
Pen: 990 00648

RCSL No: 52-AA1137

Edition: September, 1982

Author. Bo Bagger Laursen

Title:

RC3502 LOADER

Reference Manual

RC International

R
C
S
L
 4
2
-
1
1
9
0
5

Keywords:

PASCAL80, RC3502, LOADER,

Abstract:

The RC3502 LOADER reads binary relocatable PASCAL80 object programs,

allocates memory for the programs and performs the necessary linkage

editing.

(18 printed pages) .

A
C
S
L

 4
2
-
1
1
9
0
5

Copyright © 1982, A/S Regnecentralen af 1979

RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contal-

ned herein are subjectto change by RC at any time without prior no-
tice. RC is not responsible for typographical or arithmetic errors
which may appear in this manual and shall not be responsible for
any damages caused by reliance on any of the materials presented.

CONTENTS PAGE

1 INTRODUCTIONeecee eenecee eer e eee e sree rere sess eeaee 1

2. FUNCTIONS SUPPORTED BY THE LOADER0sc0088 eee eceee 3

3. LOADER INTERFACE00085 voce cece cen meee cere seas cues 5

3.1 LOADER MESSAGES oo cc cece cececece eee e cece cca cencncees 5

3.2 LOADER ANSWEYS cece cece ccc ceccecceeceees ween 7

3.3 Loaddriver Messages 2... ccc cece csc cen es cecescecees 8

3.4 Loaddriver ANSWEYS2eeceeaee eeec cece sence 9

3.5 Loaddriver Protocol wee e erecte scene eee 10

4. PARENT PROCESS RESPONSIBILITIESccccccssscsccesscseee 11

INTRODUCTION

The RC3502 LOADER reads binary relocatable PASCAL80 object

programs from the external devices FPA100 and PTR (RC500) or

from an application process simulating a load driver.

The LOADER allocates memory space for the loaded programs and per-

forms the necessary linkage editing.

The PASCAL80 cross compiler on RC8000 produces one object file

with the format (24 bits RC8000 words). :

8 16

P

0 Py

P
n

=

The file contains one or several PASCAL80 object programs (P;) :

PUNCH16 reformats PASCAL80 object files to a loadfile, either on

loadfile

disc or on a papertape.

PUNCH16 MODE ,CRC16

loadfile

b
w

The loadfile is formatted as a single logical file, partitioned in

blocks of size 765 bytes according to the format demanded by the

RC8000 AUTOLOAD utility program []:

n

24

765

750

d bytes 765

bytes

16 8

15 sum | 0
bytes filename

iS 1

15

0 15 bytes

The loadfile is terminated with a stop block of size 15 bytes.

If load is from FPA, the transfer from RC8000 is done by the AUTO-

LOAD program and 765 bytes are transferred per block.

If the loadfile is punched, all 768 bytes per block are loaded.

When load is from a simulated driver, the blocksize may be variable

and no 'length' and SUM are included in the loaded data.

FUNCTIONS SUPPORTED BY THE LOADER

The LOADER loads all or specified programs in a loadfile. The

actual block reading is done in a format described in chapter 1.

Internally the LOADER reads the loadfile byte per byte (the function

‘getbyte') according to the following logical format of the loadfile:

The format of program P, is:

Descriptor segment

Part 1

Page 1

Page 2

Page n-1

Page n

Ext.

link-

table Descriptor segment

Part 2

Int.

Link-

table

The load is performed in a number of scans,

In scan 1 all requested programs are loaded. The internal linkage

editing is performed during load.

External linkage editing (call of external routines) is then exe-

cuted. If an external reference cannot be defined, the loadfile is

logically rewound and a new scan is performed.

Note, that in this version of the LOADER a scan actually reads

the loadfile from "loadpoint" until the last requested program is

read.

If all the requested programs are loaded and the linkage editing

were successful, the programs are included in the LINKER catalog.

LOADER requests ADAM to remove 'LOADER', so if LOADER is a child of

ADAM, it dies automatically.

3. LOADER INTERFACE 3.

The LOADER has two software interfaces:

1. An interface which defines the requests it accepts

from other processes.

2. An interface which defines how the LOADER requires the

actual data to be received.

3.1 LOADER Messages 3.1

Requests are taken from the semaphore

A
sv (loadersem) |

(see chapter 4 concerning 'sv') and interpreted in the following

way:

message

ul function

u2 notused

u3 notused

6 u4 notused

ul: function

0 - load the specified programs and deliver an immediate

answer

<> 0 - load the specified programs and deliver an answer after

loading

The request is supposed to hold a variable 'buffer' of type:

buffertype = RECORD

kind ,

loaderchannel,

number : integer;

names : ARRAY (1..number) OF alfa;

END;

The maximum value, 'number' may take, is at present 50.

buffer. kind

OQ -— (EXT) the LOADER will signal requests for data to the

predefined semaphore

sv (loaddriversem) t

(see chapter 4 concerning 'sv').

2 - (FPA) the load will be performed from FPA100 by a dedicated

internal FPA driver

4 —- (PTR) the load will be performed from a papertape reader

(e.g. RC500, RC2500) by a dedicated internal PTR driver

buffer. loaderchannel

specifies the io-channel, where the load device is connected, if

PTR or FPA is specified as kind. Otherwise the information is

not used.

buffer. number

0 - all programs in the load file are loaded regardless of

their names

n> 0 - the request buffer contains the names of 'n' programs to be

loaded

buffer.name (i)

The name of program no 'i', which is requested to be loaded.

3.2 LOADER Answers

LOADER returns the requests according to:

answer

ul unchanged

u2 result

u3 unchanged

ud unchanged

and the buffer is unchanged.

u2: result

0 - ok, the load request is processed successfully

2 - warning, the load is completed, but:

a. a program had a versionerror, it was loaded anyway

b. a program was already in the LINKER catalog - the

loaded program was deleted

c. a requested program was not in the load file

3 - loaderror, all loading is aborted because:

a. the LOADER could not get resources to run

b. an external reference among the loaded programs could

not be defined

4 - unintelligible request

3. 3 Loaddriver Messages

When load with kind = 0 is requested, the LOADER requests data

at the semaphore

sv (loaddriversem) }

(see chapter 4 concerning 'sv').

The request is a datamessage of size 774 bytes. The buffer follows

the driver conventions and may thus contain a datablock of max.

768 bytes.

The header is:

1

0

1

drivermessage

ul function

u2 7

u3 control

v4 not used

ul: function

- read. Read data to the buffer after having performed the

control function specified by u3.

u3: control

- transmit next block. Move the load file pointer to the

first byte of the next block and read this block to the

buffer,

- retransmit block. Read the block defined by the current

load file pointer to the buffer. The load file pointer is

not moved.

12

128

Note:

rewind. Move the load file pointer to the first byte,

block, and file in the loadfile and read a status block to

the buffer.

upspace block. Move the loadfile pointer to the first byte

of the next block, and read a status block to the buffer.

upspace file. Move the loadfile pointer to the first byte

in the first block of the next file, and read a status

block to the buffer.

finis. Terminate reading. No data is read to the buffer.

sense. Read a status block to the buffer.

Only control = 0, 2, 12 are used in this version of the

LOADER.

Loaddriver Answers

The LOADER interprets answers in the following way:

driver answer

ul not used

u2 result

u3 block type

u4 not used

u2: result

0

<>0

- ok, the buffer contains a valid data block or status

block.

- not ok, the buffer contains no valid data. The LOADER

will repeat the request.

3.4

3.5

u3: block type

249 - the buffer contains a status block.

251 - the buffer contains a data block.

Tf u2 = 0 the buffer contains a variable 'buffer' of either

data_type or status type:

data type = RECORD

~ first,
last,

next: integer;

data : ARRAY(6..773) OF byte;

END;

it RECORD

first,

last,

next ; integer;

data : RECORD

status,

size,

filenumber,

blocknumber : integer;

END;

END;

status type

Loaddriver Protocol

The communication between LOADER and the loaddriver, when kind = 0

is specified,may be visualized in the following way:

LOADER LOADDRIVER

rewind

status

next_block

data

finis

11

PARENT PROCESS RESPONSIBILITIES

The LOADER has the following header:

PROCESS loader (VAR sv : system vector)

where 'system vector' is a predefined type.

The LOADER may be run by a process itself by appropriate declarations

and routine calls, or by requesting ADAM to do the job.

The code occupies approx. 8K bytes.

The stack must be approx. 700 words.

Default create size may be used (= 0) in the create call.

Requests to the LOADER are signalled to a predefined semaphore in

the parameter 'sv':

signal (request, sv (loadersem)t) ;

When load with kind = 0 (external) is requested, the LOADER requests

data at the predefined semaphore:

sv (loaddriversem) *

An application must process the request and return the message with

data,

12

RETURN LETTER

Title: RC3502 LOADER RCSL, No.: | 52-AA1137

Reference Manual

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,

and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company: _

Address: - coe _

Date:

Thank you 4
2
-
1

1
2
8
8

Affix

postage
here

RC International

Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

