transfers to or from peripheral

devices.

The monitor has no built-in strategy of program execu-
tion and resource allocation, but allows any program to
initiate other programs in a hierarchical manner and to
execute them according to any strategy desired. In this
hierarchy of programs an operating system is gsimply a
program that controls the execution of other programs.

Thus operating systems can be introduced into the sys-

tem, just as other programs, without modification of
the moniteor. Furthermore, operating systems can be re-
placed dynamically, enabling each installation to
switch between various modes of operation; several op-

erating systems can, in fact, be active simultaneously.

This dynamic operating system concept will be explained
in detail in the following chapters. Particular strate-
gies of program scheduling, however, will not be de-
scribed, which is in keeping with the system design
philosophy, and the discussion will concentrate on the

fundamental aspects of the control of an environment of

parallel processes.

ELEMENTARY MULTIPROGRAMMING PROBLEMS

This chapter introduces the elementary multiprogramming
problems of mutual exclusion and mutual synchronization
of parallel processes. The discussion is confined to
the logical problems that arise when independent proc-
esses attempt to access common variables and shared re-
sources. An understanding of these concepts is indis-
pensable for the reader who wishes to appreciate the
difficulties of changing from monoprogramming to multi-

programming.

Multiprogramming

In multiprogramming the sharing of computing time among

programs is controlled by interrupts, which activate a

monitor program. The monitor saves the state of the in-

terrupted program and allocates the next slice of com-
puting time to another program, and so on. Switching
from one program to another is also performed whenever

a program must wait for the completion of input/output.
Thus although the computer can execute only one in-

struction at a time, multiprogramming creates the illu-

sion that programs are being executed simultaneously.

Parallel Processes

Most of the elementary problems in multiprogramming a-
rise from the fact that one process, €.g. an executing
program, can make no assumptions about the relative
speed and progress of other processes. This is a poten-
tial source of conflict whenever two processes attempt

to access a common variable or a shared resource.

This problem will obviously exist in a truly parallel
system, in which programs are executed simultaneously
on several processors, but one should realize that it
will also exist in a quasi-parallel system based on the
sharing of a single processor by means of interrupts:
Since a program cannot detect when it has been inter-
rupted, it does not know how far other programs have

progressed.

To put it another way, if we consider the system as
seen from within a program, it is immaterial whether
multiprogramming is implemented on one or more proces-

sors - the logical problems are the same.

Consequently a multiprogramming system must in general
be viewed as an environment containing a number of tru-

ly parallel processes. Having reached this conclusion,

a natural generalization is to treat not only program
execution but input/output also as independent, paral-
lel processes. This point will be amply illustrated in

the following chapters.

Mutual Exclusion

The idea of multiprogramming is to share the computing
equipment among several parallel programs. At any one
moment, however, a given resource may belong to one
program only. In order to ensure this, we must intro-
duce global variables which programs can inspect to de-

termine whether a given resource is available.

As an example consider a console used by all programs
for messages to the operator. To control access to this

device we might introduce a global variable console a-

vailable. When a program p wishes to display a message,

it must examine and set this variable by means of the

following instructions:

wait: load console available
skip if true
jump to wait
load false

store console available

Assume now that program p is interrupted after it has
loaded the variable, but before it has been able to ex-
amine and set it. The register containing the value of
the variable is stored within the monitor, and program
g, let us say, is started. Program g loads the same
variable and finds that the console is available; it
therefore assigns the value false to the variable and
starts using the console. Soon ¢ is interrupted, and
later p is restarted with the original contents of the
register re-established by the monitor. Program p Now
inspects the original value of the variable and con-

cludes, errcneously, that the console is available.

This conflict arises because programs have no control
over the interruption system; thus the only indivisible
operations available to programs are single instruc-
tions, e.g. load, compare, Or store. This example shows
that one cannot implement a multiprogramming system

without ensuring a mutual exclusion of programs during

the inspection of global variables. It is evident that
the entire reservation sequence must be executed as an

indivisible function. One of the purposes of a monitor

program is to execute indivisible functions in the in-

terrupt disabled mode.

In using reservation primitives, one must be aware of

the problem of the deadly embrace between two proces-

ses, p and g, which attempt to share the resources ¥

and s as follows:

p: wait and reserve (r) ---wait and reserve(s)-

g: wait and reserve (s)---wait and reserve(r)-

This can cause both processes to wait forever, since

neither realizes that it wants what the other has.

To avoid this problem we require a third process, an

operating system, which controls the allocation of

shared resources between p and g in a manner that guar-
antees that both will be able to proceed to completion
(if necessary by delaying the one until resources be-

come available}.

Mutual Synchronization

In a multiprogramming system, parallel processes must
be able to cooperate in the sense that they can acti-
vate one another and exchange information. One example
of a process activating another process is the initia-
tion of input/output by a program. Another example is
that of an operating system that schedules a number of
programs. The exchange of information between two proc-
esses can be regarded as a problem of mutual exclusion
in which the receiver must be prevented from inspecting
the information until the sender has delivered it in a

common storage area.

Since the two processes are independent with respect to
speed, it is not certain that the receiver is ready to
accept the information when the sender chooses to de-
liver it; conversely, the receiver can become idle when

there is no more information for it to process.

This problem of the synchronization of two processes

during a transfer of information must be solved by in-
divisible monitor functions which allow a process to be
delayed at its own request and activated at the request

of another process.

BASIC MONITOR CONCEPTS

This chapter opens a detailed description of the RC8000
monitor. A multiprogramming system is viewed as an en-
vironment in which program execution and input/output
are handled uniformly as cooperating, parallel proces-
ses. The need for an exact definition of the process
concept is stressed. The purpose of the monitor is to
bridge the gap between the actual hardware and the ab-

stract concept of multiprogramming.

Introduction

The aim has been to implement a multiprogramming system
which can be extended with new operating systems in a
well-defined manner. In order to do this, a sharp dis-

tinction must be made between the control and the

strategy of program execution.

The mechanisms provided by the monitor solve the logi-
cal problems of the control of parallel processes. They
also solve the security problems that arise when erro-
neous or malicious processes attempt to interfere with
other processes. They leave, however, the choice of
particular strategies of program scheduling to the

processes themselves, i.e. to the operating systems.

In order to realize this objective, the following basic

mechanisms have been implemented within the monitor:

o Simulation of parallel processes.
o Communication between processes.

o Creation, control, and removal of processes.

i

10

Let us now assign a precise meaning to the process con-
cept, i.e. introduce an unambiguous terminology for
what a process is and how it is implemented on the
RC8000 computer.

PROCESS
INTERNAL PROCESS EXTERNAL PROCESS
PERIPHERAL PROCESS AREA PROCESS
PHYSICAL LOGICAL

As may be seen from the figure above, a fundamental
distinction is made between internal processes and ex-
ternal processes; the former correspond roughly to pro-

gram execution, the latter to input/output.

Programs and Internal Processes

An internal process is the sequential execution of one

Oor more interruptable programs in a storage area. An
internal process is identified by a unique process
name. Thus other processes need not be aware of the ac-
tual location of an internal process in the store, but

can refer to it by name.

The following figure illustrates the division of the
primary store between the monitor and three internal

processes, p, g, and r.

11

MONITOR

INTERNAL
PROCESS P

INTERNAL
PROCESS Q

INTERNAL
PROCESS R

Later, in Chapter 6, we shall explain how internal
processes are created and how programs are loaded into
them. Here it is sufficient to point out that an inter-
nal process occupies a contiguous storage area of a

fixed size during its entire lifetime.

The monitor maintains a process description for each

internal process. This table contains such information
as the name, storage area, and current state of the

process.

Computing time is shared cyclically among all active
internal processes. The monitor allocates a maximum
time slice of 25.6 milliseconds to each internal proc-
ess in turn; when an interrupt occurs, the process is
interrupted and its state is stored in the process de-
scription; the monitor then allocates 25.6 milliseconds
to another internal process, and sO on. The cyclic
gueue of active internal processes is called the time-

slice queue.

12

A clear distinction is made between the concepts pro-
gram and internal process. A program is a collection of
instructions describing a computational process, where-
as an internal process is the execution of these in-

structions in a given storage area.

An internal process like p may involve the execution of
a sequence of programs, e.g. editing followed by trans-
lation and execution of an object program. It is also
possible for copies of the same program, say, a compil-
er, to be executed simultaneously in two processes, g
and r. These examples show the need for a distinction

between programs and processes.,

Documents and External Processes

In conjunction with input/output, the monitor distin-
guishes between peripheral devices, documents, and ex-

ternal processes.

A peripheral device is an item of equipment connected

to a device controller and identified by a device num-

ber.

A document is a collection of data stored on a physical
medium, e.g. a roll of paper tape, deck of punched
cards, printer form, reel of magnetic tape, or file on

a backing-storage device.

By the expression external process we refer to the in-

put/output of a given document identified by a unique

process name. This concept implies that once a document

has been mounted, internal processes can refer to it by

name without knowing the actual device employed.

13

The monitor maintains a process description for each

external process. This table contains such information
as the name, kind, and current state of the process. It
also contains two bit masks: the one indicates poten-

tial users, i.e. which internal processes may read the

document mounted on the device; the other indicates

reservation by the current user, i.e. whether one of

these internal processes may write on the document.

The use of external processes 1is explained in detail in

Chapter 5.

Peripheral Processes

An external process which describes a peripheral device

is called a peripheral process. The process description

for a peripheral process will therefore contain the
number of the device represented, in addition to the

information mentioned in Saction 3.3.

Some devices, e.g. discs, can be divided into a number
of logical devices. In these cases there will be a pe-
ripheral process description ({(containing the device

number) for the physical device and a peripheral proc-

ess description (containing a reference to the process

description with the device number) for each logical

device.

Area Processes

An external process which describes a file on a back-

ing-storage device is called an area process. Area

processes are further explained in Chapter 8.

3.

.3.2

14

A pseudo process is a description of an internal or ex-

ternal process which permits the latter to appear under
a pseudonym. All communications sent to a pseudo proc-

ess are forwarded to the internal process that created

Let us assume that an operating system creates a pseudo

process named printer. The pseudo process will then in-

process named printer and forward them to the operating

In this way the operating system can determine when and

3.4 Pseudo Processes
it.
tercept all communications (from internal processes
running under the operating system} to the external
system.
where output printing for the jobs running under it
will take place.

3.5 Bases and the Protection System

In a multiuser environment the monitor must ensure that
processes do not interfere with one another. The pro-

tection system therefore encompasses:

1. Storage protection, which is implemented by means of

two fields in the internal process description.
These fields define the primary storage area as-
signed to the internal process (see further Sect.
7.3}).

2. File protection, which is implemented by assigning

three so-called bases to the internal process. These
bases, each of which is represented by two integers,
define which backing-storage files the internal
process may read and write in (see further Sect., 6.1
and 8.3.4).

15

Monitor

The monitor is not considered an independent process,
but rather a software extension of the hardware struc-
ture which makes the RC8000 computer attractive for
multiprogramming. The functions of the monitor are

these:

1. To maintain descriptions of all processes.
2. To share computing time among internal processes.

3., To implement procedures which processes can call in
order to create and control other processes and com-

municate with them.

The monitor is a program which is activated by inter-
rupts. It can execute privileged instructions and run

in the interrupt disabled mode. This implies:

1. That the monitor is in complete control of input/
output, storage protection, and the interruption
system.

2. That the monitor can execute a sequence of instruc-

tions as an indivisible entity.

After initial system loading the monitor resides perma-

nently in the primary store (in its lowest part).

3.7

16

Summary

The multiprogramming system has thus far been described
as a set of independent, parallel processes identified
by names. The emphasis has been on a clear understand-

ing of relationships between:

o Resources (storage and peripheral devices).
o Data {programs and documents).

o Processes (internal and external).

17

This chapter deals with the monitor procedures for the
exchange of information between two parallel processes.

The mechanism of message buffering is defended on the

4. PROCESS COMMUNICATION
grounds of security and efficiency.
4.1 Message Buffers and Queues

Two parallel processes can cooperate by sending mes-

sages to each other.
A message consists of eight words. Messages are trans-
mitted from one process to another by means of message

puffers selected from a common Eool within the monitor.

The monitor administers a message Jueue for each proc-

ess. Messages are linked to this queue when they arrive
from other processes. The message gueue is part of the

process description.

Normally a process serves its queue on a first-come,
first-served basis. After the processing of a message,
the receiving process returns an answer of eight words

to the sending process in the same buffer.

As described in Section 2.4, communication between two
independent processes requires a synchronization of the
processes during a transfer of information. A process

requests synchronization by executing a wait operation;
this causes a delay of the process until another proc-

ess executes a send operation.

The term delay means that the internal process 1is re-
moved temporarily from the time-slice queue; the proc-
ess is said to be activated when it is again linked to

the time-slice gueue.

18

4.2 Send and Wait Procedures 4.2

The following monitor procedures are available for com-

munication between internal processes:

send message(receiver,message,buffer)
wait message (sender,message,buffer)
send answer (result,answer,buffer)

wait answer (result,answer,buffer)

Send message copies a message into the first available

buffer within the pool and delivers it in the queue of

a named receiver. The receiver is activated if it is

waiting for a message. The sender continues after being

informed of the address of the message buffer.

Wait message delays the calling process until a message

arrives in its queue. When the process is allowed to
proceed, it is supplied with the name of the sender,
the contents of the message, and the address of the

message buffer. The buffer is removed from the queue

and is now ready to transmit an answer.

Send answer copies an answer into a buffer in which a

message has been received and delivers it in the gueue

of the original sender. The sender of the message is

activated if it is waiting for the answer. The answer-

ing process continues immediately.

Wait answer delays the calling process until an answer

arrives in a given buffer. On arrival, the answer is
copied into the process and the buffer is returned to
the pool. The result specifies whether the answer is a
response from another process or a dummy answer gener-
ated by the monitor in response to a message addressed

to a non-existent process.

19

The use of these procedures may be illustrated by the

following example of a conversational process. The fig-

ure below shows one of several user processes which de-

1iver their output on the backing store. After the com-

pletion of its output a user process sends a message to

a converter process requesting it to print the output.

The converter process receives and serves these re-

quests one by one, thus ensuring that the printer is

shared by all user processes with a minimum of delay.

PRINTER

INPUT

CONVERTER
PROCESS

MESSAGE
AND

\‘-\—
OUTPUT

USER
PROCESS

ANSWER

BACKING
STORE

The algorithms of the converter proces

process are as follows:

PRIMARY
STORE

s and the user

20

converter: wait message{sender,message,buffer);
print from backing store (message) ;
send answer (result,answer,buffer);

goto converter;

user:; -—--—--
output on backing store;
send message(<:converter:>,messaqe,buffer);

wait answer (result,answer,buffer);

General Event Procedures

The communication procedures enable a conversational
process to receive messages simultaneocusly from several
other processes. To avoid becoming a system bottleneck,
however, a conversational process must be prepared to
engage actively in more than one conversation at a

time.

As an example, think of a conversational process that
engages itself, at the request of another process, in
a conversation with one of several human operators in
order to have some manual operation performed (e.g. the

mounting of a tape).

If one restricts a conversational process to accepting
only one request (message) at a time, and to completing
the requested action before receiving the next reguest,
the unacceptable consequence is that other processes

(including human operators at consoles) may have their

requests delayed for long or even undefined periods of

time.

21

As soon as a conversational process has initiated a
lengthy action, by sending a message to some other
process, it must receive further messages and initiate
other actions. It will then be reminded later on of the
completion of earlier actions by means of normal an-
swers. In general a conversational process is now en-

gaged in several requests at one time.

This introduces a scheduling and resource problem: When
the process receives a request, some of its resources
(storage or peripheral devices) may be occupied by al-
ready initiated actions; thus in some cases the process
will not be able to honor new requests until old ones

are completed.

In such a situation the process would like to postpone
the reception of some requests and leave them pending

in the queue, while examining others.

The procedures wait message and wait answer, which

force a process to serve its queue in a strict sequen-
tial order and delay itself while its own requests to
other processes are completed, do not fulfill the above

regquirements.

Two more general communication procedures have there-
fore been introduced, which enable a process to wait
for the arrival of the next message oOr answer and serve

its queue in any order:

wait event(last buffer,next buffer,result)

get event (buffer)

The term event denotes a message Or answer. The gueue

of a process will accordingly be called the event queue

from now on.

22

Wait event delays the calling processg until either a

message or an answer arrives in its queue after a given
last buffer. The process is supplied with the address
of the next buffer and a result indicating whether it
contains a message or an answer. If the address of the
last buffer is zero, the queue is examined from the be-
ginning. The procedure does not remove the next buffer

from the queue nor change its status in any other way.

As an example, consider an event queue with two pending

buffers, a and b:

gueue = buffer a, buffer b

The calls wait event{0,buffer) and wait event(a,buffer)

will cause immediate return to the process with buffer
equal to a and b, respectively, whereas the call wait

event (b,buffer) will delay the process until another

message or answer arrives in the queue after buffer b.

Get event removes a given buffer from the queue of the
calling process. If the buffer contains a message, it
is made ready for the sending of an answer; if it con-
tains an answer, it is returned to the common pocl. The
copying of the message or answer from the buffer must
be done by the process itself before get event is
called (see the RCSL publication RC8000 Monitor, Part

2: Reference Manual).

The following algorithm illustrates the use of these

procedures within a conversational process:

23

first event:
buffer:=0;
next event:
last buffer:=buffer;
wait event(last buffer,buffer,result);
if result=message then
begin
examine request:
if resources not available then goto next event;
initiate action:
get event (buffer) ;
reserve resources,
send message to some other process;
save state of action;
end else
begin comment: result=answer;
terminate action:
restore state of action;
get event (buffer);
release resources;
send answer to original senderj;
end;
goto first event;

The process starts by examining its queue; if the queue
is empty, it awaits the arrival of the next event. If
it finds a message, it checks whether it has the neces-—
sary resources to perform the requested action; if not,
it leaves the message in the queue and examines the
next event; otherwise it accepts the message, reserves

the resources, and initiates the action.

As soon as this involves the sending of a message to
some other process, the conversational process saves
the state of the incompleted action and proceeds to ex-
amine its queue from the beginning in order to engage

itself in another action.

24

Whenever the process finds an answer in its gqueue, it
immediately accepts it and completes the corresponding
action. It can now release the resources used and send
an answer to the original sender that made the request.
After this, it examines the entire queue again to see
whether the release of resources has made it possible

to accept pending messages.

One example of a process operating in accordance with
this scheme is the basic operating system, s, which
creates internal processes at the request of console
operators. s can engage in conversations with several
consoles at the same time. It will postpone a request
only if its storage is occupied by other requests or if
it is already in the middle of an action requested from
the same console (see the RCSL publication Operating

System s Reference Manual).

Advantages of Message Buffering

In the design of the communication scheme, full recog-
nition has been given to the fact that the multipro-
gramming system is a dynamic environment, in which some

processes may turn out to be black sheep.

The system is dynamic in the sense that processes can
appear and disappear at any time. Therefore a process
does not in general have a complete knowledge of the

existence of other processes. This is reflected by the

procedure wait message, which allows a process to be

unaware of the existence of other processes until it

receives messages from them,

25

On the other hand, once a communication has been estab-
lished between two processes (e.g. by means of a mes-
sage), they need a common identification of the commu-
nication in order to agree on when it is terminated
(e.g. by means of an answer). Thus we can properly re-
gard the selection of a buffer as the creation of a
conversation identification. A happy consequence of
this is that it enables two processes to exchange more

than one message at a time.

One must be prepared for the occurrence of erroneous or
malicious processes in the system (e.g. undebugged pro-
grams). This is tolerable only if the monitor ensures
that no process can interfere with a conversation be-
tween two other processes. This is done by storing in-
formation about the sender and the receiver in each
buffer, and checking it whenever a process attempts to

send or wait for an answer in a given buffer.

Efficiency is obtained by the queuing of buffers, which
enables a sending process to continue immediately after
the delivery of a message Oor answer regardless of

whether the receiver is ready to process it.

In order for the system to be dynamic, it is vital that
a process can be removed at any time, even if it is en-
gaged in one Or more conversations. In the previous ex-
ample, of user processes that deliver their output on
the backing store and ask a converter process to print
it, it would be reasonable to remove a user process
which had completed its task and was now waiting only
for an answer from the converter process. When this is
the case, the monitor leaves all messages from a re-
moved process undisturbed in the gqueues of other proc-
esses. When these processes terminate their actions by

sending answers, the monitor simply returns the buffers

to the common pool.

26

The reverse is also possible: During the removal of a

process, the monitor may find unanswered messages sent
to the process. These are returned as dummy answers to
the senders. A special instance of this is the genera-
tion of a dummy answer to a messagde addressed to a non-

existent process.

The main drawback of message buffering is that it in-
troduces yet another resource problem, as the common
pool contains a finite number of buffers. If a process
were allowed to empty the pool by sending messages to
ignorant processes which did not respond with answers,
further communication within the system would be
blocked. A limit has therefore been placed on the num-
ber of messages which a process can send simultaneous-
ly. This, and the fact that a process is allowed to
transmit an answer in a received buffer, places the en-
tire risk of a conversation on the process that opens.

it (see Sect. 7.4).

27

EXTERNAL PROCESSES

.1

This chapter clarifies the meaning of the external
process concept. It explains the initiation of input/
output by means of messages from internal processes,
exclusive access to documents by means of reservation,
and the dynamic creation and removal of external proc-—

esses. It concludes with a briet discussion of links.

Initiation of Input/Output

When an internal process wishes to use a peripheral de-

vice, it sends a message to the relevant external proc-

e58S5.

Consider the following situation, in which an internal
process, p, inputs a block of data from an external

process, d, say, 4 magnetic tape:

_________ FIRST ADDRESS
INPUT
BLOCK
_________ LAST ADDRESS
EXTERNAL INTERNAL
PROCESS Q PROCESS P

28

Process p initiates input by sending a message to q:

send message(<:q:>,message,buffer)

The message consists of eight words defining an input/
output operation and the first and last addresses of a

storage area within process p:

message: operation
first storage address
last storage address

(five irrelevant words)

The monitor copies the message into a buffer and deliv-
ers it in the queue of process g; it then uses the kind
parameter in the process description of g to switch to
a piece of code common to all magnetic tape stations.
If the tape station 1is busy, the message is simply left
in the queue; otherwise input is initiated to the given
storage area. On return, program execution continues in

process p.

When the tape station completes input by means of an
interrupt, the monitor generates an answer and, using
the process description of g once more, delivers it in
the queue of p. Process p, in turn, accepts the answer

by calling

wait answer (result,answer,buffer)

The answer contains the status bits sensed from the de-
vice and the actual block length expressed as the num-
ber of 12-bit halfwords and the number of characters

input:

29

answer: status bits
number of halfwords
number of characters

(five irrelevant words)

After having delivered the answer, the monitor examines
the queue of process g and initiates the next operation

(unless the queue 1is empty) .

All external processes essentially follow this scheme,

which can be defined by the algorithm

external process: wailt message;
analyze and check mesgsage;
initiate input/output;
wait interrupt;
generate answer;
send answerj;

goto external process;

Reservation and Release 5.2

The use of message buffering provides a direct means of
sharing an external process among a number of internal
processes: An external process can simply accept mes-
sages from any internal process and serve them in the
order of their arrival. An example of this is the use
of a single console for the display of messages to an

operator.

This method of sharing a device ensures that a block of
data is input or output as an indivisible entity. When
a sequential medium (e.g. paper tape, punched cards, or
magnetic tape) 1is used, however, an internal process

must have exclusive access to the entire document.

30

Exclusive access is obtained by means of the monitor

procedure

reserve process(name,result)

The result indicates whether the reservation has been

accepted.

An external process that handles sequential documents
of this kind rejects messages from all internal proces-
ses save the one that has reserved it. Rejection is in-

dicated by the result of the procedure wait answer.

During the removal of an internal process, the monitor
removes all reservations made by it. Internal processes
can also do this explicitly, however, by means of the

monitor procedure

release process (name)

Creation and Removal 5.3

From the operator's point of view, an external process
is created when he mounts a document on a device and
names it. The name, however, must be communicated to
the monitor by means of an operating system, i.e. an
internal process that controls the execution of pro-
grams. Thus it is more accurate to say that external
processes are created when internal processes assign
names to peripheral devices. This is done by means of

the monitor procedure

create peripheral process(name,device number,result)

31

The monitor does not, in fact, always have a means of
ensuring that a given document is mounted on a device.
Furthermore, certain devices operate without documents,

e.g. the real-time clock (see Sect. 8.2).

The name of an external process can be explicitly re-

moved by a call of the monitor procedure
remove process(name,result)
The monitor automatically removes the process name when

it detects operator intervention in the operation of a

device.

Links

Peripheral devices are connected to a device control-.

ler. The controller for centrally connected devices is

placed in a front—-end device controller, which is phys-
ically integrated in the RC8000. The controller for re-
mote devices is placed in a concentrator, which is con-
nected to the front-end device controller by data

transmission lines.

The logical data path between the peripheral process
description and the physical device is called a link.
The link concept implies that a user process can access
any device without being aware of its geographical lo-
cation. The link, moreover, permits the user himself to
select any computer in the network as his job host and,

within it, any applicatiocn.

A link is either permanent or temporary, as specified
at the time of its creation. Links can be created in

the feollowing ways:

32

1. Implicitly by the monitor (on initial system load- .
ing) when specified as monitor options. Such links

are always permanent.

2. Explicitly by an operating system or other user pro-

gram.

3. From a terminal, either implicitly or by command.

The creation of a link will always cause the creation
of a peripheral process. The device may then be renamed

by means of the procedure create peripheral process.

Links are removed only by request. If the transmission

line is disconnected, however, a temporary link will be "
removed automatically, and must be re-created when the

line is connected again.

Links are more fully described in the RCSL publication

RCNET, General Information.

33

INTERNAL PROCESSES

This chapter explains the creation and control of in-
ternal processes. The emphasis is on the hierarchical
structuring of internal processes, which makes it pos-
sible to extend the system with new operating systems.
The dynamic behavior of the system is explained in
terms of process states and the transition from one

state to another.

Creation, Control, and Removal

Internal processes are created at the request of other

internal processes by means of the monitor procedure
create internal process(name,parameters,result)
The monitor initializes the process description of the

new process with the process name and storage area as-

signed by the parent process. The storage area of the

child process must be within its parent's area:

PARENT
PROCESS

CHILD
PROCESS

34

When an internal process is created, it is assigned
four bases, each of which is represented by two inte-

gers.

The parent process defines the max base and the stand-
ard base of the child process as being inside or equal
to its own max base and standard base, and the monitor
sets the catalog base of the child equal to the stand-

ard base defined by the parent. The max, standard, and

catalog bases determine, among other things, which
files the internal process may read and write in (see
further Sect. 8.3.4).

The name assigned to the process has two parts: the
name proper (up to 11 ISO characters) and a name base.
The monitor sets the name base of the child process e-
qual to the catalog base of the parent process. The
name base determines which internal processes can see
the new process, viz. all those whose catalog bases are
inside or egqual to the name base of the new process. In
the following figure, process b can see a, but process
¢ cannot. (Note that we cannot conclude from this

whether a can see b or c).

NAME BASE OF A

T
L

CATAL.OG BASE CF B

T

4

CATALOG BASE OF C

After its creation the child process is simply a named
storage area, which is described within the monitor. It

has not yet been linked to the time-slice queue.

35

The parent process can now load a program into the
child process by means of an input operation. Following

this, the parent can initialize the registers of its

child using the monitor procedure
modify internal process(name,registers,result)

The register values are stored in the process descrip-
tion until the child process is started. As a standard
convention adopted by parent processes {but not en-
forced by the monitor), the registers inform the child
about the process descriptions of itself, its parent,
and the console which it may use for operator communi-

cation.

Finally the parent can start program execution within

the child by calling
start internal process(name,result)

which links the child to the time-slice gueue. The
child now shares time slices with other active proces-

ses including its parent.

At the request of a parent process, the monitor will
wait for the completion of all input/output initiated
by a child process and then stop it, i.e. remove it

from the time-slice queue:
stop internal process(name,buffer,result)

The significance of the message buffer will be ex-

plained in Section 6.3.

In the stopped state, a child process can be modified
and started again, or it can be completely removed by

the parent process:

36

remove process (name,result)

which causes all resources borrowed by the child to be
returned to the parent. During removal the monitor gen-
erates dummy answers to all messages sent to the child
process and releases all external processes utilized by
it. The parent process can now use the storage area to

create other child processes.

Process Hierarchy

The idea of the monitor has been described as the simu-
lation of an environment in which program execution and
input/output are handled uniformly as parallel, cooper-
ating processes. A basic set of procedures permits the
dynamic creation and control of processes as well as

communication between them.

For a given installation we still need, as part of the
system, programs that contrcl strategies of operator
communication, program scheduling, and resource alloca-
tion. For the orderly growth of such systems, however,

it is essential that these operating systems be imple-

mented as other programs. Since the sole difference be-
tween operating systems and other user programs is one
of jurisdiction, this problem is solved by arranging
the internal processes in a hierarchy in which parent

processes have complete control over child processes,

After initial system loading, the primary store con-
tains the monitor and an internal process, called s,

which is the basic operating system. s can create par-

allel processes, a, b, ¢, and so on, at the request of
console operators and terminal users. These processes

in turn can create other processes, d, e, £, and so on.

37

Thus while s acts as a primitive operating system for
a, b, and ¢, the latter in turn act as operating sys-
tems for their children, d, e, f, and so on. This is
illustrated by the following figure, which shows a fam-
ily tree of processes on the left and the corresponding

storage allocation on the right:

° MONITOR

ONONO :

) O s

This family tree of processes can be extended to any
level, subject only to a limitation on the total number
of processes. At present the maximum number of internal
processes which can be created under the basic operat-

ing system is 21.

In this multiprogramming system all privileged func-
tions are implemented in the monitor, which has no
puilt-in strategy. Strategies can be introduced on the
various higher levels, where each process has the power
to control the scheduling and resource allocation of

its own children.

38

The only rules enforced by the monitor are these:

1. A process can only allocate a subset of its own re-

sources, including storage, to its children.

2. A process can only modify, start, stop, and remove

its own children.

The structure of the family tree is defined in the
process descriptions within the monitor. We emphasize
that the only function of the tree is to define the
basic rules of process control and resource allocation.
Time slices are shared evenly among active processes,
regardless of their position in the hierarchy, and each

process can communicate with all other processes.
With regard to the development of operating systems,
the most important characteristics can now be seen as

the following:

1. New operating systems can be implemented as other

programs without modification of the monitor. In
this connection we should mention that the ALGOL
language for the RC8000 contains facilities for cal-
ling the monitor and initiating parallel processes.
Thus it is possible to write operating systems in a

high-level language,

2. Operating systems can be replaced dynamically, thus

enabling an installation to switch between various
modes of operation; several operating systems can,

in fact, be active simultaneously.

3. Utility programs and user programs can be executed

under different operating systems without modifica-

tion; this is ensured by a standardization of commu-

nication between parents and children.

-

6.3

39

Process States 6.3

We are now able to define the possible states of an in-
ternal process as described within the monitor. An un-
derstanding of the transition from state to state is

vital as a key to the dynamic behavior of the system.

An internal process is either running {executing in-
structions or ready to do so) or waiting (for an event
outside the process). In the running state the process
is linked to the time-slice queue; in the waiting state
it is temporarily removed from this gqueue. A process
can be waiting for a message, an answer, Or an event,

as explained in Chapter 4.

More complex are those states in which a process 1is
waiting to be stopped or started by another process. In
order to explain this, we shall refer once more to the

family tree shown in the previous section.

Let us say that process b wants to stop its child, f£.
The purpose in doing this is to ensure that all program
execution and input/output within the storage area of £
are stopped. Since part of this storage area has been
allocated to children of £, it is obviously necessary
to stop not only the child f but also all descendants
of f£. This is complicated by the fact that some of
these descendants may have already been stopped by

their own parent. Thus in the present example, process

g may still be running, while process h may have been
stopped by the parent, f. Consequently the monitor
should stop only f and g.

Consider now the reverse situation, in which process b
starts its child, f, again. Now the purpose is to re-

establish the process states that prevailed before f

was stopped.

40

Here the monitor must be careful to start only those

descendants of f which were stopped along with f. Thus
in our example, the monitor must start f and g, but not

h; otherwise we confuse f, which still assumes that its

child h is stopped.

Clearly, then, the monitor must distinguish between

processes that are stopped by their parents and proces-

ses that are stopped by their ancestors.

The possible states of an internal process are these:

running
running
waiting
waiting
waiting
waiting
waiting
waiting
waiting

walting

after error

for
for
for
for
for
for
for

for

message
answer

event

start by parent
stop by parent
start by ancestor
stop by ancestor

process function

A process is created in the state waiting for

start EX

parent. When it is started, its state becomes running.

The state running after error is explained in Section

8.1.

When a parent wishes to stop a child, the state of the

child is changed to waiting for stop by parent, and all

running descendants of the child are described as wait-

ing for stop by ancestor. At the same time these proc-

esses are removed from the time-slice queue.

What remains to be done is to ensure that all input/

output initiated by these processes is terminated. In

order to control this, each internal process descrip-

tion contains an integer called the stop count.

41

The stop count is increased by one each time the inter-
nal process initiates input/output from an external
process. On the completion of an operation, the monitor
decreases the stop count by one and examines the state
of the internal process. If the stop count becomes zero
and the process is waiting for stop by parent (or an-
cestor), its state is changed to waiting for start by

parent (or ancestor) .

Only when all processes involved are waiting for start
is the stop operation completed. This may take time,
and it may not be acceptable to the parent (an operat-
ing system with many other tasks) to remain inactive
for so long. For this reason the stop operation is di-

vided into two parts. The stop procedure
stop internal process(name,buffer,result)

only initializes the stopping of a child and selects a
message buffer for the parent. When the child and its
running descendants are completely stopped, the monitor
delivers an answer to the parent in this buffer. Thus

the parent can use the procedure wait answer or wait

event to wait for the completion of the stop.

A process can be in any state when a stop is initiated.
Tf it is waiting for a message, answer, or event, its
state will be changed to waiting for stop, as explained
above, but at the same time its instruction counter
will be decreased by two so that it can repeat the call

of wait message, wait answer, Or wait event when it is

started again.

It should be noted that messages and answers can be de-
livered in the gueue of a process in any state. This
ensures that a process does not lose touch with its

surroundings while it is stopped.

42

The state waiting for process function is explained in

the next section.

Interruptable Monitor Functions

Certain monitor functions are executed by an auxiliary
internal process. These so-called process functions are

generally speaking all those which involve changes in
the hierarchy of names and those which are too time-
consuming to be executed entirely in the interrupt dis-
abled mode. The auxiliary process runs only for brief
intervals in the interrupt disabled mode; otherwise it
shares computing time on an equal footing with other

internal processes.

When an internal process calls a process function, the
following takes place: The calling process is removed
from the time-slice queue and its state is changed to

waiting for process function; at the same time its

process description is linked to the event queue of the
activated auxiliary process. The latter serves calling
processes one by one and returns them to the time-slice

queue after the completion of each function.

Process functions are interruptable like other internal
processes; however, from the viewpcint of calling proc-
esses they are indivisible, since they are only execut-
ed one by one in the order of their request by the aux-
iliary process, and the calling processes are delayed

until the functions are completed.

43

RESOURCE CONTROL

This chapter describes a set of monitor rules which en-
able a parent process to control the allocation of re-

sources to its children.

Introduction

In the multiprogramming system the internal processes

compete for the following limited resources:

computing time
primary storage
message buffers
process descriptions
peripheral devices

backing storage

Initially all resources are owned by the basic operat-
ing system, s. As a fundamental principle enforced by
the monitor, a process can only allocate a subset of
its own resources to a child process. These are re-

turned to the parent process when the child is removed.

Time-Slice Scheduling

All running processes are allocated time slices in a

cyclical manner. The interrupt frequency of the hard-
ware interval timer, and hence the length of the time

slice, is fixed at 25.6 milliseconds.

In practice internal processes often initiate input/
output and wait for it in the middle of a time slice.
This creates a scheduling problem when internal proces-
ses are activated by answers from external processes:
Should the monitor link the activated process to the

beginning or the end of the time-slice queue?

44

The first alternative ensures that processes can use
devices at maximum speed, but it also presents the dan-
ger that a process can monopolize computing time by
communicating frequently with fast devices. The second
alternative prevents this, but introduces a delay in

the time-slice gqueue, which slows devices down.

A modified form of round-robin scheduling has been in-
troduced to solve this dilemma. As soon as a process is
removed from the time-slice queue, the monitor stores

the current value of the time guantum used by it. When

the process is activated again, the monitor compares
this value with the maximum time slice. So long as the
time slice is not used up, the process is linked to the
beginning of the queue; otherwise it is linked to the

end of the queue and its time quantum is reset to zero.

This test is applied, and the time-slice queue is reor-
ganized, whenever the monitor receives an interrupt,

e.g. an external interrupt or a timer interrupt.

The monitor's round-robin scheduling attempts to share
computing time evenly among active internal processes
regardless of their position in the hierarchy. It per-
mits a process to be activated immediately until it
threatens to monopolize the central processor; only
then is it thrust into the background to give other
processes a chance. This is admittedly a built-in
strategy on the microlevel. Parent processes can, in
fact, only control the allocation of computing time to
their children in relatively large portions (on the or-
der of seconds), by means of the procedures start and

stop internal process.

45

I o T T T T T T T T 1

| |

| :

SLICE ! ACTIVATED SLICE |

NOT USED UP 4 PROCESS USED UP
CURRENT PROCESS

RUNNING PROCESSES

o— . A -

QUEUE WITH HIGHEST PRIORITY

QUEUE WITH LOWEST PRIORITY

over and beyond the round-robin scheduling of the moni-

tor, one can assign priorities to internal processes.

Each priority level has its own time-slice queue, in
which processes run on a round-robin basis. When the
queue with the highest priority is empty, i.e. when all
of the processes are either waiting or stopped, process

execution continues in the gueue oOn the next highest

level.

when internal processes are created, they all receive
the same priority: the parent process, however, can

change this priority by means of the procedure

set priority(name,priority level,result)

46

For accounting purposes the monitor retains the follow-
ing information for each internal process: the time at
which the process was created and the sum of the time
quanta used by it; these quantities are denoted start

time and run time.

Storage Allocation and Protection

An internal process can only create child processes
within its own storage area. The monitor does not check
whether the storage areas of child processes overlap.
This freedom may be utilized, for example, to implement
time-sharing of a common storage area among several

processes.

The process description for an internal process con-

tains three fields which define the rights of the proc-
ess to read and write in the primary store. Two of the
fields define the upper and lower limits of the storage
area assigned to the process when it was created. Here
the process may read and write. The third field defines
the upper limit of a storage area where the process on-
ly may read. This area includes, among other things,

common tables in the monitor.

An internal process may not read or write directly in
the storage area of an internal process outside its own
limits, but can send messages to request the exchange

of data (by means of the monitor procedure copy).

Message Buffers and Process Descriptions

The monitor has room only for a finite number of mes-
sage buffers, internal process descriptions, and area

process descriptions.

-

47

These buffers and tables assume an identity only when
they are actually used. Thus an internal process de-
scription, for example, is selected when an internal
process creates another internal process, and released
when the process 1is removed. So long as they remain un-
used, message buffers and process descriptions may be

regarded as anonymous pools of resources.

Tt is therefore sufficient to specify the maximum num-
ber of each resource which an internal process may use.
These so-called buffer, internal, and area claims are

defined by the parent when a child process is created.
The claims must be a subset of the parent's own claims,
which are diminished accordingly; they are returned to

the parent when the child is removed.

The buffer claim defines the maximum number of messades

which an internal process may exchange simultaneously

with other internal and external processes.

The internal claim limits the number of children which

an internal process may have at the same time.

The area claim defines how many documents an internal

process may access simultaneously.

The monitor decreases a claim by one each time a proc-
ess actually uses one of its resources, and 1lncreases
it by one when the resource is released. Thus at any
moment the claims define the number of resources which

may still be used by the process.

48

When an internal process sends a message, its buffer
claim is decreased by one. When the receiver accepts

the message, by calling wait message, its buffer claim

is likewise decreased by one. When the receiver sends

the answer, by means of send answer, its buffer claim

is increased by one, and when the original sender ac-

cepts the answer, by means of wait answer, its buffer

claim is also increased by one.

Thus two buffer claims, but only one physical message
buffer are involved in a transfer of information. This
enables the parent process, when it removes a child
process, to retrieve immediately all of the claims
which it originally allocated to the child. In other
words, those message buffers in which the child had not
had time to receive an answer before its removal are
"borrowed” by the parent from the pool, which then in-

corporates them as answers are received.

The Right to Use a Given Device

As an external process is created when a name is as-
signed to a device (see Sect. 5.3), it also holds of
peripheral devices that they assume an identity only
when they are actually used for input/output. It would
therefore seem natural to control the allocation of de-
vices to internal processes by a complete set of claims

- one for each kind of device.

In a system with remote devices, however, it is unreal-
istic to treat all devices c¢f a given kind as a single,
anonymous pool. An operating system must be able to

force its children and their human operators to remain
within a certain geographical configuration of devices.

49

Tt should be noted that the concept configuration must
be defined in terms of physical devices rather than ex-
ternal processes, since a parent generally speaking
does not know in advance which documents its children

are going to use.

Configuration control is exercised in the following
way: From the viewpoint of other processes, an internal
process is identified by a name. Within the monitor,
however, an internal process can also be identified by
a single bit in a field. The external process descrip-
tions include a field in which each bit indicates
whether the corresponding internal process is a poten—
tial user of the device. Another field indicates the

current user whe has reserved the device in order to

obtain exclusive access to the document.

Initially the basic operating system, s, is a potential
user of all devices. A parent process can include or
exclude a child as a user of any device, provided that
the parent is also a user of the device, by means of

the procedures

include user {child,device number,result)

exclude user (child,device number,result)

puring the removal of a child, the monitor excludes it

as a user of all devices.

All in all, three conditions must be fulfilled before

an internal process can initiate input/output:

1. The device must be described as an external process

with a unigque name. rb%«hk(

Ve
2. The internal process must be a user of the device.

3. The internal process must reserve the external proc-

ess if it controls a sequential document.

7.6

50

Privileged Functions 7.6

Files on the backing store are described in a catalog,
which is also kept on the backing store. In order to
prevent an internal process from reserving an excessive
amount of space in the catalog or on the backing store

as such, the concept privileged monitor procedure has

been introduced.

A parent process must provide each of its children with

a function mask, in which each bit specifies whether

the child is allowed to perform a certain monitor func-
tion. The mask must be a subset of the parent's own

function mask.

At present these privileged functions include all moni-

tor procedures which involve:

Handling of main and auxiliary catalogs.
Handling of auxiliary catalog entries.
Creation and removal of peripheral device names.

Initialization of the real-time clock.

51

STORAGE OF FILES AND OTHER MONITOR FEATURES

. 8.1

This chapter is a survey of specific monitor features,
viz. internal interruption, the real-time clock, and,
especially, the storage of files on the backing store.
{(Another monitor feature, conversational access from
consoles and terminals, is described in the RCSL publi-

cation Operating System S Reference Manual). Although

these features are not esgential primitive concepts,
they are indispensable in practical multiprogramming

systems.

Internal Interruption

The monitor can assist internal processes 1in the detec-
tion of infreguent events, e.g. violation of storage

protection or arithmetic overflow. Such events cause an
interruption of the internal process followed by a jump

to an interrupt procedure within the process.

The interrupt procedure is defined by means of the mon-

jitor procedure
set interrupt{interrupt address,interrupt mask)

When an internal interrupt occurs, the state of the
process (i.e. register values) is stored in the head of
the interrupt procedure, and the monitor continues exe-
cution of the internal process in the body of the pro-

cedure:

interrupt address: working registers
status register
instruction counter
interrupt cause
address register

(execution continues here)

52

The system distinguishes between the following causes

of internal interruption:

protection violation

integer overflow

floating-point overflow or underflow
parameter error in monitor call
break forced by parent

parity error in store or on bus

The interrupt mask specifies whether arithmetic over-

flow should cause internal interruption. Other kinds of

internal interrupts cannot be masked off.

If an internal process provokes an interrupt without
having defined an interrupt procedure after its crea-
tion, the monitor removes the process from the time-

slice queue and changes its state to running after er-

ror. This is also done if a parity error occurs in the
store or on the bus. The process receives no more com-
puting time in this state, but from the viewpoint of
other processes it still exists. The parent of an erro-
neous process can, however, reactivate it by means of

stop and start.

A parent can force a break in a child process as fol-
lows: First, stop the child; second, fetch the regis-
ters and interrupt address from the process description
of the child and store the registers in the interrupt
area together with the cause; third, modify the regis-
ters of the child to ensure that program execution will
continue in the interrupt procedure; fourth, start the

child again.

53

The Real-Time Clock

"'8.2

Real time is measured by means of a hardware interval
timer, which counts modulo 32786 in units of 0.1 milli-
second and interrupts the computer regularly every 25.6
milliseconds. Normally, however, the computer is inter-—
rupted much more frequently, viz. by peripheral devices
each time a data transfer is completed. Whenever the
monitor receives an interrupt, the time-slice gqueue is
reorganized in accordance with the strategy described

in Section 7.2.

The monitor uses the interval timer to update a pro-

grammed real-time clock of 48 bits. This clock can be

initialized and sensed by means of the procedures

set clock(clock)
get clock (clock)

The setting of the clock is a privileged function. A
standard convention adopted by operating systems (but
not enforced by the monitor) is to have the clock ex-
press the time elapsed since midnight, December 31,

1967, in units of 0.1 millisecond.

The clock is an external process, which can accept mes-—
sages from all internal processes. Such messages may

specify, for example, that the process wishes to be re-
moved from the time-slice gueue for a certain interval.

(See further the RCSL publication Interval Clock Proc-

ess) .

.3

54

Storage of Files on the Backing Store

.3.

1

The monitor permits the storage of files on a backing
store consisting of one or more physical volumes (e.qg.
disc packs). These in turn comprise one or more logical
volumes, each described as a logical disc. The monitor
makes the logical volumes appear as a single backing

store with a number of 256-word segments.

This logical backing store is organized as a collection
of named files. Each file occupies a number of segments
on a single logical volume. A fixed part of the logical
volume is reserved for a volume catalog and a slice ta-

ble, which together describe the files on the volume

and their physical location.

The identification of a file requires a catalog search.
In order to reduce the number of searches, input/output
must be preceded by the explicit creation of an area
process describing the file within the monitor. Area
processes are treated as external processes by the in-
ternal processes; input/output is initiated by sending
messages to the area processes specifying input/output
operations, storage addresses, and relative segment

numbers within the files.

File Structure, Slices, and the Slice Table

Each backing-storage volume is divided into hardware
blocks of 256 24-bit words. The blocks are grouped in
software slices of a fixed size, selected for each disc
according to its physical characteristics. The slice
size may therefore vary from volume to volume. The set
of slices for a given volume is mapped onto a slice
table containing a 12-bit halfword for each slice.

55

A file on the volume consists of a whole number of
slices, with the corresponding halfwords in the slice
table chained together and terminated by zero. In the
figure below, halfwords 1, 3, 4, 7, and 5 of the slice
table are chained together and represent a file of five
slices. The numbers in the halfwords, e.g. +2, point to

the next halfword in the chain.

HARDWARE BLOCKS

VOLUME ITTTITT[TT] K

1] SOFTWARE SLICES
SLICE
NUMBERS: o 1 2 3 4 5 6 7 8
SLICE
TABLE 2 S MR ~2 4
4l B

1 | CATALOG ENTRY

The number of the first slice is defined in the catalog
entry describing the file. Free slices have a unique
value in the slice table. When a file is extended, a
free slice-table halfword is linked to the end of the
chain representing the file. Once a volume is mounted,
its slice table is kept in the primary store for fast
reference. Whenever a permanent file is extended or re-
duced, the slice table 1is copied to the volume as a

safety measure.

56

Catalogs and Catalog Entries

The catalog is a fixed area on the volume divided into

a number of entries identified by names.

The name assigned to a catalog entry has two parts: the
name proper {(up to 11 ISO characters) and a name base,
which is represented by two integers. The name base de-
termines which internal processes may read and write in
the file described by the entry (see Sect. 8.3.4).

Each file is described by an entry in the main catalog,

which is simply a file on the principal backing-storage
volume. Each entry contains the following information

in 17 words:

number of the first slice

permanency of the file

file name and its hash key

hierarchical position of the file

file size in segments

name of the logical volume containing the file

optional parameters for the internal process

Note that the volume name may refer to, say, a reel of

magnetic tape instead of a disc pack; in this case the
file size is negative and defines the kind of device in

question, and no backing-storage area is reserved.

The volume catalog on the logical volume, which is

called the auxiliary catalog, is a file with a struc-

ture like that of the main catalog.

Each catalog entry contains a 3-bit permanence key,

which assists the operating systems in their adminis-

tration of free backing-storage space.

8.3.2
4

57

The monitor checks only whether the value of the perma-
nence key is greater than that of the minimum auxiliary
catalog key (a monitor option), in which case the file
is described in the auxiliary as well as the main cata-
log. It rests with the operating system to delete tem-—
porary files when it removes the child process that
created them. (Thus the BOSS operating system, for ex-

ample, does this, but the basic operating system, s,
does not). Temporary files are automatically deleted
when the system is shut down, whereas permanent files

are deleted only at the request of the user according

to the rule of file change (see Sect. 8.3.3).

Thus the monitor, in accordance with the system design
philosophy, provides only the necessary mechanism for
the handling of temporary files, but leaves the actual
strategy of file deletion to the hierarchy of proces-

ses, i.e. to the operating systems.

An internal process can ensure the survival of a cata-
log entry and the file which it describes by means of

the monitor procedure
permanent entry(name,permanence key,result)
An entry is created by calling the procedure
create entry(name,tail,result)

The identifying name is contained in the head of the
entry, whereas the remaining information is found in

the tail.

When an entry and a file are created, the monitor sets

the name base of the entry equal to the catalog base of

the creating process (see Sect. 6.1).

.3.3

58

Internal processes can look up, change, rename, or re-

move existing entries by means of the procedures

look up entry{name,tail,result)
change entry(name,tail,result)
rename entry(name,new name,result)

remove entry(name,result)

When the system is started, all entries from all vol-
umes are collected in a single catalog, viz. the main
catalog, which describes itself in an entry named

<:catalog:>.

The search for catalog entries is minimized by using a
hashed value of names to define the first segment to be
examined. Each segment contains 15 entries; thus most
catalog searches require only the input of a single

segment unless the catalog is brimful.

The "Directory Hierarchy" and Read/Write Protection

Catalog entries and the files which they describe may

be visualized as a hierarchy of directories, albeit the

latter do not exist as separate structures within the

system; a "directory" is simply a set of files with a

given name base (see Sect. 8.3.4).

An internal process (job) selects a directory by set-

ting its own catalog base equal to the name base of the

relevant files.

In the following figure, the files in each directory
are indicated on the right, e.q. algol. The directory

names, e.g. s, are for explanatory purposes only.

3.

59

MONITOR
DIRECTORY:

CATALOG, AUX2CAT

SYSTEM
DIRECTORY:

PROJECT
DIRECTORIES:

USER
DIRECTORIES:

FEach internal process selects a "local directory" in
which files are looked for first. If the file name is
not found here, the directory on the next higher level

is searched, and so on. This is the search rule for

file names.

Take as an example user 3 in the figure above. His
process has u3 as its local directory, and if he looks
up fortran, u3d will be searched first, then p2, and fi-
nally s, which contains the desired entry. If user 2
looks up fortran, the desired entry is found in p?, and
thus user 2 will access a different FORTRAN compiler.
(Perhaps users 1 and 2 are developing a new version of

FORTRAN) .

Within certain limits a process may select another lo-
cal directory in which files are looked for first. User
3 will typically be allowed to select u3 or p2 as a lo-
cal directory. When he selects the latter, u3 files g

and r are invisible and p2 files p, I, and t appear.

60

User 3 may also select a local directory corresponding
to a branch from u3, viz., j1 or j2. When a new file is
created, it appears in the local directory, and thus

user 3 may build up new directories (31 and j2).

The limitations on selecting a local directory are as
follows: Each process has a "standard directory" (u3 in
the case of user 3) and a "maximum directory" (p2 in
the case of user 3). The process may select a local di-
rectory either on the path from the standard directory
to the maximum directory or on a branch from the stand-

ard directory. This is the rule of scope transition.

Write Protection

Write protection is implemented according to the fol-

lowing rule of file change: A process may change a file

or catalog entry if the file is in a directory which
could be a local directory for the process. Thus user 3
is only allowed to change files in u3, p2, and a branch

from u3.

Let us assume that users 1 and 2 are the maintenance
group and can change files in the system directory.
Thus user 1 should have s as his maximum directory and
ul as his standard directory. This allows him to select
ul, pl, and s (and a branch from ul) as his local di-
rectory. The rule of scope transition ensures that he

cannot change files in m, p2, u2, u3, u4, or ub.

Read Protection

Read protection is implemented by the search rule for
file names in conjunction with the limitations on se-
lecting a local directory. Thus user 3, for example,
cannot read or look up a file in u4, u5, ul, u2, or pl.
Even user 1, who can change system files, cannot read

files in u2, u3, u4, ub, or p2.

8.3.4

61

An operating system will typically have s as both its
standard directory and its maximum directory. Thus it
can select pl, ul, and so on as local directories and
change or read files there; but it still cannot change

files in m {(the main and auxiliary catalogs).

Implementation of the "Directory Hierarchy” 8§.3.4

The hierarchical position of a file is defined by its
name base (see Sect. 8.3.2). The name base of a file on
a low level is inside the name bases of the files above
it. In the following figure, the name bases of the
files in the previous figure are shown. The scale is
not linear. The length of pl and p2 is typically 100,
that of ul, u2, u3, u4, and ub 10.

—8388607 +8388606

MONITOR

DIRECTORY: — M 4
|

SYSTEM i

DIRECTORY: | S |

PROJECT

P1 P2

DIRECTORIES: - 1 - —

USER

DIRECTORIES: pu, Y2, U3 YU

Py 2y

62

Tt has already been stated that a "directory" is_simply

a set of files with a given name base. Within the moni-

tor these sets of files are implemented by means of the
various bases that are associated with files and inter-
nal processes. Thus a "project directory" from the
viewpoint of a process is expressed by its max base and
a "user directory" by its current catalog base.

When an internal process (operating system) creates a
child process, it defines the max base and the standard
base of the child as being inside or egual to its own
max base and standard base, i.e. the child may not see

files which its parents cannot see.

The monitor then sets the name base of the child equal

to the catalog base of its parent and the catalog base

of the child equal to the standard base defined for it
by its parent.

The child process may now "select a local directory,”
i.e. define its own catalog base as currently equal to
the name base of the files in question, according to
the rule of scope transition.

Implementation of the Rule of Scope Transition

The catalog base of an internal process must be inside
or equal to its standard base or surround or be equal
to its standard base and inside or equal to its max

bhase.

Implementation of the Search Rule for File Names

When an internal process looks up a file named £, all
files named f are searched for in the main catalog. Of
the files which have a name base surrounding or equal
to the currently defined catalog base of the process,

the file with the smallest name base is selected.

-~

8.3.5

63

"Implementation of the Rule of File Change

1. If the name base of a file surrounds or equals the
catalog base of an internal process and is inside or
equal to its max base, the process may create an

area process for read/write access to the file.

2. If the name base of a file surrounds the max base of
an internal process, the process may create an area

process for read access to the file.

3, If the name base of a file does not surround or

equal the catalog base of an internal process, the
process may nhot create an area process for access to
the file.

When an internal process has created an area process
~and used it once, the internal process may redefine its

catalog base.

Area Processes

In order to be used for input/output, a file must be
looked up in the catalog and described as an area (i.e.
external) process within the monitor:

create area process(name,result)

The area process is created with the same name as the

catalog entry.

Following this, internal processes can send messages
with the following format to the area process:

message: input/output operation
first storage address
last storage address
first relative segment

64

The reader is reminded that the tables used to describe
area processes within the monitor are a limited re-
source, which is controlled by means of area claims de-

fined by the parent process (see Sect. 7.4}).

The backing store is a random-access medium, which
serves as a common data bank. In order to utilize this
property fully, internal processes should be able to
input simultaneously from the same file (e.g. when cop-
ies of a compiler are executed in parallel). On the
other hand, access to a file should be exclusive during
output, because its contents are undefined from the

viewpoint of other processes.

A distinction is therefore made between internal proc-

esses that are potential users of an area process and

the single process that may have reserved the area
process exclusively. This distinction was also made for
peripheral devices (see Sect. 5.2), but now the rules
of access are different: An internal process is & user
of an area process after the creation of it, which en-
ables the process to perform input so long as no other
process makes a reservation. An internal process can
reserve an area process, if it can change the file
which the area process refers to. After reservation the

process can perform both input and output.

Finally we should mention that the catalog is described
permanently as an area process within the monitor. This
enables internal processes to input and scan the cata-

log sequentially, e.g. during the detection and removal
of temporary entries. Only the monitor itself, however,

can perform output to the catalog.

65

'RELATED PUBLICATIONS

‘ "Note that the RCSL numbers and edition dates of the

following publications are subject to change.

- An- Introduction to RC8000 Operating Systems,
RCSL No. 31-D552, December 1979

e e -

Interval Clock Process,

-, -RCSL No. 31-D530, December 1978

Operating System s Reference Manual,
RCSL No. 31-D455, June 1978

-RCB000 Computer Family Reference Manual,
RCSL No. 42-i 1235, June 1979

RC8000 Monitor, Part 2, Reference Manual,
..RCSL No. 31-D477, January 1978

.RC8000 Monitor, Part 3, External Processes,

RCSL No. 31-D478, January 1979

. .-RCNET, General Information,

RCSL No. 43-Ri0635, December 1976

67

GLOSSARY

Activate process (to)

To link an internal process to the time-slice gueue

in order to make it running.

Area process

Input/output of a file on the backing store identi-

fied by name.

Base

An interval represented by two integers. The bases

assigned to an internal process determine which oth-

er internal processes can see it as well as which

backing-storage files it may access.

Catalog

A fixed part of the backing store divided into named
entries. An entry can describe a file on the backing

store or some other document.

Child process

An internal process created by another internal

process, which is described as its parent in the

process hierarchy.

Create process (to)

To create a table within the monitor describing a

process by its name, kind, resources, event dqueue,

and current state.

68

Delay process (to)

To remove an internal process temporarily from the

time-slice queue in order to make it wait for an

event outside the process.

Document

A physical medium on which a specific collection of
data is stored, e.g. a roll of paper tape, deck of

punched cards, printer form, reel of magnetic tape,
or file on the backing store.

Event gueue

The queue in which a process receives messages and

answers from other processes.

External process

A general term for an area process or a peripheral

process,

Internal interrupt

An interruption of an internal process caused by

protection viclation, arithmetic overflow, an erro-

neous monitor call, or the parent of the process.

Internal process

The execution of one or more interruptable programs

in a contiguous storage area identified by name.

Link

The logical data path between the peripheral process

description within the monitor and the physical pe-
ripheral device. The link concept implies that an

internal process can access any device without being

aware of its geographical location.

69

Monitor

A resident program with complete control of storage
protection, input/output, and interrupts. It con-
tains descriptions of all processes and controls the
sharing of computing time among them. It alsoc con-

tains procedures which internal processes can call

in order to create and control other processes and

communicate with them.

Multiprogramming

Simultaneous execution of several programs loaded in
the store by multiplexing of the central processor

controlled by timer interrupts.

Operating system

A program that controls the scheduling and resource
allocation of other programs in order to obtain a
specific mode of operation, e.g. batch processing,
real-time scheduling, or time-sharing. During exe-
cution an operating system is synonymous with a
parent process.

Parent process

An internal process that creates and controls anoth-

er internal process, which is described as its child
in the process hierarchy.

Peripheral process

Input/output or interrupt signals of a peripheral
device identified by name. It usually involves the

use of a specific document mounted on the device.

70

Process hierarchy

A family tree describing the control relationships

among internal processes, which are called ances-

tors, parents, children, or descendants according to

their position in the hierarchy relative to a given

process. An internal process can only start, stop,

or remove its own child processes and their descend-

ants.

Program

A collection of instructions specifying a computa-

tional process.

Pseudo process

A description of an internal or external process,

which permits that process to appear under a pseudo-
nym. All messages sent to a pseudo process are for-
warded to the internal process that created it.

Remove process (to)

To remove a table within the monitor describing a

process by its name, kind, resources, event gueue,

and current state.

Resources

A general term for the amount of computing time,
primary storage, message buffers, process descrip-
tions, peripheral devices, and backing storage al-

located to an internal process.

Running process

An internal process in the time-slice gqueue which is

executing instructions or ready to do so.

71

Start process {(to)

To activate an internal process at the request of

its parent.

Stop process (to)

To delay an internal process at the request of its

Earent.

Time-slice gueue

A queue of internal processes that share computing

time in a cyclical manner.

Waiting process

An internal process that has been removed temporari-

ly from the time-slice gueue in order to wait for an

event outside the process.

73

INDEX

Activation of process, 8, 17

Allocation of resources, 36-38. See also Resource con-
trol

Ancestor process, 40-41

Answer, 17-26; dummy, 18; 26, 36; from external proc-
ess, 27-29

Area claim, 47

Area process, 54, 63-64; communication with, 54, 63-64;
creation, 54, 63; description, 46-47, 49, 54, 63;
description pool, 47; name, 63; reservation, 64, us-
er, 64. See also External process

Auxiliary catalog. See Catalog

Auxiliary internal process, 42

Backing store, 2, 12, 13, 54-64; catalog, 50, 54-64;
file, 2, 12, 13, 50, 54-64; protection, 14, 34, 60,
63; slice, 54-56; slice table, 54-55

Base, catalog, 14, 34, 57-58, 62; max, 14, 34, 62;
name, of file, 56-58, 61-62; name, of process, 34,
62; standard, 14, 34, 62

Basic operating system, 24, 36-38, 43, 49

Break in child process, 52

Buffer. See Message buffer

Buffer claim, 47-48

Catalog, 50, 54-64; area process for, 64; auxiliary,
56; catalog entry for, 58; main, 56-58; protection,
14, 34, 60, 63

Catalog base. See Base

Catalog entry, 50, 55-63; change, 58, 60, 63; creation,
57; head, 57; look-up, 58, 60, 63; name, 56; name
base, 56-58, 61-62; permanence key, 56-57; perma-
nent, 57; removal, 58, 60, 63; renaming, 58, 60, 63;
tail, 57; temporary, 57; visibility, 60, 63

change entry procedure, 58

74

Child process, 33-42, 43, 44, 46, 47, 48, 49, 50, 52
Claims, 46-48

Clock. See Real-time clock

Communication between parallel processes, 17-26
Configuration control, 48-49

Console, 2, 6-7, 20, 24, 36

Conversational access, 2, 19-26, 51

Cooperation between parallel processes, B8

copy procedure, 46

create area process procedure, 63

create entry procedure, 57

create internal process procedure, 33

create peripheral process procedure, 30-31, 32

Deadly embrace of parallel processes, 7-8

Delay of process, 8, 17

Descendant process, 39

Device. See Peripheral device

"Directories" of catalog entries and files, 58-63
Document, 12-13, 29-31, 47, 49

Entry. See Catalog entry

Event, 21

Event queue, 17-26, 28-29

exclude user procedure, 49

External process, 12-13, 27-32; communication with,
27-32; creation, 30-31, 48-49, 50; description, 13,
28, 49; kind, 13, 28; name, 12-13; release, 30; re-
moval, 31, 50; reservation, 13, 29-30, 49; user, 13,

48-49, 64

Family tree of processes. See Hierarchy of processes

File. Sece Backing store and Catalog entry

File change, rule of, 60, 63

File names, search rule for, 59, 62

Function, indivisible, 7, 8, 15, 42; interruptable mon-
itor, 42; privileged, 50; process, 42

Function mask, 50

75

General event procedures, 20-24
get clock procedure, 53

get event procedure, 22

Hierarchy of "directories," 58-63

Hierarchy of processes, 36-38, 44

Identification bit, 49

include user procedure, 49

Indivisible function, 7, 8, 15, 42

Input/output, 27-29, 40-41, 43, 49, 54, 63-64

Internal claim, 46-47

Internal interruption, 51-52; causes, 52

Internal process, 10-12, 33-42, 43-50, 51-52, 53, 54,
63-64; activation, 8, 17; ancestor, 40-41; area
claim, 47; buffer claim, 47-48; catalog base, 14,
34, 57-58, 62; child, 33-42, 43, 44, 46, 47, 48, 49,
50; creation, 33-34; delay, 8, 17; descendant, 39;
description, 11, 33, 35, 40, 46, 47; description
pool, 47; event queue, 17-26, 28-29; function mask,
50; identification bit, 49; internal claim, 46-47;
internal interruption, 51-52; interrupt address, 51;
interrupt mask, 52; interrupt procedure, 51-52; max
base, 14, 34, 62; modification, 35; name, 10, 34;
name base, 34, 62; parent, 33-41, 43-50; priority,
45; removal, 36; resource allocation, 36, 43-50; run
time, 46; standard base, 14, 34, 62; start, 35,
39-41; start time, 46; state, 11, 39-42, 52; stop,
35, 39-41; storage allocation, 33, 34, 36, 46; stor-
age protection, 9, 14, 46

Interrupt, 5, 6, 15, 28-29, 42, 43-44; address, 51;
mask, 52; procedure, 51-52

Interruptable monitor function, 42

Interval clock process. See Real-time clock

Interval timer, 43, 44, 53

Kind of process, 13, 28

76

Links, 31-32; creation, 31-32; removal, 32
Loading of program, 35

Logical device. See Peripheral device

Logical disc. See Peripheral device and Volume
Logical volume. See Volume

look up entry procedure, 58

Main catalog. See Catalog

Max base. See Base

Message, 17-26, 39-41; to area process, 63; to external
process, 28

Message buffer, 17-24, 46-48; advantages, 24-26, 29;
buffer pool, 46-48

Message buffer queue. See Event queue

modify internal process procedure, 35

Monitor, 3, 5, 9, 11, 13, 15, 25, 28-31, 33, 36, 38,
39-42, 43-50, 51-54, 57, 62, 64

Monitor procedures: change entry, 58; create area proc-
ess, 63; create entry, 57; create internal process,
33; create peripheral process, 30; exclude user, 49;
get clock, 52; get event, 22; include user, 49; look
up entry, 58; modify internal process, 353; permanent
entry, 57; release process, 30; remove entry, 58;
remove process, 31, 36; rename entry, 58; reserve
process, 30; send answer, 18; send message, 18; set
clock, 53; set interrupt, 51; set priority, 45;
start internal process, 35; stop internal process,
35; wait answer, 18; wait event, 21; wait message,
18

Multiprogramming, 1-4, 5, 16

Mutual exclusion. See Parallel processes

Mutual synchronization. See Parallel processes

Name, area process, 63; catalog entry and file, 56; ex-

ternal process, 12-13; internal process, 10-11, 34

Name base. See Base

77

Objectives of system, 1-4, 9

Operating systens, 2-4, 8, 9, 30, 57; hierarchy, 36-38,
44; modification, 2-3. See also Basic operating sys-
tem

Overflow, 51, 52

Parallel processes, 5-8, 9; communication bhetween,
17-26; cooperation between, 8; deadly embrace, 7-8;
mutual exclusion, 6-8; mutual synchronization, 8

Parent process, 33-42, 43, 44, 45, 46, 47, 48, 49, 50

Peripheral device, 12; logical, 13; physical, 13, 49.
See also External process and Links

Peripheral process, 13. See also External process and
Links

Permanence key. See Catalog entry

Permanent catalog entries and files, 56-57

permanent entry procedure, 57

Physical device. See Peripheral device

Physical volume. See Volume

Pools of resources, 46-49

Potential user of a device. See Area process and Exter-—
nal process

Primary storage allocation. See Storage allocation

Priorities of internal processes, 45

Privileged function, 50; monitor procedure, 50

Procedure. See Monitor procedures

Process. See Area process, Auxiliary internal process,
External process, Internal process, Parallel proces-
ses, Peripheral process, and Pseudo process

Process communication, 17-263 description, 11, 13, 28,
31, 33, 35, 40, 46, 47, 49; function, 42; hierarchy,
36-38, 44; kind, 13, 28; name, 10-11, 12-13, 34, 63;
state, 39-42, 52

Program, 12; loading, 35: swapping, 1, 35, 46; tempo-
rary removal, 35

Protection of catalog entries and files, 14, 34, 60,

63; of internal processes, 9, 14, 46

78

Protection violation, 51-52

Pseudo process, 14

Queue of message buffers. See Event queue

Queue of running processes. See Time-slice gueue

Read protection of catalog entries and files, 60; of
internal processes, 46

Real-time clock, 50, 53

release process procedure, 30

remove entry procedure, 58

remove process procedure, 31, 36

rename entry procedure, 58

Reservation of device. See Area process and External
process

reserve process procedure, 30

Resource control, 43-50; area process descriptions,
46-47; computing time, 171, 43-46; internal process
descriptions, 46-47; message buffers, 46-48; periph-
eral devices, 48-49; storage, 46, 50

Right to use a given device, 48-49

Round-robin scheduling, 44-45

Rules: file change, 60, 62; scope transition, 60, 62;
search for file names, 59, 62

Running process, 35, 39-40; after error, 52

Run time, 46

s. See Basic operating system
Scheduling, round-robin, 44-45; time-slice, 43-46
Scope trangition, rule of, 60, 62
Search rule for file names, 59, 62
Send and wait procedures, 18-20
send answer procedure, 18

send message procedure, 18

set clock procedure, 53

set interrupt procedure, 51

set priority procedure, 45

slice, 54-56; table, 54-55

79

Standard base. See Base

start internal process procedure, 35
Start time, 46

State of process, 39-42, 52

Stop count, 40-41

stop internal process procedure, 35
Stop operation, 40-41

Stopped process, 35, 39-41

Storage allocation, 33-36, 46, 50
Storage of files. See Backing store
Storage protection. See Protection
Strategy, 9, 36-37, 44, 57

Swapping of programs, 1, 35, 46

Temporary catalog entries and files, 57
Temporary removal of programs, 35
Terminal. See Console

Time gquantum, 44, 46

Time-sharing, 46

Time slice, 11, 43-46; scheduling, 43-46
Time-slice queue, 11, 34, 40, 42, 43-46

User. See Area process and External process

violation of storage protection, 51-52
Volume, 54-56; logical, 54-56; physical, 54-56

Volume catalog. See Auxiliary catalog

wait answer procedure, 18

wait event procedure, 21

Waiting process, 35, 39-42

wait message procedure, 18

Write protection of catalog entries and files, 60; of

internal processes, 46

RETURN LETTER

Title: RC8000 Monitor, Part 1 RCSL. No.: 31-D476
A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company: _ S

Address: [

Thank you

88

ot

3

Do not tear - Fold here and staple

.................

¢REGNECENTRALEN
af 1979

Information Department
Lautrupbjerg 1

DK-2750 Ballerup
Denmark

..................

Affix
postage
here

