RCSL No: | 52;AA972
- Editien: February, 1983
Author: Poul Mglgeard

"
o
Pt
-
f
R
-

i Y ¢REGNECENTRALEN -
! i . “m :

.

Keywords: e e TTARRL BT

" Mini Camputer, Stack: Machine, mltlpmgranmmg Ca:rmunicatlon,
- Real Time Control, Mlcrcprogramed Bit Sllce Processor, Moduiarity,
Double Europe Cardst }t’?Soz Co i

b S e 2
1 ! ¢ H 1 e T :
. , . . L . i .
Abstract: - e, ' ;o R R IT AR SRS SE A N ¥,
) e
i

~This is the reference manua; for the R23502 nunlccmputer wh:Lch
: lS a’ stack machine supporting a h.lgh 1evel language w1th mult:.-
programming and cammnication’ Facilities. 'Ihe fC3502 is de51gned
primarily for real time control applications. e

r) P L o T

(360" printad’ pages) .

[- LAl e gyt
T H o

.....

. Copyright. . ©~:1983,. A/S Regnecentralen af 1979
- RC Computer A/S

" Printed’ by A/S Regnecentralen af 1979, Copenhagen
=Y v e e e .. . Users of this-manuak ire caitioniéd that the specifications contai-
ned herein are subject to change by RC at any time without prior no-

- Lo . . .tice. RC is.not fesponsibletor typogranhical or arithmetic errors

which may appear in this manual and shall not be responsible for
any damages caused by reliance on any of the materials presented.

RCSL No 42-1 2164

TABLE OF CONTENTS

;

1. INTRODUCTION +vveeveorescsssssssonoerssavasanasns
1.1 Processing Unit +ececeeecseessensssossssasssnsssans
1.1.1 Working Registers ..cceecesessevecesnseeracens
1.1.2 Interruption System
1.1.3 Instruction Set ...evieereciessssssserassscas
1.1.4 Input/OULPUL cevuiveevasavavassvanasoanssnsas
.1.1.5 System Start-Up . theesevievyuELees sy s e

o 1 2 Debugging System......... ceetsasiaananrerns e
'l 3 Summary of the Hardware Syste.m reprermcrasenes
N B j g;j ., Bas:Lc Phys:.cal Unit ;’;._, v J ., . J . ',:.""-' H
TP 930 additional Hardware bbdules...; LT T T

1.3.3 Processing Unit Architechture seserans
1.3.4 Processing Unit Instruction Set

L N ® B N N N

R ._2;_\%:3;@#%?@;\110@8 EEAAEEENASEAERLKS SN ARE SN XN WIE W W SN 8..,..‘"

2.1 Memory AddressSing .ve.ssessecrsscesscnns T - T -

2 2 Reg].ster Structure certeseerirereraisaraseeassioens 5.8

. 2 3\'“ Instrllctlon Set LN ..I LN) .l; ..t‘?'..'!: ;Il': l . s h s I 7 . .H:: .‘: L 3 ‘;‘ I‘l , . 8
2 4, Inpl.lt/Output Structure S rpeey 9

. - R _,,' w Do s [N H AN
) 2 5 mlarlty .‘.-..“-.:‘“..‘.0-:.:?-"'.. L] .‘;‘........r..l 10

3. mUTER OMANIZATION L B IR A) LI BB A L] '_'..-.?'.7'"1.“."‘...";ﬂ ?|2

o e i o3 a1 - PEOCE8Sing. Unit .Architechture ceneeny e i vneeviniane veany v o Do i <

3.2 Backplane BUS ...eecessesscssssncccsassssntanssnass 15

3.3 Control Microprocessor «....seeeces Ceestecataannen .. 16

3.3.17 Variable ATTAy ccocesecessossncesssasassans .17

3.3.2 Real-Time ClocK «cvesevss cesebteensansensnans 18

3.3.3 Console (TTY) Communication «..eeeeecessoess 19

3.3.4 WatchdOg «c.veevevscstssanssnrsscnnnsnsssnses 19

3.3.5 Configuration i..eveieriectasssensassssnnenasns 19

3.4 Interruption SyStem ...eeeveeessscecesnsstsnsnocsns 20

3.5 Input/Output ceeeeceeceaes cecessisasnsa treasscasens 21

3.5.1 Serial Transfer teserennnen ceee. 22

TS 1 sl crrp 30902 DMACTranSFer (Vik Vv coeeseseanasannns ceeecans 23
s wr'“,s‘vz'f.?; ¥

’3 4'}}.!1*“‘ f} g 3 5 3 D.lal"EO'Ct MQH i"r‘! P N R A R 24

6" Eagxsm;: Arx:ay A i o s .--,,;,- 24

Ehn B
‘, il RV X ST SR PLO T T R
. 34&‘]\: m:mg RegLsters Cetererateriintiiieasenas . 24
>,‘ f16 SEIBURES: 3 n RS Nt

g .fJ’f'«-"-,rve SRR T TE S PP I N I R

- TABLE OF CONTENTS (continued)

R .1

3.7

3.6.2 Micramachine Working Area ... dededessesses
Data Formats and Structures ... eeevieiddoesdiviess
3.7.1. Basic Formats and Structures ... w.eiveeeeees

.3.7.2 Communication Structures i..v..icees e e enanns

3.7.3 The Process Incarnaticn Stack Descriptor ...
3.7.4 Structures Depending on Stack Oriented ex-

emtion M B B, 88 8,810 8 8. 9. 0.8 8.8 "-l._.":._-‘ * e o0 1-.!'_ --------

. 3.7.5 Structures Deriving .from Process Execution .

3'8

4. BASE
4.1
4.2 .

3.7.6 Structures Deriving from Range Testihg and
IndeXing . ceeeeeononenoessotossscnnsssnsssns

. Number Representation ...eeseseescscsssiovessessonss

INSTRUCTION SET «cotseasnncsnncnsasssossssssansssnss .

. Runtime Environment.eeesessinosossss Cevsesesenne

TErMiNOLOGY .ae s.o s s sisssmesessnssssoosssossssssassns
4.2.1 Operation and Parameter ...iceecceecccseesss
4.2.2 Operand and Resulteceteecencedassoenaa

. 4.2.3 Effective AAAress ..csesvdoessesosssnosccnns
L 4.2.4 DAAYESS cir et s nsnnnsnsionniat st et tennsanan
R T .= Y O
.4.2.6 AGAresSing ...ceveseracerarecsresnreieeasas

4.3

5.1.

. Functional Descriptioneeeeevaviossasendiensasns

4.3.]1 SErUCHEULE +evvvessssnnscsasstassandesnasssssss

Push Nonsense (Reserve Stack Space) «.eveseevaavess

.5.1.1. RENPB .evvtunnsonsnssssnmenssainas eesiv e e eiess
c5.1.2 RENHB tsesennnonenrssnmnsisssossoosscsssssnas

5.2.

PUsh CoNStant ceceeeeeescescns sosasessasiioissesisss

L 5-2--‘ mm 58,0, 0.9 8 8 A0 S E S LS B ESS S -ll.'rl-l‘ lllll . e

5.3.

5.2.2 . RECHD Qr REAAD ... ceosoesoorsnessoesas e eee s
Push BAAresS .ccveeesssnsnnnmssssadossssssinissssssas
5.3.1 . REAXD .evevnnonseennonnnasdmoassossnmiinesasasse
5.3.2 REARD sivevvmssnsssomnnaacasonsnsns G
5.3.3 REAID .ivvvrrennnss coesesisaiies e imueisnsanens
5.3.4 REAGD .vsvves catsescssssrsssersstsnees s .o
5.3.5 REAID tvveeensconassnsasssssesansaansa

34
34
37
40

41
42

45
45

49
49
51
51
52
54

56
56
56
57
58
58
59
60
60
6l
62
63
64

. TABLE OF CONTENTS (continued) PAGE

(a3
(9]
w
.
o
[w]
v
+
)}
(9]

.-5.4 . Push Operand ...sivevieiiieesasescassssasssenancsss 66

5.4.15 REVIB -esvie s vs P P ceses 80
5.4.16 REVIW .v..v.. £ we e . 81
5.4.17 REVID ‘vetvvmasnnoneassodoionsanas easeasssene 82

- 54,18 REVIF vevenvssesensssssenss adenanens S 83
v 5.:4.79 REVSB vt vesevovsssnssnsesdinasosnssansdsossanns 84
+5.4.20 REVSW venrnnseidnosaianiionnonsos e wa e wiess 85
5.4.21 REVSD vecevvnevorononoinoninonnnonas aweatsbeen 86
5.4.22 REVSF +veeeeovosens esecasesssesaansaann cees. 87
5.4.23 READB ¢t vevsnens ek g 88
5.4.24 READIW cccvverovesnossoscnnannssansanses ceees 89

6. .STORAGE OF A VALUE 4 asis s st siesnsianeisnsencanssnsansnns 20
6.1 POp Garbage .eceressvesssossenssssmasnsans eimsarrsaen 90
B.1.1 STNHB cvvevvnnsnenmssenesnsasasasasnas PN 90

. 0.2. POP RESULL civnvnnnvnsvnneroneios e reoseninssiensnas 91
6.2.1 STVAB coccon.. revesesss e e Weasanas Ceseeseas N

6.2.2 STVAW v vvsrennencssnaie mesen's e namssessnesans 922

6.2.3 STVAD ..ovvvene creeeame s ieneiannsy FU dees 93

. 6.2.4. STVAF N Cereresanas 94

5025 STVIB verivvernennnanonsnans cecoecarsasassenas 96

iv

TABLE OF CONTENTS (continued) b ‘ oot T ZrElT PAGE

6.3

7.2

£.2.3 STVGB .vernvmacoascsnssetasssevasnissssssssas 101
6.2.70 STVGH cevevacrscccassas B 102
5.2,11 STVGD +ecvnsnsaacasanss P A e 103
6.2.12 STVGF +vveeccnncscsens P o -
6.2.13 STVIB. tivvnressascsorncsascnsansassoassdasests 106
6.2.14 STVIW ccvvvnnas et aa i i esasi i s ansieess 107
6.2.15 STVID «evvennns aeeresnaan R 108
6.2.16 STVIF cesesaca bomane seesess ceasenseasas 109
6+2.17.STVSB teasevssacsasacasssivsssssnsassosanacas 111
6.2.18 STVSW. v evveanversanacnss PP eeesecsersons 112
.6.2.19.8TVSD P 113
6.2.20 STVSFE 2tuvaacsnacancssssastisessosessssassnss 114
Manipulation. of Storage. Areas teiciececcciosecssanns 116
6.3.1. Move a Storage. Area ssssicicssscussesnssasns 116
.6.3.2. Exchange Two Storage AJAresSses «............ 120
.6.3.3. Compare Two.StoragefAreale;..i ees 122
6.3.4. .Push a Storage. AYea. «ceweecessansssasocsrons 124
6.3.5 POp a Storage Area «swesessssecsaecsscscsacss 126

2 7.1.]. PCALS weerwwnreenrecsescsosesssssscsscssnens 130
Telea2 PCALD ©wocwnnsennannssanes e auaue weseessaanaa 131
Exit. from a Routine asmisamameasesnans e 132

7221, PEXIT veievnnanes v s e ans e eaevsesrsneses 132

JUMPS. cecnmenssmennsssmannosssnsasstsssissossssesnsssssss 133

8.1

8.2

8.3

Unconditional Jumps. .« ... et e g eCas wih eea e s aerarean 133
8.1.1 JIMPHC +uvamacsasosmonmassnsossssossssssssess 133
8.1.2 JMPPD. tiuwssensnsnncnamessssasamosssssssssss 134
8.7.3 JIMPRW +evnascnamasensans B R A P .. 135
Case JUMD s.veoseansmnssnsnsscans e esasm ettt esas 136
8.2.1 JMCHT .cvuvcns S O S S 136
Conditional Jumps with One Operanddeeeeeeeess 138
8.3.1 JMZEQ vevvvevnnnnncsanns N AP weies s e s esanes 138

™ TABLE OF CONTENTS (continued) PAGE

O
i

9. OPERATORS

. 8.3.2..
-.8.3.3 .
.8.3.4
.8.3.5 .
-8.3.6

9.1 Monadic OperatOrS ceeeesesereveressosssnsonnansonns 144

9.2

9.1.1

.9.1.2
-9.1.3

9.1.4 .
9.1.5
9.1.6

-9.1.7

Dyadic.

. 9.2.1¢

9.2.2

. 9.2.3 .

9.2.4. .
9.2.5

. 9.2.6

9.2.7 .
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12

. 9.2.13

9.2.14
9.2.15
9.2.16

. 9.2.17

9.2.18
9.2.19
9.2.20.
9.2.2]

'INILL ------------ R I R A I I I I A I A I B I 148

TABLE OF CONTENTS (continued) © I o7 LT PAGE
9-2-22 MADD .vecess ss s s s s ess s SO AT, 0 S A AL A]73

9.2.23 MSUB +icvevensnannas R T R R 174

902.24 CR(:16 R N R B R ‘.--.L..,-.-::.:i‘t’-'o:-;'..'.;.-.-]75

9.3 Operations on Sets Cheveseiisessnccnssses 177

9.3.1 Construct a Set from a Subrange:=w.:i.,;..... 178
9.3.2 Operations on Sets Giving a Set as the Re-

SUlt ceheeveans P i vesss N S P RPN S 183

9.3.3 Comarison of Sets I ... 189
9.3.4 Test for Membership of a Set «..ccvvverenen 196

10, INPUT/OUTPUT +urvvonocnasansasanassannsassssossonsabosans 198
10.17 Write Controlceeeusees Sessssesasrsesanaaans 200
10.1.7 IOWC .eounne sesesesss P 200

10.2 Write Word srsessasesans seecensussrassesnuns 201
10.2.71 IOWW. c.vvws teseassans et esssasensscsnannns 201

10.3 General Output s.eeeeevesess N eeees 203
- 10.3.7 TOGO teveesoesssasanssnnsssnsassssesnssnses 203
10.4 Read Status. c.eevvveresssnens Asasedsesesersarsanas 205
10.4.7 IORS cusvsnssscncnsnsnsnnss . tresenasans 205

10.5 Read Word ...seessnsssccsss tideescasssassasecacnne 207
10.5.1 JORW. cevevnennannas D 207

10.6 .General INPUt «e.veveennnss et aeteetetteeetanans 209
10.6.1 IOGI svvvvcancannns PN 209

10.7 .Clear Current. INterrupt. «ceveesveceasossssesansas .. 21
710.7.1 . IOCCT vevvnense Cesscssmssihsrnesoasssteen cee 21
10.8 Execute.Next Instruction After Clearing Interrupt 212
.10.8.7 . IONCI. cvvscsasnans sasen s esineresanananunsbe 212
10.9 Get.Current.Device AJAress (i.vieeseinvesscansnans 213
10.9.7 . IOCDA. wevevanasssans erealessainssresenaas e 213

10.70 Initialize Block Transfer. ... s veeissssscessscnncn 214
10.70.7 TOIBX. e evvencsananasins " seBeresaresentrens 214
10.11 Write Block Of ByteS «cvcsvevacossrorecenonnnsns .. 216
10.77.17 IOWBB cvenserassacsnsnnans Geiareesas e 216
10.12 Write Block of Bytes and Clear 'c..ucectieiriiannnncas 220
10.12.7 IOWBBC seveesosessoosssasannssnassnss ceeees 220
10.13 Write Block Of Words feeisiesessesaarasanan 223
10.13.7 IOWBW vvvvvnvnnannnass cessscateesraraannes 223
10.14 Read Block of Words and Clear sessesvens ves 2206

10.14.7 IORBWC «vcvcvavcnnncannnnas sesenee ceeease. 226

<" TABLE OF CONTENTS (continued) PAGE
... 10.15.Read Block Of ByteS ..ceeserscnnnssscsncssansss .o 229
.270.75.7 IORBB cvsesesunsssanssssassnsossnsas ceeses 230
10.716.Read Block of .Bytes and Clearceveeevesnasnns 233

L laieea -10.16.1 IORBBC «...0v.n ceeraeeann et esesesctastaaeas 233
.10.17 . Read Block Of WOXAS +veveencrecnosssnsacosannssnns 236
- c30.77.1 IORBW cowvovonnnsss sdersesssuEbersananune s 236
-10.18 Write-Block of Words and Clear ..i...eeicececeasanes 239
10.78.7 IOWBWC “uieeceesnsainsenssnnsssrasnsanesas 239

17. MONITOR CONTROL AND SYNCHRONIZATION +covevecnosssossnsss 242
11.1. signal severensnssns seeserssesetttranaranans 249
11.1.1 CSIGN .. AP N . 250

11.7.2 CRELE +eveereesnnssssosossnssssssansssnsaes 251

17.2 Wait cevverereonosossanssssssassnsssssssssssnss eess 252
11.2.7 CSENS tveevnncsanesensvasssasonssssnnsaons 252

11.2.2 CWAIT vvvervnnsnnonss Vesesasesasenesssaans 253

11.2.3. CWTAC sttt enneronnseanssesasassasnancssns 254

11.3 Link/Unlink. e aeeetesue i Niirateenasataessons 255
11.3.7. CLLST vevsnennnes Csssrtesaserenssanssasann 255

11.3.2 CSKIP. tevsvrensennsocansinnaies ceseseesses 256

11.4 Select level tsscseasans Ferssnassinnaansnsns 257
17.4.7 CSELL cvvvennssssnnss teecissieanawannsane 257

11.5 SEOP eeveencraveennns et eeeeetaeeetereen ey 259
11.5.7 CSTOP sevivevonnsasacissinnean “eaes eraaae 259

11.6 Multiple Wait +.ccvvveennnennnn “eesssseasessessanes 261
11.6.1 MCIS .ivvviinnstnnnsses wanae Tereessaaane eeos 261

11.6.2 MCIT s a At et s e dbarenanrtassaanaana 262

17.603 MCIST “v'sbisviessnasisassasaassasisssssonsens 263

11.6.4 MWL cevvrivencnarvene Gesrerssaertesnsanesas 264

T1.6.5 MAT tveeiemossssssosseainassnsnsesasssasssssas 265

11.6.6. MNIS +vvvnenaoasans et eeacsssrrecasasaenens 266

11.6.7 MWIT cvvvvernnnnas e eeaeas tesesesassseass 267

11.6.8 MAST teveiveveensoosssasssesssnnssannnas ... 268

11.6.9 MAIST cvvvevnvsnnsnans Sesttadrnanrsansrans 269

11.6.10. MNTAC, cverernsassnsannnssarsosssnsasonsanns 270

viii

TABLE OF CONTENTS (continued) A Ll PAGE
11.7 TimMe cvvrnneosnenss Gesessetssssrseseens P e s e e e 272
11.7.1 MTIME eeeas cieans ceeareisieaseness 272
11.8 Schedule Next Incarnaticn tO RUN «.cevvesevasssasss 274
11.8.1 SCHED .¢vvvse ceeesseaaan Chersrsseesaasennn 274
11.9 Driver Activationcceeveesessssssosioes vedeeews 275
11.9.17 CSTDR ¢ceeveens Peetseetes sttt enr s nns 275
11.9.2 CSELEV tivvivernennennnnnnss crsvessreiveinsvs 276
11.70 Register Array Operationsvevivveearsdnns. 277
11.70.7 CRGET tvvevnevssncnnasannsssesssncncnnas veos 277
11.10.2 CRPUT ...ovveen Cetesanananns crrederrarianns 278
11.710.3 CRREM .c.vvens S P esesssasseisnss 279
11.10.4 CWRAM Cieisesnslanassnnss ceeans weess 280
11.10.5 CGREG seeswes e s esssas seesnesnans 281
17.70.6 MBTES +evveesvonsnnsnsannnas Cerecrenanenan 282
_ 17.70.7 MBSET +evuuvnnurnnesancsnssansonnns ceeee.. 283
11.711 Push and POp cevvveen eeee A A eeee. 284
111707 IPUSH vevesssonsscsssansssasssssssansssss 284
TT.1T.2 TPOP v evennnvonsenvnssenses veiescaresienns 286
17.12 Lock SURPOTE ceescensessisnssasssaenssscasacsnsnans 288
17.12.1 LIOCK <o vs B P 288
11.12.2 IRESE sevveveronnss S T N 289
INDEXING AN ARRAY .eesaeess ceos seeeeiea cesasens 290
12.1 Range Test T 290
172707 INTRS tevevrenesasosasnnvasnansosnsasanans 290
12.2 IndeXing an AXTAY sceeeessessccsosssssesscsnsansns 292
12.2.7 INDEX tovvnvennsacesannnns crsecvesnnseanes 293
12.3 Push an Element of a Packed AXray ..c.eeeesecescses 295
12.3.1 INPRS Cetesesesecsssaranrrerrraesanans 296

12.4 Pop and Store a Value in an Element of a Packed
AYTAY ceveveecssnsocrscscocscans cesessnassesssasass 298
12.4.1 INPSS Cetesesassesaaeans ceeraresans 299
MISCELIANEOUS sevevsessnsss ceserecssessessctaarsnnanranns 301
13.17 NO Operation ceiveesssssesasssassasssasasanannanans 30
13.7.17 MNOOP civevrecesnncrans Ceeerraretasareanea 301
13.2 Exceptione... B PN ceeseesees 302

13.2.7 MEKEPT cvieeenrtenanctasosansassonsanansnans 302

ix

.. ..TABLE OF CONTENTS (continued) PAGE

13.3 TEAD covoevsrnsensansaasasssssssanas Ceseteresesens 303

g © 13.3.] TRAPE wevvvovoscesasasssetosanssnesssssnsass 303

13\‘3 2 TmPR 8 8 F ® S R 9 S P N S AR S AR B NeEe e L 304

14, INSTRUCTION FETCH +teeccecsocccsasssoccsnss seesessenessneans 305

"15. AUTOLOAD +sevevees ceseesssassansas cetsersere s ettt s s una s 308

0 15.1 Initialization ceesecsscssccsosssncssssnssnsnnscnos .. 309

16. SWITCHES AND INDICATORS ««veveeerasnnrocnanannnneenennns 310

~t . 16.1 Operator Control Panelcceieseverennns eeeses 310

- 16.2 Processor Front Panelciitiinnciscecsssasnrsss 311

16.2.7 SwWitchesS cecesrersevsovsssnes ceeresenstens 312

16.2.2 INAICALOLS ceveeencncnseranasannsnsnnanans 313

16.2.3 JACK ctevesvensescersosnnorsanasnanssansenns 315

16.3 POWEr SUDPPLY +eessesrerssasasensssssssssssssssesns 315

17. DEBUG QONSOLE cevvtsssossacssssnsssnsasssssnsansssesansssnsns 317

17.1 Activation of the Console ...ciiieeercracrsessones 317

. 17.2 Display COMMANAS ceveveosronssssssosrsosssasssnnnss 317

17.3 Control COMMANAS «cveeesocsscccsccasosnssssnsssases 318

17.4 Command Parameters «ceceesesceseses Cesesescsensannn 319

17.5 Connection of the Console ..civeeeenennnss eeeaees 320

r18. ACTUAL INSTRUCTION SET «¢s.. ceessstesssetnaersenansnsean 321

19. INSTRUCTION EXECUTION TIMES .:vvesas tesesresssasesaranas 324
APPENDIX:

A, INSTRUCTION TABLES t.cttecevcsssassanssssssoscssnsnsnens 341

A.1 Instructions Listed by Operation Codecuun.s 341

A.2 Instructions Listed by Namecovvveeenncnnaanns 343

A.3 Instructions, Section Reference ...c.eeeecevsceeses 345

INTRODUCTION

1

.1

The present publication is the Reference Manual for the RC3502
Processing Unit, the building block of the RC3502 Minicomputer
System. The RC3502 is designed primarily for real-time control
applications. Thus the RC3502 is used, for example, as a terminal
concentrator, a front-end processor for general-purpose com-
puters, and a node in packet-switching networks and other com-
munication systems. The RC3502 is programmed in the high-level
language Real-Time Pascal (PASCAL80).

Processing Unit

1

1.1

The processing unit contains a 16-bit ALU. The processor can ad-
dress up to 4M bytes of memory. The processing unit has 124 in-
terruption levels. Each interruption level is connected to a re-
gister set, thereby supporting very fast context switching. The
instruction set is stack oriented and supports communicating par-
allel process incarnations. A number of input/output instructions

control data transfer between peripherals and the processor.

Working Registers

1.2

The processing unit has 124 register sets. A register set occupi-
es eight 16-bit words. Each register set defines a number of mem-
ory references, namely, to a process incarnation stack and to the
current instruction in the program being executed by the incarna-
tion. Each register set is permanently associated with a specific

interruption level.

Interruption System

Because each interruption level is comnected to a register set,
the time required by the processing unit to perform context
switching is reduced to the connection of a new register set to
the control and arithmetic unit. Each time an instruction is ex-

]

1

1.

.1

.1.

1.

1

.1.

ecuted, the register set associated with the interrupt signal on r
the level with the highest priority is selected as the current
register set, and the instruction pointed out by this register

set is executed as the next instructicn.

Instruction Set 1

The analysis of real-time control applications which led to the
extensions incorporated in Real-Time Pascal also influenced the
design of the instruction set for the processing unit. The design
objective was to ensure that operations which are time-critical
in such applications would be supported efficiently by the in-
struction set. These operations include data manipulation, com-
munication between process incarnations, procedure entry and

exit, and context switching (incarnmation scheduling).

The machine instructions can be divided into three groups:

0 Those which support Real-Time Pascal and similar high-level
procedural lanquages (i.e. this group of instructions spe-

cifically supports stack processing).

o Those which support context switching and communication

between process incarnations.

© Those which support the runtime system, I/0, and operations
necessitated by the underlying hardware.

The instructions have a varying length, namely, one byte for the
operation code and zero, one, or more bytes for parameters. The
functicnality of the instruction set is specified by the Base In-
struction Set, which contains the instructions in their longest
form. In order to conserve space and increase efficiency, the Ac-
tual Instruction Set was developed on the basis of extensive
statistical analyses of the way in which large application sys-
tems actually use the instructions and their parameters. The Ac-
tual Instruction Set is obtained by adding to the Base Instruc-
tion Set a subset of the latter in compactly encoded form (i.e.

with fewer parameters).

.1.

1

1.

Input/Output

1

1.

Input/output is the transfer of data between a peripheral and the

physical memory addressable by the processing unit.
The actual transfer is basically performed in two modes:

1. Programmed Input/Output

Here the transfer is performed by the processing unit execut-
ing input/output instructions. The instructions transfer a
" single byte, a single word, or a block of bytes or words be-
tween the peripheral and the address space, possibly directed
by interrupt signals from the peripheral. The peripheral may

interrupt once for every byte or word transferred.

2. Direct Memory Access (DMA).

Here the transfer of data between the peripheral and the ad-
dress space is performed by a controller without interrupting
the processing unit.’ The transfer is initiated by the process-
ing unit. The controller interrupts the processing unit at the
end of the (block) transfer. The controller may access the ad-
dress space by cycle stealing via the backplane bus or may be
equipped with a dual ported memory which is part of the ad-
dress space. In the latter case the transfer to memory may be

performed without interfering with the processing unit.

System Start-Up

System start up can be initiated manually by an operator, auto-
matically from hardware, or from software. Controlled by switch-
es, the built-in memory and processing unit tests are executed.
The registers are initialized, and a jump is made to a boot pro-
gram residing in PROM. This program autoloads programs from an
external device controlled by switches, and includes programs re-
siding in other PROM modules.

1

1

T

.1.

1.

Debugging System

1.

The processor front panel contains five switches, five indi-

cators, and a jack.

The switches control the autoload procedures, the built-in test

programs, and the speed of the debug console.

The current status of the processing unit is displayed on the in-

dicators.

The jack makes it possible to connect a Teletype compatible ter-
minal to the system either locally or remotely via a modem.

The connection is controlled by a microprocessor, which makes it
possible to inspect and modify the memory and registers of the
processing unit and to control the instruction execution of the

processing unit.

Summary of the Hardware System

1

.3.1

This section describes the most important hardware characteris-
tics of the RC3502 Processing Unit.

Basic Physical Unit

1

.3.2

O 16-bit processor with 64K bytes of RAM and 8K bytes of EPROM

memory on 3 circuit boards.

o Backplane bus, power supply, and crate with 16 free circuit-
board slots for additiocnal hardware modules.

Additional Hardware Modules

o 64K bytes of RAM and 16K bytes of EPROM memory.

1.

1.

1

]

30

.3.2

1

.3.3

o 64K bytes of EPROM memory.

0 4-line synchronous HDLC controller (max. 64K bps).

o 8-line asynchronous multiplexer (max. 9600 bps).

© 8-channel I/0 module. For connection of peripheral devices
and front-end processor adapter (for RC8000 computer series).

o Video display controller (for RC850 terminal series).

o Multibus adapter. For connection of RC3502 processing units.

Processing Unit Architechture

o l6-bit arithmetic-logic unit (ALU) built around four AM2901A
bit-slice chips.

© Dynamic MOS memory with a cycle time of 480 ns.

o Up to 4M bytes of directly addressable memory. The basic
memory unit is an 8-bit byte. The smallest addressable

quantity is a byte.

o 124 sets of working registers. Each register set is perma-

nently associated with an interruption level.

o Active process incarnations are scheduled in the processing

unit as follows:

Class I: High priority. Interrupt handler class. Managed
by the hardware interrupt priority mechanism.

Class II: Medium priority. Coroutine class. Internal prior-

ity within the class and round robin for a given

priority.

]

.3.3

1.3.4

Class III: Low priority. Time-slice class. Time-sliced

round-robin algorithm with built-in priority.

The I/0 system supports character-oriented and block-oriented
peripherals. Programmed I/0 between a peripheral and any mem—
ory module can be performed, using, for example, 8-channel
I/0 modules. DMA I/O between a controller and memory can be
performed on a cycle stealing basis via the backplane bus or

via a dual ported memory situated in the controller.

A Teletype compatible device can be connected as both a debug
and an operator console to the front panel of the processing

unit for commnication with the control microprocessor (Intel
8085A) on the internal data hus.

Processing Unit Instruction Set

Stack-oriented instruction set.

Arithmetic operations with twos complements.

Instruction format: 1 byte operation code followed by O, 1,
or more bytes as instruction parameters. Operands, moreover,
can be located elsewhere in memory (e.g. in the incarnation
stack).

Base Instruction Set comprises 177 instructions, including:

push and pop cperations; procedure call and return; uncondi-
tional jumps, case jump, and conditional jumps; ronadic and

dyadic operators and operations on sets; monitor control and
synchronization, including signal and wait operations on

queue semaphores; and indexing of arrays.

I/0 instructions include: read status, write control, read/
write word, initialize block transfer, read/write block of

bytes/words, and clear current interrupt.

1.3.4

o

Addressing: direct or relative to the instruction pointer,
local stack frame, global stack frame, an intermediate stack
frame, or address on the stack.

The memory of the RC3502 is directly addressable. The smallest
addressable quantity is an 8-bit byte. In order to reach the
total address space, an address consists of two 16-bit words.

The RC3502 contains a number of 16-bit words in a 1K register ar-
ray. This array is organized as a mumber of register sets.

The execution of code in the RC3502 is closely related to the
stadk processing of procedural languages. The register set must

therefore support the stack structure as it is represented in

Beyond a number of pointers associated with the stack and the
program code in memory, the designers considered representing the
top of the stack in the register set in order to save memory ac-
cesses. Closer analysis indicated, however, that the cost of ad-
ministering the contemplated "cashe" register would exceed the
saving. The idea of a stack representation in the register sets
of the RC3502 was therefore abandoned.

Each register set occupies eight 16-bit words. There are 124 re-

gister sets. Each register set corresponds to an interruption

The many register sets and interruption levels provide advantag-

es, such as greater efficiency, in the performance of context

2. DESIGN CONSIDERATIONS
2.1 Memory Addressing
2.2 Register Structure
memory .
level.
switching and input/output.
2.3 Instruction Set

An RC3502 machine instruction consists in principle of an oper-
ation part and a parameter list part.

2.1

2!2

2.3

2.4

The operation part occupies an 8-bit byte. This is followed by
zero, one, or more parameters, depending on the instruction spec-
ified by the operation part. Each parameter may occupy an 8-bit
byte, a 16-bit word, or two 16-bit words, depending on the oper-
ation code.

The instruction set is designed to support Real-Time Pascal and
similar procedure-oriented high-level programming languages, i.e.
the instruction set specifically supports stack processing. On
the other hand, support is also provided for the basic runtime
system, so that linking and unlinking, for example, are effi-
cient. Finally, the instruction set supports operations necessi-
tated by the underlying hardware (e.g. initialization of register

sets).

The instruction set is divided into a Base Instruction Set, or

BIS, and an Actual Instruction Set, or AIS.

The BIS specifies the functionality of the set, and contains the

machine instructions in their longest form.
The AIS contains, in addition, a number of machine instructions
each of which corresponds functionally to an instruction in the

BIS, but has a shorter form (fewer parameters).

The AIS is constructed on the basis of statistical analyses of
the generated code in the BIS from a large number of programs.

Input/Output Structure

Particular emphasis was placed on the design of an efficient and
versatile input/output system, because the RC3502, like most
minicomputers, is used in real-time control applications, where
I1/0 capability has a profound influence on total system effi-

ciency.

The input/output system supports character-oriented as well as
block-oriented devices. Moreover, the RC3502, equipped with in-

2.4

2.5

10

telligent device controllers, facilitates direct maltibuffered
memory I/0, independent of program control when first initiated,
and thereby supports input/output at high rates.

The RC3502 has a large number of I/0 channels, on which any of
these operations can be performed, depending on the devices con-
nected.

Character and block operations are under program control, and
whenever a character or block is ready for transfer, an interrupt
signal is generated. Each interrupt signal is associated with a
register set. The direct connection between the interrupt signal
and a register set minimizes context switching time. The I/O
channels with interrupt signals and register sets may be arranged
so that high-speed channels have priority over low—-speed chan-

nels.

The register set associated with a certain interruption level has
priority over register sets associated with lower interruption
levels. Therefore, processing of input and generation of output
should ke performed at the lowest level so as not to block the
I/0 system.

Intelligent input/output controllers based on microprocessors
step up throughput in RC3502 systems by relieving the RC3502 pro-
cessor of time-consuming control tasks. In such a configuration,
all communication between the RC3502 processor and the controller
is handled through a section of dual-port memory that resides in
the controller subsystem. This setup allows more efficient trans-
fer of large blocks of data from the I/0 device to the system
without contention over access to the backplane hus. It also sim-
plifies interprocessor communicaticon because the subsystem con-
troller appears to the RC3502 as an additional RAM board.

Modularity

The RC3502 is constructed in a modular fashion. Upgrading in the

form of additional memory capacity, controllers, and miltiplexers

2.5

11

is accomplished by inserting the relevant modules in the 16 free
positions in the RC3502 module crate.

The technology employed is based on contemporary state—of-the-art
electronics, including fast bit-slice chips and 16K memory chips.

The crate used in the RC3502 is a standardized mechanical unit,
prepared for double Europe boards (DIN NORM 41494). This ensures

stable deliveries, proven design, and great flexibility.

12

COMPUTER ORGANIZATION

3.]

Processing Unit Architechture

3.1

For details, refer to fig. 1, microprogram structure and fig. 2,

internal bus sources and destinations.

The RC3502 processing unit, or PU, is built around an internal
data bus (bus 0-15) as shown in fig. 2. This bus is interfaced to
the backplane bus, working registers, control microprocessor, and
register ALU, a 16-bit arithmetic-logic unit based on four
AM2901A CPU bit-slice chips.

The flow on the internal data bus is controlled from the RC3502
microprogram, which implements the various features of the pro-
cessing wnit, and is physically contained in a read-only memory
of 2048 60-bit words. The execution time per microinstruction is

217 nanoseconds.

A word in the microinstruction contains the following informa-

tion:

Bits Interpretation

00-03 microprogram sequencer cammand
04~07 condition select

08-15 register ALU register select

16-26 register ALU

27-28 carry load control

29-31 working register address select
32-37 bus source and destination control
38-49 micramachine manipulation cperations
50-59 next address field

13

NOTLLYNLLSHIA SHIHNOS SNd

L
TCILNOD | | QL S NOLA
WD | | “OdOIW HIHIO

L

L

JIHIO

q30 p—

HALSTIOHT ANTTIdId

| 1

,Fm. 48| ssmiaav
ONWIE

AdOWIW WEIDOIdOIDIN LIF-09 X MZ

0L-0 UYW

TOALLNOD
LSHL NOLLIANOD -

YAONANOAS |
WO d
~OdOIN L06Z WV
LOEA NA L

d¥iW NI L
ANTTIAId Nd L

|

| 0L‘6 IVW IXN

01-6-9-G ¥4I

SNLYLS dTNAOW £

TCLLNOD CHOIW ONgdd

d0

NOTLYO|
~IATAOW
SSHIAay

OYOIN

TYNOTL

-IaNOD

01L-0 ¥VW LXN
Q50 dyW
SSRIAAV ONLIMVLS
NOLLORLLSNI

INYLSNOD Gl-8 d1 b0
_ a1

N L

#0004 {aaoodo

HALSTOHY | NOLLO(MLSNI
11

L OSSADRIdOIOTH

SNLVLS JINAOW 9
AU 380 O9AZ)
SNLVLS NIV

S1-0 Srd 91

Figure 1: Microprogram Structure.

)

SHHOLIMS TANVd LNOYA

L) [] [] []]
RO/ NOIS ONTYRIOM
0l-6 dI
AIONAH JO S14AS bz L
SMOLYOIANT ._N WO
ANV ~OMOTW WU LM
INMI AL Moo TOSINOD oM
LJATHS VAAY STIM M
AU/ z M
R O) q
Wl SALAC M &
967 - 0 ;|
TOLINDD JMOd by d L4 m
GG L8 TAINI |.m Sy 05 oM 4
=0 g M 0
WON A SHOTIS II4 v 2
SALAL M TV YALSTOR] 9-G uI M
Y1062 WY 9O - GM .m
x RICWIW ST M o
vS808 IO YINa NI VIV | iiooodd OMDIW R TSRIOM "0 3
T WOMd NOT.L H
OSSAORd ﬁ ~OMIISNI FDIIS M 3
~MOTH CINGLICT gL-9 M n
V5808 TAINI ﬁ \DTS o WRISNIA &
snd DINLOMLS —
@ D Wgoodd g
&< 7 - ~ =D o
TT Y siosm S nd QIVOEND -TW oH_m
AORTT Ebﬁm THOTY[e R A
E_HQLA o~
1 xLhMvd Sod -
ORI ALV LT P TAATIASH ATARISH 0
ot 7] -8 1o ANV IOV LIITIN 7 | ANVIGOvE P T L m,
7S :
o
4

ALTYYd € - S1-0 S0d L

0L

TISAOW L

3.2

15

Backplane Bus

For details, refer to fig. 3, backplane bus structure.

The backplane bus is used to interconnect the various kinds of
modules in the RC3502 camputer family.

This bus is normally controlled fram the processing unit, for
comunication between the latter and memory or I/0 devices, but
there are facilities on the bus which enables other masters to
request its use. When the processing unit acknowledges such a

request, the bus becames available to the requesting device.

The backplane bus contains 16 data lines and 8 module address
lines. The latter are used to select a source or destination re—
gister in a memory module or an I/0 device. The data transfer is
initiated by a READ or WRITE pulse.

As the backplane bus is asynchronous, the processing unit can ex-
tend READ and WRITE wntil the addressed device acknowledges the

operation by XACK.

When the processing wunit reads or writes in memory, the address

is sent in one backplane bus cycle and the data in the next.

The transfer rate on the backplane bus is 5 MHz.

3.2

VIVA L ‘ALTIM L ‘avd L

THOV d'TOH TOALNOO
P8t ONIIVHLS
amoH dTIOAD YR

STYNOIS STOULNOO

- - SNLVLS
- ILOHTAS A INAOW
1-0 4OT‘L~-0 TASW L 11 ANY'Id Snd
|| UV L a1 L
B f} si-o0sna ¢ SIH
G 0l 1
0 v, 4 4 A 4 m
| b
—= g
143]
[0}
W &
STAAAT ©
IAMRNAINI 8 WId SALAL Mp9 TINAOW m
SAOIAAA O/I 8 Wed SALAD MF9 LINN m
TINAOW O/I TIAOW XIOWIN ONISSHOd o
™M
]
SAINAOW O/I STINAOW w
91 OL dn RIOWIW 91 OL dn [
STINNYHD 8

3.3

Control Microprocessor

l3

An Intel 8085A microprocessor system is connected to the internmal

data bus of the processing unit. The microprocessor interfaces

the switches, indicators, and console jack described in chapter

16 to the processing unit.

3.3-]

17

If a Teletype (TTY) campatible device is connected to the micro-
processor system, the former can be used as a debug console for
the processing unit, enabling the operator to examine and modify
the contents of memory locations and working registers as de-
scribed in chapter 17.

The TTY can also be used as an operator console, by employing
instructions that work on the micramachine RAM.

The following subsections describe additional functions incorpor-
ated in the microprocessor system.

Variable Array

For details, refer to fig. 4, control microprocessor RAM layout.

The variable array is a RAM memory area in the microprocessor,
which can be accessed by the debug console cperator using the
camand Y <yaddr> described in section 17.2. A copy of this RAM
area is kept in the RC3502 mamory; whenever the microprocesscr
writes in the area or the microprogram writes in its copy, an
update communication takes place between the microprocessor and

the microprogram.

3.3.1

18

RAM addr RTC level

TTO level

TTI level
timer low]
timer high
watchdog low]
watchdog high
TTI input

TTO output
version number
switches 0-7
switches 8-F

OWpPpwoJdolbwNh —=0O

unused

1B
1C | RAM module

1D | configuration
1E | EPROM module
1F | configuration
20

unused

3F

Figure 4: Control Microprocessor RAM Layout.

3.3.2 Real-Time Clock 3.3.2

The value of this timer is placed in RAM addr (4, 3). The step
value of the timer is 2.5 milliseconds. When the timer counts
down to 0, an interrupt is sent to the level placed in RAM addr
0. The default value of addr O is level |. The dafault value of
addr (4, 3) is (0, 8) corresponding to a timer value of 20

milliseconds.

3-3.3

19

Console (TTY) Commnication 3.3.3

3.3.4

Cammunication with the Teletype (TTY) campatible debug console
occurs on two interruption levels, cne for input (RAM addr 2) and
one for cutput (RAM addr 1). RAM addr 7 and 8 are used as data
buffers. After power up, RAM addr 1 and 2 are undefined.

Watchdog 3.3.4

3.3.5

This timer counts down fram the value placed in RAM addr (6, 5),
and if 0 is reached, the microprogram is cammanded to execute an
autoload. The step value is 2.5 milliseconds. The default value
of RAM addr (6, 5) is (0, 0) corresponding to a disable of the
watchdog function.

Configuration 3.3.5

After power up, the microprocessor tests the current RC3502 hard-

ware configuration for RAM modules and EPROM modules, and gener-
ates a configuration table in its own RAM area.

RAM Configuration

The RAM mocule configuration bit map is placed in microprocessor
RAM addr (1C, 1D) with the following layout:

MODULE NUMBER
1C: 0 |1 213141567
1D: 8 | 9/ A|B|C|D|E|F

If a module exists, a 1 is placed in the corresponding bit posi-
tion; otherwise a 0 is written.

EPROM Configuration

The EPROM module configuration bit map is placed in microproces-—
sor RAM addr (1E, 1F) with a layout like that of the RAM con—
figuration. The existence of an EPROM module can ke detected only
if the first address (word) in the memory module contains the

value AAAA .
Hex

3.4

20

Interruption System

A program interruption feature permits automatic switching from
the current program sequence to ancther mogram sequence in in-
mediate response to specific external and internal events. The
efficiency of an interruption syéten is directly related to the
time required by the processing wnit to perform such context
switching. In the RC3502, therefore, a set of working registers
is associated with each interruption level, so that context
switching is reduced to the connection of a new register set to
the control and arithmetic unit. This is illustrated by fig. 5,
interruption system.

MEMORY

O N B
=S wWwuwu -

TR

CONTROL AND
ARTTHMETIC UNIT

I

3.4

A

PRIORITY SELECTION NETWORK

| I

—

register
set: 0 124

interrupt
level: 0 1 124

Figure 5: Interruptiocn System.

3.5

21

The priority selection network contains a 128-bit interrupt re-

quest register, IR, which can collect incaming interrupt signals:

1 1] L]

0 1 2 124

A 1 in a bit position corresponds to an interrupt request, and
bit n corresponds to interruption level n. Bit 0 in the IR re-
gister is exceptional insofar as its value remains 1, which is

equivalent to a permanent interrupt reguest.

The priority selection network is distributed to the I/O modules
placed on the backplane bus. A priority chain, starting with
highest priority nearest to the processing unit circuit boards,
defines the selection network.

Simultaneous interrupt signals are served in the order of their
priority, and the signal which is connected to the highest num—
bered bit in the IR register has the highest priority. I/0 de-
vices with high transfer rates should therefore be placed nearest
to the processing unit. If all incaming interrupt signals have
been served and no new request arrives, interruption level O is
autamatically selected.

Input/Output

The RC3502 has three forms of input/output:

1) Serial transfer using I/0 modules (i.e. circuit boards for 8
I1/0 channels each).

2) DMA (direct memory access) transfer directly via the backplane
bus.

3) Dual-port memory on an intelligent controller.

3.5

22

3.5.1 Serial Transfer 3.5.1

A peripheral device is connected to the processing unit by means
of a 4 pairs cable, which is transformer coupled at both ends.
This ensures high noise immunity.

The transfer of data is performed in serial mode regardless of
whether the connected device is serial or parallel. The data word
transferred consists of a 4-bit header and fram 0 to 16 data

bits:
HEADER DATA
1] | T717](0tol6 data bits) |
The header contains the following information: -

TRANSFER FROM PROCESSING UNIT TO DEVICE

Output 1100101 read data
Header 1 0 1 1 read status

1 1 0 1 write data

T 111171 write control

TRANSFER TO PROCESSING UNIT FROM DEVICE

Input 1100011 16 bits (word)

Header 1 011 1 BOI (end of information)
1 11011 8 bits (byte)
1 1 1 1 not used

In principle each device contains four 16-bit registers: one
status register, one control register, and two data registers
(one for each direction of the flow). In a given device, however,
cne or more of these registers may be anitted, same may be can—
bined into cne register, or the register size may be reduced fram
16 bits right down to 1 bit. The processing unit initiates an I/0
instruction by selecting the I/O cable leading to the device ad-
dressed, whereupon the data is transferred.

——

3.5.2

23

PROCESSING UNIT

I/0 CHANNELS

) status
e [
] @t in
L[] Gata out

PARAILFI, DEVICE

Figure 6: Device connected by I/0 Modules.

Camunication may be initiated either by a mrogram or by an in-
terrupt fram a device. An interrupt is detected on the data line
when a 1 bit is sent to the processing unit and it has not re-
quested data.

The data flow between the processing unit and the four device
registers is illustrated by four general I/0 instructions: read
status, write control, read data, and write data. These instruc—
tions describe the possible pattern of execution for the I/0
channels and the device controllers. Specific details about the
storage of data are given in chapter 10, where the I/O instruc-
tions are defined.

DMA Transfer

By using the DMA facilities in the backplane bus, an interface
with a high transfer rate, e.g. a high-speed cammmnication con-
troller, can transfer data directly between the peripheral eguip-
ment and the RC3502 memory. When the interface wishes to use the
backplane bus, it sends a request to the processing unit, which
releases the bus at a suitable moment. The interface then has
access to all backplane signals.

3.5.2

24

To eliminate the need for requesting the bus, it is possible to
use dual-port memory an a controller, i.e. both the RC3502 pro-
cessing wmnit and the controller are able to read and write in
this memory. The RC3502 processing wnit is not interfered with
when the controller uses the dual-port memory.

The RC3502 processing unit contains a register array og 1024 16-
bit words, which is organized as a nunber of working register

sets and an area that 1is used as a working memory by the micro-

3.5.3 Dual-Port Memory

3.6 Register Array
machine.

3.6.1 Working Registers

The register array contains 124 sets of working registers. Each
set camprises eight 16-bit words.

The first two bits of the 7th register in a register set define a
state.

A register set is in one of three states:

1) Normal mode; when the register set is used to execute instruc—
tions except block input/output instructions.

2) Block I/0 mode; when the register set is used to execute a
block input/output instruction.

3) Dummy mode; when the registei set is unused.

3.5.3

3.6

3.6.1

25

3.6.1.1 Normal Mode 3.6.1.1

The structure of the register set in normal mode is as follows:

IM | maximum stack displacement
PsS | flag bits

PB | global frame pointer base
LU | last used byte pointer disp
SF | local frame pointer disp
PR | glcbal frame pointer disp
IB | instruction pointer base

IC | instruction pointer disp

The register set consists of a number of memory references, a

word for administration of the stack overflow check, ard a word
containing various flag bits. The memory references are closely
connected with the RC3502 implementation of the Real-Time Pascal

program and process incarnation concepts.
There are three references to the process incarnation stack:

- global frame pointer (PB, PR)
- local frame pointer (PB, SF)
- last used byte pointer (PB, LU)

The is also a reference to the current instruction in the program

being executed by the process incarnation:

- instruction pointer (IB, IC)

Each register set is associated with an interruption level. Level
0 is always set. Each time an instruction (or step in an inter-
rupable instruction) is executed, the register set associated
with the interruption level having the highest priority is se-
lected as the current register set, and the instruction pointed
out by this register set is executed as the next instruction (or
step in an interruptable instruction) in the runtime environment
defined by the register set, program, and process incarnation
stack (see further chapter 4).

26

The IM word in the register set is used in conjunction with run-
time checking of stack overflow, which is performed autcmatically
by the microprogram. If the execution of an instruction will
cause stack overflow, the process incarnation is activated in-

stead in its exception routine (see section 13.2).

The PS word in the register set contains a nunber of flag bits.
The structure of this word is as follows:

0O 1 2 3|4 5 6 7]8 9 10 11]12 13 14 15
[X]s]X X X X X[wW A I T]JrsM X |10 [BOI]OVH

X Not used.
S Statistics (reserved).

WAIT Used by multiple wait instructions to define the cause of
waiting and the stack contents.

bit 10: interrupt wait cause

bit 9: semaphore wait cause

bit 8: timer wait cause

bit 7: write control version of interrupt wait

RSM Resume. Used by set instructions to indicate that execution
has been suspended by an interrupt with a higher priority
and that the stack format is special.

TO Timeout. Indicates timeout and prohibits clear-interrupt
functions in I/O instructions.

EOI End of information. Indicates whether the last I/0O read/
write data function received an EOI status fram a device.

OVF Overflow. Used to control the arithmetic overflow excep-
tion. A 1 bit causes suppression of this exception.

27

In Real-Time Pascal notation, a register set is a variable of

register set type defined by the following type declarations:

word = 0..65535;

bit = 0..1;
nibtype = PACKED RECORD <* this type is used in normal mode *>
mode : 0..3; <* mode = 0 *>
unused : 0..31;
onebit : bit; <* one *>
menkind : bit; <* zero for external memory,

one for internal *>
module : 0..31; <* module nuamber *>

zercbit : bit; <* zero *>
END;
bibtype = PACKED RECORD <* used in block I/0 mode *>
mode : 0..3; <* mode = 2 *>
unused : 0..15;
const : 0..7; <* const = 6 *>

instr : 0..127; <* instruction value *>

END;
dibtype = PACKED RECORD <* used in dummy mode *>
mode : 0..3; <* mode = 3 *>
rem : 0..16383; <* rem = 16383 *>
END;

pstype = PACKET RECORD
unused : bit;
statistics : bit;
unused : 0..31;
wait : 0..15;
resume : bit;

unused : bit;

to : bit;
eol : bit;
ovf : bit;

END;

3.6.1.2

28

register set type = RECORD <* this type is used in normal mode *>

1m : word;

ps : pstype;

pb : basetype; <* see 3.7.1.1 and 4.2.4 *>
lu : word;

sf : word;

pr : word;

ib : nibtype:

ic : word;

END;

Block I/0 Mode

When a register set is in normal mode, and the register set IBE,
IC points at a block I/0 instruction, the following changes are

made in that set after instruction fetch:

1st, 2nd, 4th, 5th, 7th, and 8th registers are dumped.
1st register is changed to last + 1.

4th - - - - next addr disp - 1.
5th - - - - next addr hase.
7th - - - - bib.

8th - - - - count.

The indication in bib shows that the register set is now in block
I/0 mode.

An interrupt to a level where the register set is in dumy mode
will have the effect:

clear the interrupt

goto instruction, e.g. use of information on bib

execute the I/0O code

if the I/0 instruction is finished, reload the register set,
i.e. the register set is set to normal mode again

3.6.1.2

3.6.1.3

29

fetch the next instruction

In Real-Time Pascal, the structure of a register set in block I/O

mode notation is as follows:

register set type = RECORD

top : word;
ps : pstype;

pb : basetype; <* see 3.7.1.1 and 4.2.4 *>

nadrd : word;
nadrb : word;

pr : word;

ib : bibtype;:

count : word;

END:;

Dummy Mode

In Real-Time Pascal notation, the structure of a register set in

dumy mode is as follows:

register set type = RECORD
unused
unused
unused
unused
unused

unused

-

word;
word;
word;
word;
word;

word;

dib : dibtype;
unused : word;

END;

It is also possible to set a register set to dummy mode during
the run. A register set in dummy mode belonging to a specific

level will perform no instructions. If an interrupt arrives to

‘After autoload, all register sets are set to dummy mode.

3.6.1.3

30
such a level greater than zero, the effect will be:
clear the interrupt indication to that level

write the level in the dummy register "dummy intr last" (see
subsection 3.6.2.4)

increment the counter in the dummy register "dummy intr last"
(see subsection 3.6.2.4)

3.6.2 Micramachine Working Area 3.6.2

Besides the 124 register sets, there are 32 registers which are

used as a micramachine working area. ~

The 32 registers may be seen as 4 register sets.

3.6.2.1 Monitor Register Set 3.6.2.1

The address of the first register in this set in the W register
array is 3EO. The structure of the register set is as follows:

3E0: actg base ; active queue hase
3El: actg disp ; active queue displacement

3E2: n -
3E3: m ; priority selectors

3E4: k

3E5: nxt ; working register during scheduling

3E6: dlc msb
3E7: dlc 1sb

~e

dummy loop counter (32 bits)

This register saet is used to select among coroutines and proces-
ses running at level 0.

actq base, actq disp points at an array of addresses of corou-
tines and processes. n, m, k, and nxt are pointers to the active

3.6.2.2

3

queue used to select the next process (see the instructions

SCHED, CSTDR, and section 3.7).

dlc msb, dlc 1lsb is a 32-bit counter, which is incremented by one
when the microprogrammed scheduler has found no process to start.

After autoload, the entire register set is initialized with ones.
This forces the scheduler to perform a dummy loop. The scheduler
is started when the monitor initializes all registers by means of
the instruction OCPUT.

In the running system, the scheduler is initialized by SCHED. The
use of the pointers is explained in section 3.7.

COMB085 Register Set

This register set is used for communication between the control
microprocessor and the micromachine. It is addressed as 3ES

through 3EF in the W register array.

The contents of the register set are:

3E8: fifo56 ; 6-byte FIFO buffer
3E9: fifo34 ; used to save parameters in
3EA: fifol2 ; communication with the

control microprocessor
3EB: COW ; 2-byte buffer used by the
instruction CWRAM

3EC: dummy ; unused 16-but register
3ED: messcode ; code used after parity error
message

3EE: messbase H
base and displacement
3EF: messdisp :
of word with parity error,
to the control microprocessor.

3.6.2.2

This register set is used as a working area by the micramachine.

32

Its use varies according to the instructions that use it. The

registers are addressed as 3F0 through 3F7 in the W register

array. The process synchronizing instructions use the registers

-8 e ~e 8 ~8 ~e ~a

-e

last base b

addr ref variable
last bhase a

addr mess

last displacement b
addr ref variable
last displacement a

addr mess

The registers are defined only within one instruction.

3.6.2.3 Working Register Set
as follows:
3F0: 1dbb
3F1: shptr
3F2: 1dba
3F3: share
3F4: 1ldbb
3F5: shptr
3F6: ldba
3F7: share
3.6.2.4 Dummy Register Set

The addresses of this register set in the W register array are
3F8 through 3FF, and the use of it is as follows:

3FD:

3FE:
3FF':

breakp hase
breakp disp
puerrmsk

: breakp mode

dumy intr last

dummy intr count

parity error hase
parity error disp

~e

~e

-s

e

~e

address used in breakpoint mode

breakpoint mode

save of level in dummy nmode
after interrupt

count of interrupt on level
in dummy mode

address with parity error
saved when the instruction
READB or READW detects a
parity error

3.6.2.3

3.6.2.4

3.6.2.5

33

Breakpoint Mode

When the machine is in stop mode (after an "s" cammand to the
control microprocessor, see section 17.3), the dumy register set

can be used as a breakpoint facility:

if breakp mode (W3FB) is set to a value > O then the micramachine
will do:

repeat
exec one instruction

value := value - 1
until value = 0

It is also possible to set breakp base, breakp disp to point at
an address by using W3F8, W3F?2 fram the control microprocessor;

then:

if breakp mode < O then

repeat
exec one instruction

breakp base AND
breakp disp

until instruction pointer hase

instruction pointer disp

In this case it is possible:

1) either to reset breakpoint mode by resetting breakp mode

2) or to execute cne or more instructions by means of the "s"
cammand:

then
repeat
exec ane instruction

I

breakp base AND
breakp disp

until instruction pointer hase

H

instruction pointer disp

The tested instruction pointer base and instruction pointer disp
is the instruction pointer at the level that is currently
running.

3.6.2.5

3.7

34

Data Formats and Structures

3.7.1

Basic Formats and Structures

The RC3502 has a number of basic data formats with corresponding

data structures on which the instructions cperate.

Fundamental to all structures are the quantities 8-bit byte,

16=bit word, and 32-bit double.

Byte n Byte n + 1
© 710 7

[0 15
DOUBLE

31]

Figure 7: Byte, Word, and Double.

3.7

3.7.1

35

3.7.1.1 Addressing 3.7.1.1

Addressing of the memory is done by means of byte addresses,
which can be regarded as being rumbered in succession fram zero.
An address occupies two 16-bit words, starting at an even address
(a physical word address) and with the following structure:

Address:
012 78910 14 15
base @ |- ----= 1 0
displace-
ment
Mem. no:
memory module
number: 0..31
Internal/external
memory: 0.1
Urused
Nil_bit: 0.1

Lock_bit: 0.1

Word

Figure 8: Memory Address.

3.7.1.2

36

Nil bit and lock bit are status bits, used by sane of the in-
structions to ensure data security.

Data structures are addressed by the byte with the lowest ad-
dress, except the following data structures (system types), which

are allocated in the memory to start at an even byte address:

- Incarnation descriptors are addressed by odd byte addresses
(see subsection 3.7.3.1).

- Activation records are addressed by odd byte addresses (see
subsection 3.7.4).

Chain and Queue Structures

In the RC3502 there are two fundamental chain structures. In con-
nection with queue semaphores and active queues a number of ad-
dresses with the following structure are used:

head last first secord > --=—=—-

Figure 9: Chain Structure.

Elements are inserted and removed as in a queue (FIFO).

A chain has the following states:

- BEmpty: Nil-bit in the head has the value 1;

- Chain of messages: Even byte address and nil-bit = O;

- Chain of incarnations: 0dd byte address and nil-bit = O;

3.7.7%2

3.7.1.3

37

Also used is a single chained linear list of elements containing
a pointer field. The offset to the pointer field is chain de-

pendent.

1] e
= next / next /

Figure 10: Single Chained Linear List.

Additional Structures

3.7.2

Additional data structures derived fram the following functional
characteristics of the implementation of Real-Time Pascal on the

RC3502:

- Cammunication

- Dynamic process structure
- Stack oriented execution
- Process execution

- Range testing and indexing

The following gives a short description of the additional struc—
tures known by the microprogram (i.e. firmware and hardware).

Camumication Structures

3.7.2.1

Process incarnations cammmicate by means of message passing sup—

ported by queue semaphores.

Messages

A message consists of a message header ard a data part (possibly

nil

3.7.1.3

3.7.2

3.7.2.1

empty). The format

message header

is shown below:

chain

message kind

size

st of data

owner

answer

msg-chain

stack-chain

ul

u2

a3

ud

Figure 11: A Message.

data part

size in
words

3‘7.2.2

39

The format and meaning of the individual fields are explained by

the following Real-Time Pascal notation:

message header =

RECORD
chain: addr ; (* used for chaining the message into
semaphore queues *)
message kind: word ; (* either a data message with allocated
size > 0 or a channel message *)

size: word (* size in words of the data part ¥*)

-

start: addr ; (* data part address *)

owner: addr ; (* address of the owner semaphore *)
answer: addr ; (* address of the answer semaphore *)
message chain: addr ; (* chain field for the chain of messages

allocated to a process_incarnation ¥*)
stack chain: addr ; (* chain of stacked messages, maintained

by push and pop instructions ¥)
ul,u2,u3,ud4: byte ; (* user parameters *)

END; (* message header ¥*)
With messages as elements, a stack structure of messages can be

formed. (The stack chain field is used). The instructions LPUSH
and LPOP are used to manipulate this stack (see section 11.12).

Semaphores

A semaphore is actually a chain head with the status:

- Passive: Empty queue head.
- Open: The chain is a queue of messages.
- Locked: The chain is a queue of waiting process incarna-

tions.

last first
message message
E{ha%n chain Cchain " cecicossen i

Figure 12: A Semaphore (Open State).

3.7.3 The Process Incarnation Stack Descriptor
Several incarnations of a process can be executed. These incarna-
tions are fully dynamic and controlled by a number of data struc-
tures, of which the following are so fundamental that single in-
structions operate on them.

3.7.3.1 Process Incarnation Stack

The execution of a process incarnation implies the existence of
an incarnation descriptor, which is a data structure explained in
Real~-Time Pascal notation as follows:

incarnation descriptor =

RECORD

chain: addr (* chain field for semaphores and

active queues *)

~e

~e

not used: byte

level: byte ; (* current interruption level for the
incarnation *)

incstate: integer : (* state may be start, stop *)

msg waited: addr ; (* address of reference; defined only

when the incarnation is waiting
for a semaphore *)

3.7.3

3.7.3.1

e

3.7.4

41

(* address of active queue in which
an incarnation is chained when ac-
tive *)

chainhead: addr ; (* address of the queue in which the

incarnation is currently chained *)

activequeue: addr

~e

exception mask: integer (* exception mode when a runtime ex-

ception occurs *)

exception point: addr (* address of the exception routine

to be called if an exception
occurs *)

exic: addr (* instruction pointer base and dis-—

~s

placement stored here prior to en-
tering the exception routine *)

dumplm: word ; (* Gump location for 1lm register *)

dumpps: word ; (* dup location for ps register ¥*)

dumplu: word ; (* dump location for lu register *)

dumpsf: word ; (* dump location for sf register *)

entry point: addr ; (* dup location for instruction
pointer *)

timer: integer ; (* timeout counter used for timeout

interrupt service *)
maxstack: word
END:;

(* maximum value of the lu register *)

-

Structures Depending on Stack Oriented Executiocn

The RC3502 is a pure stack machine, in which processes are ex-
ecuted in connection with an evaluation stack for each incarna-
tion. This evaluation stack is, in fact, placed in continuation
of the incarnation descriptor. When a process incarnation is ac-
tive, the current register set will contain three pointers to the
incarnation stack:

- Global frame pointer (odd address), which points cut the

start of the incarnation descriptor.

- local frame pointer (odd address), which points ocut the
start of the current frame (i.e. routine) in which expres-

sions are evaluated (activation record).

3.7.4

3.7.5

42

- Last used pointer, which points out the last used byte on
the evaluation stack.

These structures are further described in chapters 4 and 7.

Structures Deriving from Process Execution

Each time an instruction has been executed (under certain cir-
cumstances, steps in an instruction), the next instruction to be
executed is selected. This may involve a switch to a new process
to ke executed.

The scheduling of process incarnations is done by hardware in

three classes with mutual priority:

- Class I: Scheduling by interrupt. The interruption levels
are with mutual priority. The incarnations are

executed on levels greater than O.

- Class II: Scheduling of incarnations with internal priority
and round robin for a given priority. Class II
incarnations are executed on interruption level =

0 (as coroutines).

- Class III: Scheduling of incarnations with internal priority
and time-sliced round-robin for a given priority.
Class III incarnations are executed on interrup-

tion level 0.

Class I scheduling does not cause further data structures. Class
II and class IIT scheduling take place as a co-operation between
the SCHED instruction, the cammmication instructions (signal,

wait ...), the instruction fetch, and the contents of the monitor

register set.

3.7.5

Hex addr
0
1
i
]

3EQ
3E1
3E2
3E3
3E4
3ES
3E6
3E7

3FF

W-register array

with minitor reg. set

atcq(0) hase

43

atcqg(0) disp

n

m
k
nxt

Gurmmy

/-/
s e

loops oounter —

Figure 13: Scheduling Structures.

Active quene

array (m.m.) of addr

— queue

L— queue

k in the monitor register set defines that the array of active

queues is to be scanned in the following sequence to find the

next incarnation:

n, n"]o 11"2, L) 0: kl‘ "]t ‘2r

cesr KH1, k-1,

.oy m

nxt is a variable used to point cut where cne is in the above se-
quence. nxt is reset to n before scheduling. By letting the cper-

ating system vary k after the expiration of each time-slice per-
iocd, cne ocbtains a time-sliced class III scheduling, where prior-

i
ity group i (m < i < 0) is guaranteed scheduling at least each 2

time-slice period.

Queue n, n=1, ..., O is used in the class II scheduling (corou-
tines). Dummy looping takes place if n = -1 or if nxt = m-1.
Dumyy looping will imply incrementation of the dummy loop
counter, which should be regarded as an unsigned 32-bit integer.
Consult chapter 11 for a description of the instruction SCHED.

44

3.7.6 Structures Deriving from Range Testing and Indexing
In connection with subrange testing, array indexing, and cper-
ations on packed arrays (i.e. load, store), three data structures
have been defined:
- Range descriptor (INTRS)
~ Dope vector (INDEX)
- Packed dope vector (INPRS, INPSS)
These structures are described in chapter 12.
3.8 Number Representation

The RC3502 has signed, unsigned, and modulo 64K arithmetic on 16-
bit words. Used unsigned or modulo 64K, a word is regarded as an

integer in the range:
0 < unsigned integer word < 65535
Used signed, a word is regarded as an integer in the range:
~32768 < integer word < 32767
Signed arithmetic is in twos camplement form with bit 0 as the
sign bit, with O for positive integers and 1 for negative inte-
gers.
Range violation as a consequence of signed or unsigned arithmetic
operations will result in an exception indicating arithmetic

overflow/underflow.

Modulo 64K arithmetic operations will not cause such an excep-

tion.

3'7.6

3.8

45

BASE INSTRUCTION SET

As described in section 2.3, the Base Instruction Set, or BIS,
specifies the functionality of the instruction set for the
RC3502. The BIS contains redundancy in the sense that a sequence
of instructions may have a single instruction as its substitute.

Runtime Environment

The execution of an RC3502 machine instruction presupposes a cer-
tain environment. An important part of this environment is a num-
ber of stacks, one for each process incarnation. The stack for a
process incarnation is allocated as a consecutive number of bytes

within a single memory module.

A stack contains one stack frame for each uncampleted routine
call. A stack frame is a number of consecutive storage locations.
The stack frame contains the parameters and the local variables
for the routine call.

A stack frame includes the following areas:

1) Actual parameters

This area contains the values or the addresses of the actual
parameters for the routine call.

2) Anonymous parameters

This area contains the information needed to access non-local
objects fram the body of the routine (static link) and to
return fram the routine call to the point of call (dynamic
link and return address).

3. Local objects
This area contains the storage locations of the objects (e.q.
variables) declared in the body of the routine.

46

To facilitate access to cbjects in the stack, the register sets

of all process incarnations include the following three regis-—

ters:

. Global frame pointer (GF)

This pointer contains the address of the second byte of the
stack frame at the bottam of the stack (i.e. the stack frame
which belongs to the cutermost block level of the process).
The first part of this stack frame is the incarnation descrip-
tor.

Local frame pointer (LF)
This pointer contains the address of the second byte of the
anonymous parameters in the stack frame at the top of the

stack (i.e. the stack frame which belongs to the latest uncam-
pleted routine call of the process).

Last used byte pointer (LP)

This pointer contains the address of the last used byte in the
stack.

Expressions are evaluated on top of the stack of frames.

The stack for a process incarnation may be illustrated as fol-

lows:

47

GLOBAL FRAME (GF)

[)
!

INCARNATION
DESCRIPTOR

Pa—

INCREASING

|
ADDRESSES L STACK FRAME FOR THE
___—l ——— » OUTERMOST BIOCK LEVEL

DECLARED
OBJECTS

STACK FRAMES FOR IN-
>TERMEDIATE ROUTINE CALLS

|

|
I
|
|
J

LOCAL FRAME —
(LF) ANONYMOUS }STACK FRAME FOR THE
LATEST ROUTINE CAILL

OPERANDS OF
THE EXPRESSION
UNDER EVALUA-
TION

LAST USED I
BYTE (LP)

Figure 14: Process Incarnation Stack.

An instruction consists of an operation (an 8-bit byte) and zero,
one, or more parameters. A parameter may follow the cperation
code or be placed elsewhere, e.g. on the top of the stack.

The operation works on operands, and when the instruction is ex-

Operands may be retrieved in several different ways, but funda-
mental to them all is the cobtaining of an effective address to

4.2 Terminology
4.2.1 Operation and Parameter
4.2.2 Operand and Result
ecuted, a result may be produced.
4.2.3 Effective Address
point out the operand.
4.2.4 Address

An address, or ADDR, is a byte address, which is defined in Real-
Time Pascal notation by

TYPE
bit = 0..1;
word = 0..65535;
addr = RECORD

base : basetype:
disp : word;
END;

basetype = PACKED RECORD
lockbit : bit:
nilpbit : bit:
unused : 0..63;
onebit : bit; (* always one *)
memkind : bit; (* 0 for external memory *)
(* 1 for internal memory *)

module : 0..31;
nullbit : bit; (* always zero *)
END;

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

49

Size

4.2.6

The size of an operand (or a result) may be one of the following:

BYTE, which occupies one byte (eight bits).

WORD, which occupies two bytes. A WORD is addressed by the
byte with the smallest address. The first byte need not have

an even address.

DOUBLE, which occupies four bytes. A DOUBLE is addressed by
the first byte in its first word (i.e. the word with the
smallest address). The first byte need not have an even ad-
dress.

FIELD, which occupies a number of bits within a word. A FIELD
is specified by a parameter of one byte, which follows the
parameters used to describe the access path for the operand
(or the result). This byte is interpreted as two 4-bit quan-
tities, specifying, respectively, the first and the last bit
occupied by the field.

Addressing

Several different schemes are used to obtain the effective ad-

dress in order to retrieve an cperand (or store a result).

Direct operand

The operand is placed immediately after the operation code,
and the effective address is obtained by means of the instruc-
tion pointer (IP).

4.2.5

4.2‘6

50

Operand on top of the stack

The operand is placed on the top of the stack, and the effec-
tive address is cbtained by means of the last used byte
pointer (LP).

Direct address
The effective address is formed by the four bytes following
the cperation code, interpreted as an ADDR.

Relative to the instruction pointer

The two bytes following the operation code are interpreted as
an unsigned integer. The effective address is cbtained by add-
ing this integer to the displacement field (ip.disp) of the
instruction pointer (IP). A carry is not transferred to the
base field (ip.base), but a 16-bit wraparound is used.

Relative to the local frame

A nunber (i) of bytes (e.g. two) following the operation code
are interpreted as an unsigned integer. The effective address
is obtained by adding this integer to the displacement field
(1f.disp) of the local frame pointer (LF). A carry is ignored.

Relative to the global frame

A mmber (i) of bytes (e.g. two) following the cperation code
are interpreted as an unsigned integer. The effective address
is obtained by adding this integer to the displacement field
(gf.disp) of the global frame pointer (GF). A carry is ignor-
ed.

Relative to an intermediate frame
The byte that follows the gperation code is interpreted as a
level difference, i.e. the difference between the static level

of the routine which is executing the instruction and the
static level of the routine in which the operand is declared
as an object. This difference is used to retrieve a value,
called the intermediate frame pointer, which is a pointer to
the stack frame in which the object is allocated.

4.3

51

A number (i) of succeeding bytes (e.g. two) are interpreted as
an unsigned integer. The effective address is obtained by add-

ing this integer to the displacement field (if.disp) of the
intermediate frame pointer (IF). A carry is ignored.

If the level difference is zero, the intermediate frame
pointer (IF) will have the same contents as the local frame

pointer (LF).

Relative to an address on top of the stack
The four bytes on the top of the stack are removed and inter-
preted as an ADDR.

A number (i) of bytes (e.g. two) following the cperation code
are interpreted as an unsigned integer. The effective address
is dbtained by adding this integer to the displacement field
(addr.disp) of the address removed fram the stack. A carry is
ignored.

Functional Description

4.3.1

Structure

Chapters 5 to 13 contain a functional description of the Base In-
struction Set. Each of these chapters is divided into one or more
groups of instructions with uniform basic functions. For each

such group the following information is given:

The basic function of the instructions in the group.
A verbal description of the instructions in the group.

A diagrammatic description of each instruction and its func-
tion.

An algorithmic description on the macro level of each instruc-
tion and its function.

4.3

4.3.1

4.3.2

Notation

52

Diagrammatic Descriptions

Abbreviations are used for most of the addressing schemes ex-

plained in subsection 4.2.6, and certain letters are used in the
symbolic names of the instructions to indicate how the effective

address of the cperand is cobtained.

Addressing Scheme

Diagram | Fourth Letter of Name

direct operand:

(none) H

operand on top of stack | (none) P

direct address: DA]_ A
relative to

instruction pointer: IP; R
relative to ’
local frame: LFi L
relative to

global frame: GF; G
relative to

intermediate frame: IFi I
relative to

address on top of stack:| Sa; S

address of top of stack:| (none) X

Algorithmic Descriptions

The addresses which are fundamental to the instructions are ab-

breviated as follows:

ip : addr;
1p : addr;
1f : addr;
gf : addr:
ms : addr;

(* instruction pointer *)

(*
(*
(*
(*

last used byte pointer *)

local frame pointer *)

global frame pointer *)

maxstack (last byte in allocated stack) *)

4.3.2

53

Arithmetic

Operations on byte pointers (i.e. ADDR's) are performed as if
they were 32-bit integers, but the cperations are performed mod-
ulo 64K, i.e. only the lower 16 bits (the displacement fields)

are involved.

In the algorithms, the memory is accessed in three different
ways:

1) Accessed as bytes
The symbolic name "membyte" is used with the interpretation
membyte = ARRAY (addr) OF byte

2) Accessed as words

The symbolic name "memword" is used with the interpretation
memword = ARRAY (addr) OF word
when the memory is accessed in word node and the address of the

first byte takes either an even or an odd value.

The symbolic name "mem" is used with the interpretation
mem = ARRAY (addr) OF word
when the memory is accessed in word mode, but the address of the

first byte is always oven.

The process incarnation stack is a part of memory, starting at an
even byte address and always occupying an even number of bytes
during evaluation on top of the stack. To facilitate the reading
of the notation,

stack (1p - 1)

is used as a pseudonym for
mem (lp - 1).
Note that the stack pointers are always odd, and the operands on

top of the stack are always accessed in "mem" mode by the micro-
program.

4.3.3

54

3) Accessed as doubles
The symbolic name "memaddr" is used with the interpretation

memaddr = ARRAY (addr) OF addr

when the memory is accessed in double word mode, and the address
of the first byte in the first word takes aither an even or an
odd value.

When an operand of size BYTE is moved to a destination of size
WORD, the operand is converted to size WORD with ZERO extension.
In the algorithms, the coperator "word" is used to indicate the

conversion.

Routines

4.3.3.1

In the following chapters same cammon routines are used in the

algorithmetic description.

Exception Routine

This routine performs an unconditional jump to the program point
defined in the exception point field of the incarnation descrip-
tor. Before the jump, the multiple-wait flags are cleared in the

ps register of the register set and the maxstack pointer reset to

the value defined in the incarnation descriptor.

PROCEDURE exception(cause: integer);
BEGIN
mem(gf+exception mask):= cause;
memaddr (gf+exic) := ip;
ip:= memaddr(gf+exception point);
ms.disp:= mem(gf+maxstack);
ps.wait:= 0;
GOTO fetch
END; (* exception *)

4.3.3

4.3.3.1

55

4.3.3.2 Get Intermediate Frame Routine 4.3.3.2

This routine is used to retrieve the address of the intermediate
frame. The level difference between the static levels is used.

FUNCTION get if(level: byte): addr;

VAR
res: addr;
BEGIN
res:= 1f;
WHILE level > 0 DO
BEGIN

res:= memaddr(res—-1);
level:= level-1;
END;
get if:= res
END; (* get if *) .

RETRIEVAL OF A VALUE

5.1

56

Push Nonsense (Reserve Stack Space)

5.1.1

The operand is retrieved, and a result which occupies <operand>

bytes is pushed on the stack. The contents of the result are un-

defined.

RENPB

Value: SEH ox

REtrieve Nonsense via P(ush Down List) Bytes

P > [RENPB |

STACK BEFORE:

(* RENPB *)

VAR

operand : word;

BEGIN

operand := stack(lp~1);

STACK AFTER:

ul t-—

IF odd(operand) THEN exception(odd operand);
- 2 > ms - operand THEN exception(stack overflow):

IF 1p
1p :
ip :
END;

lp - 2 + operand;
ip + 1
(* RENPB *)

<operand> bytes

57

5.1.2 RENHB 5.1.2
REtrieve Nonsense H(ere) Byte Value: BFHex
I -~ | RENEB | paraneter |
STACK BEFORE: STACK AFTER:

T
]
§
|
]
i
I

—redqul t— l <parameter> bytes

J

(* RENHB *) o

VAR
parameter : word;
BEGIN
parameter := mamword(ip+l);
IF odd(parameter) THEN exception(odd parameter);
IF 1lp > ms - parameter THEN exception(stack overflow);
lp := lp + parameter;
ip == ip + 3
END; (* RENHB *)

58

5.2 Push Constant 5.2
The operand is retrieved and pushed on the stack as the result.
5.2.1 RECHW 5.2.1

REtrieve Constant H(ere) Word

Value: PBH ex

IP - | RECHW | paraneter |
STACK BEFORE: STACK AFTER:
1 H
! \ !
[]
] i
1 l ;
reslult

]

(* RECHW *)
BEGIN

IF 1lp > ms - 2 THEN exception(stack overflow);

stack(lpt+l) := memword(ip+1):
lp :=1p + 2
ip == ip + 3

END; (* RECHW *)

5.2.2

59

RECHD or REAAD 5.2.2

REtrieve Constant H(ere) Double Value: E8, .
REtrieve Address A(bsolute) Double
(Two names for the same instruction)

IP ~ [REGED | p alr a mle t efr |

STACK BEFORE: STACK AFTER:

|
|

P——r e gul t—

(* RECHD or REAAD *)

BEGIN
IF 1lp > ms - 4 THEN exception(stack overflow):
stack(1lp+l) := memword(ip+1);
stack(1lp+3) := memword(ip+3):
lp := 1p + 4;
ip ;= ip'+ 5
END; (* RECHD or REAAD *)

* 0|

5.3 Push Address 5.3

The operand is an address, which is pushed on the stack as the

result.

5.3.1 REAXD 5.3.1
REtrieve Address X (path) Double Value: FD.
P -

STACK BEFORE: STACK AFTER:
' i
] [
[]]
]]
! |
I 1
1P T ——r egul t—
P J
(* REAXD *)
BEGIN
IF 1lp > ms - 4 THEN exception(stack overflow):
stack(1lp+1) := lp.base;
stack(1lp+3) := lp.disp;
lp := 1p + 4; -
ip := ip + 1
END; (* REAXD *)

61

5.3.2 REARD 5.3.2
REtrieve Address R(elative) Double Value: FCy.,
IP -~ | REARD | parameter |
STACK BEFORE: STACK AFTER:
' i address
! : expression
| | used: IP2
[)
P T —r esiul t—
.]

The result is the address denoted by IP + parameter.

(* REARD ¥)
VAR

param : word;
BEGIN

IF 1lp > ms - 4 THEN exception(stack overflow);
param := memword(ip+1);

stack(1lp+1) := ip.base;
stack(1lp+3) := ip.disp + param;
lp := 1p + 4;

ip == ip + 3

END; (* REARD *)

62

5.3.3 REALD 5.3.3

REtrieve Address L(ocal) Double Value: Edp..

IP + [REAID | parameter |

STACK BEFORE: STACK AFTER:
j i address
| ' expression
! i used: LF
[| 2
Ip j ——r e s{u 1l t—
p]
(* REALD *)
VAR
param : word;
BEGIN
IF 1p > ms - 4 THEN exception(stack overflow);
param := memword(ip+l);
stack(1lp+l) := lf.base;
stack(1lp+3) := 1f.disp + param;
1p := 1p + 4;
ip = ip + 3
END; (* REALD *)

63

5.3.4 REAGD 5.3.4
REtrieve Address G(1lobal) Double Value: EOH ex
IP - | REAGD | parameter |
STACK BEFORE: STACK AFTER:
i | address
! | : expression
¢ i I used: & 9
i i

L

b—regul t—

(* REAGD ¥*)

VAR
param : word;
BEGIN
IF 1p > ms - 4 THEN exception(stack overflow);
param := memword(ip+1);
stack(1lp+l) := gf.base;
stack(1lp+3) := gf.disp + param;
lp := 1p + 4;
ip = ip + 3
END; (* REAGD *)

64

5.3.5 REAID 5.3.5

Value: EzHex
REtrieve Address I(ntermediate) Double

IP -~ | REATD [param 1| paramdter 2 |

STACK BEFORE: STACK AFTER:
i : address
! : expression
P T ——r e slu 1l t—
p]
(* REAID *)
VAR

paraml : byte;
param2 : word;
FUNCTION get if (level : byte) : addr;
EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN
IF 1p > ms - 4 THEN exception(stack overflow);
paraml := menbyte(ip+l);
param2 := memword(ip+2);
stack(1lp+l) := get if(paraml).base;
stack(lp+3) := get if(paraml).disp + param2;
lp = 1p + 4;
ip = ip + 4
END; (* REAID *)

65

5.3.6 REASD or UADHW 5.3.6

REtrieve Address via S(tack) Double Value: EGHe.x
Unsigned ADd H(ere) Word

IP +~ [REASD | parameter |
STACK BEFORE: STACK AFTER:
' E address
. ! expression
) i used: SA
: ! 2
} ADDR ——resul t—

(* REASD or UADHW *)

VAR
param : word;
BEGIN
param := memword(ip+1);
stack(1lp~1) := stack(lp-1) + param;
ip = ip + 3;
END; (* REASD or UADHW *)

66

5.4 Push Operand 5.4

The value of the operand is retrieved and pushed on the stack as
the result.

5.4.1 REVPW 5.4.1

REtrieve Value P(ush Down List) Word Value: AF,

Hex
® -
STACK BEFORE: STACK AFTER:
| P
f ! '
: l i
]
1 | The WORD on
T e R e B
Lp T doubled.

(* REVPW *)

BEGIN
IF 1p > ms - 2 THEN exception(stack overflow);
stack(1lp+l) := stack(lp-1):
lp == 1p + 2;
ip = ip + 1
END; (* REVPW *)

5.4.2

67

RWPD 5.4.2

REtrieve Value P(ush Down List) Double Value: EFyex

> [REVED]

STACK BEFCORE: STACK AFTER:

RN —
S ——

—operand— The DO on
P —resul t— the top of
T the stack is
p doubled.
.]

(* REVPD *)
BEGIN

IF lp > ms - 4 THEN exception(stack overflow);

stack(1lp+l) := stack(lp-3);

stack(1lp+3) := stack(lp-1);

lp := 1p + 4;

ip == ip + 1

END; (* REVPD *)

68

5.4.3 REVAB 5.4.3

REtrieve Value A(bsolute) Byte Value: 9By .

IP -~ | REVAB [p ar ande ¢t d r |

STACK BEFORE: STACK AFTER:
i ' address
} ! j expression
l ' | used: DA,
[|
T resphlt } WORD with
Lp T zZero extension,
LP right justified
(* REVAB *) ~
VAR
param : addr;
BEGIN

IF 1lp > ms — 2 THEN exception(stack overflow);
param.base := memword(ip+1);
param.disp := memword(ip+3);
stack(1lp+l) := word(membyte(param));
1p := 1p + 2;
ip :==ip + 5
END; (* REVAB *)

69

5.4.4 REVAW 5.4.4
REtrieve Value A(bsolute) Word Value: BBHex
IP - | REVAW | p ad r amMet & r
STACK BEFORE: STACK AFTER:
: ! address
: l ! expression
! | used: DA,
| ! !
j reshlt } WORD
tE]
Lp
(* REVAW *)
VAR
param : addr;
BEGIN

IF 1lp > ms - 2 THEN exception(stack overflow);
param.base := memword(ip+1);
param.disp := memword(ip+3):;
stack (1p+1) := memword(param);
1p := 1p + 2;
ip :=ip + 5
END; (* REVAW *)

70

5.4.5 REVAD 5.4.5
REtrieve Value A(bsolute) Double Value: FBy.,
P - [REVAD | p d r anet dr |
STACK BEFORE: STACK AFTER:
i : address
' : expression
! | used: DA,
4 ['
P 1 L resphlt --—} DOUBLE
o]
(* REVAD *)
VAR
param : addr;
BEGIN

IF 1lp > ms - 4 THEN exception(stack overflow);
param.base := memword(ip+l);
param.disp := memword(ip+3);
stack(1p+l) := memword(param):;
stack(1lp+3) := memword(param+2);
lp := 1p + 4;
ip :==ip + 5
END; (* REVAD *)

71

5.4.6 REVAF 5.4.6

REtrieve Value A(bsolute) Field Value: DByoy
IP + | REVAF | p alr a mJe t elr 1 [param 2]
STACK BEFORE: STACK AFTER:

i ' address

| | expression

' ! used: DA4

| i

1 resphlt } WORD with
LP T zero extension,
LP right justified

(* REVAF *)
TYPE
fieldtype = PACKED REOCORD

firstbit : 0..15;
lastbit : 0..15;

END;
VAR
paraml : addr;
param2 : fieldtype;
BEGIN

param? :=membyte(ip+5);

IF 1p > ms - 2 THEN exception(stack overflow);

IF param2.firstbit > param2.lastbit THEN exception(field error);

paraml .base := memword(ip+1);

param] .disp := memword(ip+3);

stack(1lp+l) := (memword(paraml) DIV (2**(15-param?.lastbit)))
MOD (2**(param?2.lastbit-param?.firstbit+1));

1p + 2;

ip + 6

END; (* REVAF *)

1p
ip

[T

72

5.4.7 REVLB 5.4.7

REtrieve Value L(ocal) Byte Value: 97Hex

P > | REVLB | paranpter |

STACK BEFORE: STACK AFTER:
H i address
| ' expression
J used: LF2
]
T result } WORD with
P T zero extension,
LP right justified
(* REVLB *)
VAR
param : word;
BEGIN

IF 1p > ms - 2 THEN exception(stack overflow);
param := memword(ip+1);
stack(1lp+1) := word(membyte(lf+param));
1p = 1p + 2;
ip = ip + 3
END; (* REVLB *)

73

5.4.8 REVLW 5.4.8

REtrieve Value L(ocal) Word Value: By

IP + | REVIW | paraneter |

STACK BEFORE: STACK AFTER:
j | address
! ! expression
! i used: LF
| ' 2

resphlt } WORD
- B :
IP J
(* REVLW *)
VAR
param : word;
BEGIN

IF 1lp > ms - 2 THEN exception(stack overflow);
param := memword(ip+1):
stack(1lp+l) := memword(lf+param);
1p := 1p + 2;
ip := ip + 3
END; (* REVLW *)

74

5.4.9 REVLD 5.4.9
REtrieve Value L(ocal) Double Value: F?Hex
IP - | REVID [paranketer |
STACK BEFCRE: STACK AFTER:
E i address
] ! expression
! i used: LF
| ! ?
Ip T —result— } DOUBLE

(* REVLD *)
VAR

param : word;
BEGIN

IF 1p > ms - 4 THEN exception(stack overflow):;
param := memword(ip+1);

stack(1lpt+l) := memword(lf+param);
stack(1lp+3) := memword(lf+param+2);
lp := 1p + 4;

ip :=ip + 3

END; (* REVLD *)

5.4.10

75

REVLF
REtrieve Value L(ocal) Field Value: D7y,
IP -~ [REVIF | paramgter 1 | param 2 |
STACK BEFORE: STACK AFTER:
? i address
i ' expression
! l used: LF
1 = ’
T resphlt } WORD with
P T zero extension,
P right justified
(* REVLF *)
TYPE

fieldtype = PACKED RECORD
firstbit : 0..15;
lastbit : 0..15;

END;
VAR
paraml : word;
param2 : fieldtype;
BEGIN

param2 := membyte(ip+3);

IF 1p > ms - 2 THEN exception(stack overflow):

IF param2.firstbit > param2.lastbit THEN exception(field error):;
aml := memword(ip+l);

stack(1lp+l) := (memword(lf+paraml) DIV (2**(]15-param2.lastbit))

MOD (2**(param?.lastbit-param?2.firstbit+1));
1p 1p + 2;
ip ip + 4
END; (* REVLF *)

5.4.10

76

5.4.11 REVGB 5.4.11
REtrieve Value G(lcbal) Byte Value: 93y,
IP -~ | REVGB | parameter |
STACK BEFORE: STACK AFTER:
i H address
. | expression
: ! used: GF‘2
[v !
T result } WORD with
Lp T zero extension,
LP right justified

(* REVGB *)
VAR

param : word;
BEGIN

IF 1p > ms -~ 2 THEN exception(stack overflow);
param := memword(ip+1);
stack(1lp+l) := word(menbyte(gf+param));
1p := 1p + 2;
ip ;= ip + 3
END; (* REVGB *)

77

5.4.12 REVGW

REtrieve Value G(lobal) Word Value: B3y,

IP -~ [_REVGW | parampter |

STACK BEFORE: STACK AFTER:
_E | address
I i ! expression
! l ! used: GF,
| :
T result } WORD
= T
p
(* REVGW *)
VAR
param : word;
BEGIN

IF 1lp > ms — 2 THEN exception(stack overflow):
param := memword(ip+1);
stack(1lp+1) := memword(gf+param);
lp := 1p + 2;
ip = ip + 3
END; (* REVGW *)

5.4.12

78

5.4.13 REVGD 5.4.13

REtrieve Value G(lobal) Double Value: F3g. .

IP +~ | REV®D | paraneter |

STACK BEFORE: STACK AFTER:
i | address
| ! expression
! | used: GE‘2

|

|

b 1 —result—-—-—-}DOUBLE

o]
(* REVGD *)
VAR
param : word;
BEGIN

IF 1lp > ms - 4 THEN exception(stack overflow);
param := memword(ip+1);
stack(1lp+l) := memword(gf+param);
stack(1p+3) := memword(gf+param+2);
lp := 1p + 4;
ip == ip + 3
END; (* REVGD *)

—

5.4.14

79

REVGF

REtrieve Value G(lobal) Field Value: D3He.x

IP >~ | REVGF | paramgter 1 [param 2 |

STACK BEFORE: STACK AFTER:
) i address
: : expression
! ' used: GF
| ’ 2
T res Ll 1t } WORD with
P T zero extension,
LP right justified
(* REVGF *)
TYPE

fieldtype = PACKED RECORD
firstbit : 0..15;
lastbit : 0..15;
END;
VAR
paraml : word;
param2 : fieldtype;
BEGIN
param? := membyte(ip+3);
IF 1lp > ms - 2 THEN exception(stack overflow):
IF param2.firstbit > param2.lastbit THEN exception(field error);
paraml := memword(ip+1);

stack(1lp+l) := (memword(gf+paraml) DIV (2**(15-param2.lastbit)))
MOD (2**(param2.lastbit-param2.firstbit+1));
lp := 1p + 2;
ip ;= ip + 4
END; (* REVGF *)

5.4.14

80

5.4.15 REVIB 5.4.15

e’

REtrieve Value I(ntermediate) Byte Value: 95,

IP » | REVIB |param 1| paramdter 2 |

STACK BEFORE: STACK AFTER:
i ' address
| : expression
! ! used: IF
i ! 2
T resphlt } WORD with
P T zero extension,
LP right justified
(* REVIB *) <
VAR
paraml : byte;

param2 : word;
FUNCTION get if(level : byte) : addr;
EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN

IF 1lp > ms - 2 THEN exception(stack overflow);

paraml := menbyte(ip+l);

param?2 := memword(ip+2);

stack(1lp+1) := word(membyte(get if(param])+param2));

lp := 1p + 2;
ip := ip + 4
END; (* REVIB *)

81

5.4.16 REVIW 5.4.16

REtrieve Value I(ntermediate) Word Value: BSHex

IP - [REVIW |[param 1] paramgter 2 |

STACK BEFORE: STACK AFTER:
H i address
: E expression
! | used: IF
i ! ?
resphlt } WORD
P] T
Lp
(* REVIW *)
VAR

paraml : byte;
param2 : word;
FUNCTION get if(level : byte) : addr;
EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN
IF 1p > ms - 2 THEN exception(stack overflow);
paraml := menbyte(ip+1);
param? := memword(ip+2);
stack(1lptl) := memword(get if(paraml)+param2);
l1p :=1p + 2;
ip = ip + 4
END; (* REVIW *)

5.4.17

82

REVID

REtrieve Value I(ntermediate) Double Value: FSpex

IP - | REVID |param 1| parandter 2

STACK BEFORE: STACK AFTER:
: H
[}]
[}]
['
I i
1P T —r e sl t—
p !
(* REVID *)
VAR

paraml : byte;
param2 : word;
FUNCTION get if(level : byte) : addr;

address
expression
used: IF2

-

EXTERNAL; ~ (* to retrieve address of intermediate frame *)

BEGIN

IF 1p > ms - 4 THEN exception(stack overflow);

paraml := membyte(ip+l);
param2 := memword(ip+2);

stack(1lp+l) := memword(get if(paraml)+param2);
stack(1lpt+3) := memword(get if(paraml)+param2+2);

1p := 1p + 4;
ip == ip + 4
END; (* REVID *)

nu

5.4.17

83

5.4.18 REVIF 5.4.18

REtrieve Value I(ntermediate) Field Value: DSHex

IP -~ [REVIF |param 1| paramdter 2 | param 3 |

STACK BEFORE: STACK AFTER:
' i address
i { : expression
; l / used: IF
: 2
T res Iu lt } WORD with
LP zero extension,
LP right justified
(* REVIF *)
TYPE

fieldtype = PACKED RECORD
firstbit : 0..15;
lastbit : 0..15;
END;
VAR
paraml : byte;
param2 : word;
param3 : fieldtype:
FUNCTION get if(level : byte) : addr;
EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN
param3 := membyte(ip+4);
IF 1lp > ms - 2 THEN exception(stack overflow):
IF param3.firstbit > param3.lastbit THEN exception(field error):;
paraml := menbyte(ip+l);
param? := memword(ip+2);
stack(1lptl) := (memword(get if(paraml)+param2) DIV (2**(15-param3.lastbit)))
MOD (2**(param3.lastbit-param3.firstbit+1));

-

1p := 1p + 2;
ip =i
END; (* REVIF *)

5.4.19 REVSB 5.4.19
REtrieve Value S(tack) Byte Value: 99, .
IP -~ | REVSB | parameter 1]
STACK BEFORE: STACK AFTER:
j i address
! ! expression
] ! used: SA2
! y |
| operahd] resunlt } WORD with
B } ADDR T zero extension,
T LP right justified
Lp
(* REVSB *) -
VAR

paraml : word;
operand : addr;
BEGIN
paraml := memword(ip+l);
operand.base := stack(lp-3):;
operand.disp := stack(lp-1);
IF operand.base.nilbit THEN exception(nil exception);
stack(1lp-3) := word(membyte(operand+paraml));

lp := 1p - 2;
ip = ip + 3
END; (* REVSB *)

=

5.4.20

85

REVSW

REtrieve Value S(tack) Word Value: By

IP - | REVSW | paramdter 1 |

STACK BEFORE: STACK AFTER:
| i address
: } expression
! ! used: SA,
[|
— Opegand --—}ADDR reshl; } WORD
p
Ip]
(* REVSW *)
VAR

paraml : word;
operand : addr;
BEGIN
paraml := memword(ip+1);
operand.base := stack(1lp-3);
operand.disp := stack(lp-1):
IF operand.base.nilbit THEN exception (nil exception);
stack(1lp~3) := memword(operand+paraml);
lp := 1p - 2;
ip :=ip + 3
END; (* REVSW *)

5.4.20

86

5.4.21 REVSD 5.4.2]

REtrieve Value S(tack) Double Value: FgHex

‘IP > | REVSD | paramdter 1 |

STACK BEFORE: STACK AFTER:
i 4 address
5 ! expression
] -
; : used: SA2
— operpnd R— } ADDR —Tr e s u l t— } DOURBLE
(* REVSD *)
VAR

paraml : word;
operand : addr;

BEGIN
paraml := memword(ip+1):
operard.base := stack(1lp-3):
operand.disp := stack(lp-1):;
IF operand.base.nilbit THEN exception (nil exception);
stack(1lp-3) := memword(operand+paraml);
stack(1lp-1) := memword(operand+paraml+2);
ip = ip + 3

END; (* REVSD *)

87

5.4.22 REVSF 5.4.22
REtrieve Value S(tack) Field Value: D9 .
IP - [REVSF | paramgter 1 | param 2 |
STACK BEFORE: STACK AFTER:
¥ 1 address
! 1 expression
| ! used: SAZ
I |
I _ reshit } WORD with
— Operand } ADDR + zero extension,
T LP right justified
LP
(* REVSF *)
TYPE

fieldtype = PACKED RECORD
firstbit : 0..15;
lastbit : 0..15;
END;
VAR
paraml : word;
param2 : fieldtype:;
operand : addr;
BEGIN
param2 := merbyte(ip+3); ,
IF param2.firstbit > param2.lastbit THEN exception(field error);
paraml := memword(ip+1):;
operand.base := stack(lp-3);
operand.disp := stack(lp-1):
IF operand.base.nilbit THEN exception (nil exception);
stack(1lp-3) := (memword(operand)+paraml) DIV (2**(15-param2.lastbit)))
MOD (2**(param?.lastbit-param?.firstbit+1));
lp := 1lp - 2;
ip ;== ip + 4
END; (* REVSF *)

5.4.23 READB 5.4.23
READ Byte Value: 90y,
r >
STACK BEFORE: STACK AFTER:
i E address
I i expression
: ! used: SA
i i 0
. res[ult }WORDwith
—— OPeTd '"'} ADDR i zero extension
right justified
Ip] L2
If no module is selected, the instruction will return a zero as
the result. If a parity error occurs, the standard parity error
procedure is suppressed. The actual result of the reading is
delivered, besides the value of 'operand' in the dummy register
set. The processing wnit continues in run mode.
(* READB *)
VAR
operand : addr;
result : word;
BEGIN
operand.base := stack(1lp-3):
operand.disp := stack(lp-1);

result := 0;
result := word(merbyte(operand));
IF 'parity error' THEN
WITH dumy regset.parity error address DO
BEGIN - -
base := operand.base;
disp := operand.disp

END;
stack(1lp-3) := result;
lp := 1p - 2;
ip := ip + 1
END; (* READB *)

89

5.4.24 READW 5.4.24

READ ﬂord Value: BOH ex

p > [READW]

STACK BEFORE: STACK AFTER:
i i address
I 1 expression
| { used: SAO
! i
N 3] resjult } WORD with
Cperan | ¢ ADDR]\ zero extension,
]- P right justified
P
If no module is selected, the instruction will return a zero as
the result. If a parity error occurs, the standard parity error
procedure is suppressed. The actual result of the reading is
delivered, besides the value of ‘'operand' in the dummy register
set. The processing unit continues in run mode.
(* READW *)
VAR
operand : addr;
result : word;
BEGIN
operand.base := stack(lp~3);
o operand.disp := stack(lp-1) AND (-2);

result := 0O;
result := memword(operand);
IF 'parity error' THEN
BEGIN
IF 'right parity error' THEN
operand.disp := operand.disp + 1
WITH dumy regset.parity error address DO
BEGIN
base := operand.base;
disp := operand.disp

END
END;
stack(1lp-3) :/ result;
l1p := 1p - 2;
ip = ip + 1
END; (* READW *)

90

6. STORAGE OF A VALUE 6.
6.1 Pop Garbage 6.1
The operand is retrieved, and <operand> bytes are removed fram
the stack. No result is stored.
6.1.1 STNHB 6.1.1
STore Nonsense H(ere) Byte Value: 8Cy,,
Ir > [SINHB | parameter |
STACK BEFORE: STACK AFTER: ~
' 1
: :
\ .
! [
| Ip 1 <parameter>
i bytes removed
IL from the stack
o 1
MEMDRY :
No result
is stored.
(* STNHB *)
VAR
parameter : word;
BEGIN

parameter := memword(ip+1);:
IF odd(parameter) THEN exception(odd parameter)
lp := 1lp - parameter;
ip = ip + 3
END; (* STNHR *)

91

6.2 Pop Result 6.2

The cperand is removed fram the stack and stored as the result in
the memory location defined by the effective address.

6.2.1 STVAB 6.2.1
STore Value A(bsolute) Byte Value: 9y,
Ir ~ | sTvaB | p dr ande t o r |
STACK BEFORE: STACK AFTER:

¥ T
] i
I]
} i
]

'

opefrand . T
T LP
LP
MEMORY :

access path: DA4

Ye-
| sult |+« effective address

the 8 low order
bits of the ope-
rand are stored

(* STVAB *)
VAR

param : addr;
BEGIN

param.base := memword(ip+1)
param.disp := memword(ip+3);
menbyte(param) := stack(lp-1) AND 255;
lp == 1p - 2;
ip := ip + 5;

END; (* STVAB *)

92

6.2.2 STVAW _ 6.2.2

STore Value A(bsolute) Word Value: BAox

I > [sTvaWw [p a r an e t dr |

STACK BEFORE: STACK AFTER:
7 | .'
! i
t i
: I
opefrand j
T LpP
Lp
MEMORY :

access path: DA 4

Te-
 sult |« effective address

(* STVAW *)
VAR

param : addr;
BEGIN

param.base := memword(ip+1);
param.disp := memword(ip+3);
memword (param) := stack(lp-1);
lp := 1p - 2; -
ip = ip + 5;
END; (* sTVAW *)

93

6.2.3 STVAD 6.2.3

STore Value A(bsolute) Double Value: FAy..

IP > | stvAaD | p ad r amet e r |

STACK BEFORE: STACK AFTER:
i e
j |
i
5
—opefand-— Ip j
Ip |
MEMORY :
access path: DA4
- re—-
| |+ effective address
B sult]
(* STVAD *)
VAR
param : addr;
BEGIN

param.base := memword(ip+1)
param.disp := memword(ip+3);
memword (param) := stack(1lp-3);
memword (param+2) := stack(1lp-1):
lp :=1p - 4;
ip := ip + 5;

END; (* STVAD *)

6.2.4 STVAF 6.2.4

STore Value A(bsolute) Field Value: DArrax
Ir > | sTvaF | p alr a mle t elr 1 Jparam 2]
STACK BEFORE: STACK AFTER:

I T

' H

1]

! E

! l

opefrand
] e -

p

MEMORY :

access path: DA4

re- |
sult « effective address

The 8 low order
bits are stored.

95

(* STVAF *)

TYPE
fieldtype = PACKED RECORD
firstbit : 0..15;
lastbit : 0..15;
END:
VAR
param! : addr;
param2 : fieldtype:
operand : word;
resultb : word;
mask : word;

BEGIN
paraml .base := memword(ip+1);
paraml .disp := memword(ip+3);
param? := menbyte(ip+5);
WITH param2 DO
BEGIN
IF firstbit > lastbit THEN
exception(field error):
operand := stack(lp-1):
mask := 1 shift(lastbit+l-firstbit)-1;
IF mask < operand THEN (* unsigned ¥*)
exception(field overflow);
mask := mask shift(15-lastbit);
operand := operand shift(15-lastbit)
END;
result := memword(paraml);
result := result AND (NOT mask)
memword(paraml) := result OR operand;
1p = 1p - 2;
ip ;= ip + 6
END; (* STVAF *)

26

6.2.5 STVLB 6.2.5
STore Value L(ocal) Byte Value: 96, .
IP +» | STVIB | parameter]
STACK BEFORE: STACK AFTER:

0
g
1)
m&n.q..q—_-———
)
=}
o

LP
MEMORY :
access path: LF2
result |+« effective address

The 8 low order
bits are stored.

(* STVLB *)

VAR

param : word;
BEGIN

param := memword(ip+1);
membyte(lf+param) := stack(lp-1) AND 255;
lp :=1p - 2;
ip := ip + 3
END; (* STVLB *)

97

6.2.6 STVLW 6.2.6
STore Value L(ocal) Word Value: BOy.,
P » [sTviw | parangter |
STACK BEFORE: STACK AFTER:
) '
! :
|]
)
1
opekand
Ip b
P
MEMORY :
access path: LF2
sult + effective address
(* STVLW *)
VAR
param : word;
BEGIN

param := memword(ip+1);

memword (lf+param) := stack(lp-1);
lp :=1p - 2;

ip == ip + 3

END; (* STVLW *)

6.2.7

o8

STVLD 6.2.7
STore Value L(ocal) Double Value: %Hex
I > | STViD | paramketer |
STACK BEFORE: STACK AFTER:
i i
' |
1 !
! l
—opefand-— Ip T
o f
MEMORY ¢ -
access path: LF2
| &= |+« effective address
L sult
(* STVLD *)
VAR
param : word;
BEGIN

param := memword(ip+1);
memword (1f+param) := stack(lp-3):
memword (Lf+param+2) := stack(lp-1);

1p := 1p - 4;
ip == ip + 3
END; (* STVLD *)

99

_ 6.2.8 SMIF
STore Value L(ocal) Field Value: D6y .
IP -~ | STVIF | paramdter 1 | param 2 |
STACK BEFORE: STACK AFTER:
| | !
} H
1 1
' i
I
opekand T
T Lp
Lp
4 MEMORY :

access path: LF2

re- |
sult <« effective address

6.2.8

100

(* STVLF *)
TYPE
fieldtype = PACKED RECORD
firstbit : 0..15;
lastbit : 0..15;
END;
VAR
paraml : word;
param2 : fieldtype;
operand : word;
result : word;
mask : word;

BEGIN

paraml := memword(ip+l);

param2 := membyte(ip+3);

WITH param2 DO

BEGIN
IF firstbit > lastbit THEN

exception(£field error)/,
operand := stack(lp~1);
mask := 1 shift(lastbit+1-firstbit)-1;
IF mask < operand THEN (* unsigned *)
exception(field overflow);

mask := mask shift(15-lastbit);
operand := operand shift(15-lastbit)

END;

result := memword(lf+paraml);

result := result AND (NOT mask):

memword (1f+paraml) := result OR operand;

lp :='1p - 2;

ip = ip + 4

END; (* STVLF *)

101

6.2.9 STVGB 6.2.9
STore Value G(lobal) Byte Value: 92, .
IP > [STVGB | parareter |
STACK BEFORE: STACK AFTER:

T T
' :
' i
¥ i
! i
opefrand T
T LP
Lp
MEMORY :

access path: GF2

result + effective address

The 8 low order
bits are stored.

(* STVGB *)
VAR

param : word;
BEGIN

param := memword(ip+1);
menbyte(gf+param) := stack(lp-1) AND 255;
1p := 1p - 2;
ip := ip + 3;
END; (* STVGB *)

6.2.10

102

STVGW 6.2.10
STore Value G(lobal) Word Value: BzHex
IP +~ [STVGW | parareter |
STACK BEFORE: STACK AFTER:

| H

! i

i [}

] i

! !

! |

opefand T
T P
LP
MEMORY :
S
access path: GF2
re-]
- sult + effective address
(* STVGW *)
VAR
param : word;

BEGIN

param := memword{ip+1):;
memword (gf+param) := stack(lp-1);
1p :=1p - 2;
ip := ip + 3;
END; (* STVGW *)

6.2.11

103

STVGD
STore Value G(lobal) Double Value: F2poy
IP - | STV | parameter |
STACK BEFORE: STACK AFTER:
T T
] I
| ’ /
i I
, !
: l |
——opefand— Ip T
o]
MEMORY :
access path: GE‘2
| re- |+ effective address
- sult
(* sSTVGD *)
VAR
param : word;
BEGIN

param := meamword(ip+1);
memword (gf+param) := stack(lp-3);
memword (gf+param+2) := stack(lp-1):
1p := 1lp - 4;
ip := ip + 3;

END; (* STVGD *)

6.2.11

104

6.2.12 STVGF 6.2.12

STore Value G(lobal) Field Value: D2yoy

IP > | STV | paramgter 1 | param 2 |

STACK BEFORE: STACK AFTER:

MEMORY :

access path: GF2

re-
sult +~ effective address

105

(* STVGF *)

TYPE
fieldtype = PACKED RECORD
firstbit : 0..15;
lastbit : 0..15;
END;
VAR
paraml : word;
param2 : fieldtype;
operand : word;
result : word;
mask : word;

BEGIN

paraml := memword(ip+1);

param2 := membyte(ip+3):;

WITH param2 DO

BEGIN
IF firstbit > lastbit THEN

exception(field error) ;
operand := stack(lp-1);
mask := 1 shift(lastbit+1-firstbit)-1;
IF mask < operand THEN (* unsigned ¥*)
exception(field overflow);

mask := mask shift(15-lastbit);
operand := operand shift(15-lastbit)

END;

result := memword(gf+paraml);

result := result AND (NOT mask);

memword (gftparaml) := result OR operand;

lp := 1p - 2;

ip := ip + 4

END; (* STVGF *)

6.2.13

106

STVIB

STore Value I(ntermediate) Byte Value: 94y,

IP +» | STVIB [param 1| paramdter 2 |

STACK BEFORE: STACK AFTER:
: :
i]
| :
I
|
opekand T
T LpP
LP
MEMDRY :
access path: IF2
result |« effective address
The 8 low order
bits are stored.
(* STVIB *)
VAR

paraml : byte;
param?2 : word;
FUNCTION get if(level : byte) : addr;
EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN
param! := membyte(ip+l);
param2 := memword(ip+2):
membyte(get if(paraml)+param2) := stack(lp-1) AND 255;
1p :=1p - 2;
ip = ip + 4;
END; (* STVIB *)

6.2.13

107

6.2.14 STVIW 6.2.14

STore Value I(ntermadiate) Word Value: B4Hex

IP ~ | SIVIWN |param 1] paramdter 2 |

STACK BEFORE: STACK AFTER:

]

]

!

]

|

]
opefrand

P
Ip |
MEMORY :
access path: IF2
L re=
sult |+ effective address
(* STVIW *)
VAR
paraml : byte;

param?2 : word;
FUNCTION get if(level : byte) : addr;
EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN
paraml := membyte(ip+l);
param2 := memword(ip+2);
memword (get if(paraml)+param?) := stack(lp-1);
1p 1p - 2;
ip ip + 4;
END; (* STVIW *)

[

.
.
-
.

108

6.2.15 STVID 6.2.15

STore Value I(ntermediate) Double Value: F4Hex

IP > | STVID [param 1| paramdter 2]

STACK BEFORE: STACK AFTER:

S ———

A N ——

—opefand-— P T
b 1
MEMORY :
access path: IF2
| ¥®7 < effective address
| sult
(* STVID *)
VAR
paraml : byte;
param? : word;
FUNCTION get if(level : byte) : addr;
EXTERNAL; (* to retrieve address of intermediate frame *)

BEGIN
paraml := membyte(ip+l);
param2 := memword(ip+2);
memword (get if(paraml)+param2) := stack(lp-3);
memword(get if(paraml)+param2+2) := stack(lp-1);
lp = 1p - 4;
ip = ip + 4;

END; (* STVID *)

109

6.2.16 STVIF 6.2.16
STore Value I(ntermediate) Field Value: Ddy..
IP + | STVIF [param 1| paramdter 2 | param 3 |
STACK BEFORE: STACK AFTER:

E i
' i
] []
l i
I
opefrand $
| e |
LP
MEMORY :

access path: IF2

| re- |
sult « effective address

110

(* STVIF *)
TYPE
fieldtype = PACKED RECORD
firstbit : 0..15;
lastbit : 0..15;
END;
VAR
paraml : byte;
param2 : word;
param3 : fieldtype;
operand : word;
result : word;
mask : word;
FUNCTION get if(level : byte) : addr;
EXTERNAL; (¥ to retrieve address of intermediate frame *)
BEGIN
:= mambyte(ip+l);
param2 := memword(ip+2);
:= membyte(ip+4);
WITH param3 DO
BEGIN
IF firstbit > lastbit THEN
exception(field error);
operand := stack(lp-1);
mask := 1 shift(lastbit+l-firstbit)-1;
IF mask < operand THEN (* unsigned *)
exception(field overflow);
mask := mask shift(15-lastbit);
operand := operand shift(15-lastbit)
END;
result := memword(get if(paraml)+param2);
result := result AND (NOT mask):;
memword(get if(paraml)+param2) := result OR operand;
1p := 1p - 2;
ip :=ip + 5
END; (* STVIF *)

6.2.17

111

STVSB 6.2.17
STore Value S(tack) Byte Value: 98,
IP - [STVSB | paramdter 1 |
STACK BEFORE: STACK AFTER:
? E
1
i E
! l
nd 2 i
operan —— ¢ ADDR 1P
opefrand
b]
MEMORY :
access path: SA2
result |+« effective address
The 8 low order
bits are stored.
(* STVSB *)
VAR
paraml : word;
operand? : addr;
BEGIN
paraml := memword(ip+1);

operand2.base := stack(1lp-5):

operand2.disp := stack(lp-3);

IF operand2.base.nilbit THEN
exception(nil exception);

membyte (operand2+paraml) := stack(lp~1) AND 255;

1p := 1p - 6;
ip = ip + 3
END; (* STVSB *)

112

6.2.18 STVSW 6.2.18

STore Value S(tack) Word value: BSHex

P > [STVSW | paramdter 1 |

STACK BEFORE: STACK AFTER:

—

—— operdnd 2 — } ADDR | T
opefrand
-]
MEMORY :
° access path: SA,

sult + effective address
(* STVSW *)
VAR

paraml : word;
operand2 : addr;
BEGIN
paraml := memword(ip+1):; -
operand2.base := stack(lp~5);
operand2.disp := stack(lp-3):
IF operand2.base.nilbit THEN
exception(nil exception);
memword (operand2+paraml) := stack(lp-1);
l1p := 1p - &;
ip == ip + 3
END; (* STVSW *)

6.2.19

113

STVSD 6.2.19

STore Value S(tack) Double Value: F8y..

IP > [STVSD | paramdter 1 |

STACK BEFORE: STACK AFTER:
T T
|]
i ;
i i
i .
[}
H
! ADDR T
operand 2 P
—opefand-—
p |
MEMORY :
access path: SA,
| re- |« effective address
- sult
(* STVSD *)
VAR
paraml : word;
param2 : addr;
BEGIN

paraml := memword(ip+1);
operand2.base := stack(lp-7);
operand2.disp := stack(1lp-5):
IF operand2.base.nilbit THEN
exception (nil exception);

memword (operand2+paraml) := stack(1lp-3);
memword (operand2+paraml+2) := stack(lp-1);
lp := 1p - 8;

ip = ip + 3

114

6.2.20 STVSF . 6.2.20

STore Value S(tack) Field Value: DBy .

IP -~ | STVSF | paramdter 1 [param 2|

STACK BEFORE: STACK AFTER:
j 1
1 i
]]
]]
' H
E [1
o) ergnd 2 DR T
p . — ¢ AD 1P
opefand
Ip]
MEMORY :
access path: SA2
re-

sult |+« effective address

115

(* STVSF *)
TYPE
fieldtype = PACKED RECCRD
firstbit : 0..15;
lastbit : 0..15;
END;
VAR
paraml : word;
param2 : fieldtype;
operand2 : addr;
operandl : word;
result : word;
mask : word;

paraml := memword(ip+1)
param2 := menbyte(ip+3)
operand2.base := stack(lp-5);
operand2.disp := stack(lp-3);
IF operand2.base.nilbit THEN
exception(nil exception):
WITH param2 DO
BEGIN
IF firstbit > lastbit THEN
exception(field error);
operandl := stack(1lp-1);
mask := 1 shift(lastbit+1-firstbit)-1;
IF mask < operandl THEN (* unsigned *)
exception(field overflow):
mask := mask shift(15-lastbit);
operandl := operand] shift(15-lastbit)
END;
result := memword(operand2+paraml);
result := result AND (NOT mask):
memword (operand2+paraml) := result OR operandl;
lp := 1p - &;
ip :=ip + 4
END; (* STVSF *)

116

6.3 Manipulation of Storage Areas 6.3
6.3.1 Move a Storage Area : 6.3.1
Parameter 1 is retrieved, and parameter 1 bytes fram the operand
(which is assumed to be a storage area of at least parameter 1
bytes) are moved to the result (which is assumed to be a storage
area of at least parameter 1 bytes).
If parameter 1 is a large value, there will be one or rore pauses
in the execution of the instruction to permit interrupts.
6.3.1.1 MOVEG 6.3.1 1
MOVE General Value: AErox

> [MOVEG |

STACK BEFORE: STACK AFTER:

—— parameter 3 —— r ADDR 1p T
— paramgter 2 —— ¢ ADDR
paramegiter 1
IP T
access
MEMORY : paths: MEMORY :
SR, o Opeé .
ope- — ran
I rand
e—
SAO _ “gult 4 | <paraml> bytes
» 1 from the operand

117

(* MOVEG *)
VAR
paraml : word;
param2 : addr; (* source *)
param3 : addr; (* destination ¥)
BEGIN
paraml := stack(lp-1);
param2.base := stack(1lp-5);

param2.disp := stack(lp-3);
param3.base := stack(1lp-9);
param3.disp := stack(1lp-7);

IF param2.base.nilbit OR param3.base.nilbit THEN exception(nil exception);
IF odd(paraml) THEN
BHEGIN
menbyte(param3) := membyte(param2);
param3 := param3+];
param2 := paraml+];
paraml := paraml-]
END:
WHILE paraml > O DO (* unsigned campare *)
BEGIN
memword (param3) := memword(param2);
param3 := param3 + 2;
param?2 := param2 + 2;
paraml := paraml - 2;
IF curlevel < nextlevel THEN
BEGIN
stack(1lp~7) := param3.disp;
stack(1lp-3) := param2.disp;
stack(1lp~1) := paraml;
GOTO fetch
END
END:
1p := 1p - 10;
ip = ip + 1
END; (* MOVEG *)

118

6.3.1.2 MOVEB 6.3.1.2
MOVE Bytes Value: ACy.,
r -
STACK BEFORE: STACK AFTER:
i T
! '
! I
! !
| l
— paramegter 3 — ¢ ADDR 1P T
— paramgter 2 — ¢ ADDR
]
paramgter 1
P]
access
MEMORY : paths: MEMORY :
SA, | ope— |
| ope- | i rand
rand
SAO re-
I [sult <paraml> bytes
E = from the operand

119

(* MOVEB *)

VAR
paraml
param?2
param3

BEGIN
paraml := stack(lp-1);:
param?2.base := stack(1lp-5):
param2.disp := stack(lp-3);

word;
addr; (* source *)
addr; (* destination *)

LT T T

i

param3.base stack(1lp-9);
param3.disp := stack(lp-7):
IF param2.base.nilbit OR param3.base.nilbit THEN exception(nil exception);
WHILE paraml > O DO (* unsigned campare *)
BEGIN
membyte (param3) := membyte(param?);
param3 := param3 + 1;
param2 := param2 + 1;
param] := param]l - 1;
IF curlevel < nextlevel THEN
o~ BBEGIN
stack(1lp~-7) := param3.disp;
stack(1lp-3) := param2.disp;
stack(lp~1) := paraml;
GOTO fetch

o~

120

6.3.2 Exchange Two Storage Addresses
Two addresses are exchanged indivisibly.
6.3.2.1 CEXCH
Control EXCHange Value: EEHex
P -~ [CEXCH]
STACK BEFORE: STACK AFTER:
i j
] I
i !
i]
' i
— paramgter 2 —— » ADDR P T
— paramgter 1 — r ADDR
b]
MEMORY ¢
access
paths:
- ope- T e
= - SAO — -
| rand 1 _|+— | sult 1 |
- - S‘AO - -
| ope~ |t | re- |
~ rand 2 — sult 2+

The displacement in SAO must be even.

6.3.2

6.3.2.1

four bytes
fram operand 2

four bytes
fram operand 1 -~

121

(* CEXCH *)

VAR

paraml : addr;

param?2 : addr;

workl : addr;

work2 : addr;

BEGIN

paraml .base :

param] .disp stack(1lp-1);

param2.base stack(1p-7);

param2.disp := stack(lp-5);

IF paraml.base.nilbit OR param2.base.nilbit THEN
exception(nil exception);

IF odd(paraml.disp) OR odd(param2.disp) THEN
exception(odd displacement);

work].base := mem(paraml);

workl.disp := mem(paraml+2);

work2.base := mem(param2);

work2.disp := mem(paramt2);

IF work].base.lockbit OR work2.base.lockbit THEN
exception(lock exception);

mem(paraml) := work2.base;

mem(paraml+2) := work2.disp;

mem(param2) := workl.base;

mem(param2+2) := workl.disp;

stack (1p-3);

R

lp := 1p - 8;
ip := ip + 1
END; (* CEXCH *)

122

6.3.3 Campare Two Storage Areas 6.3.3
Parameter 1 is retrieved, and parameter 1 bytes from operand 1
(which is assumed to be a storage area of at least parameter 1
bytes) are compared with parameter 1 bytes from operand 2 (which
is assumed to be a storage area of at least parameter 1 bytes).
If parameter 1 is a large value, there will be one or more pauses
in the execution of the instruction to permit interrupts.

The operands are compared byte for byte. The result is true (= 1)
if all the bytes are pairwise equal; otherwise the result is
false (= 0).

6.3.3.1 STCEA 6.3.3.1
STorage Campare Equal Area Value: EF‘_.Hex
P -

STACK BEFORE: STACK AFTER:
: H
! i
| i
])
] 1
— parameter 3 —— r ADDR Le uth o
— parameter 2 -—— r ADDR P
paramefter 1
T Relation
LP The <parameter 1> first bytes of
. operand 1 equal, byte for byte,
MEMORY : ac:le;? the <parameter 1> first bytes of
paths: operand 2.
- ope..- .
- rand 14 00
A —
e -1
SA
- ope- |0
- rand 2-

123

word;
addr;
addr;
equal : boolean := true;
BEGIN
param! := stack(lp-1);
param2.base := stack(lp-5);

i

param2.disp := stack(1lp-3):
param3.base := stack(1lp-9);
param3.disp := stack(lp-7);

IF param2.base.nilbit OR param3.base.nilbit THEN exception(nil exception);
WHILE paraml > O DO (* unsigned campare *)

BEGIN
IF menmbyte(param2) < membyte(param3) THEN
BEGIN
equal := false;
GOTO finis
END:

paraml := paraml - 1;
param2 := param2 + 1;
param3 := param3 + 1;
IF curlevel < nextlevel THEN
BEGIN
stack(lp-1) := paraml;
stack(1lp-3) := param2.disp;
stack(1lp~7) := param3.disp;
GOTO fetch
END
END;
finis: stack(1p-9)
lp :=1p - 8
ip = ip + 1
END; (* STCEA *)

= word(equal);

- e

6.3.4

Push a Storage Area

6.3.4.1

6.3.4

Parameter 1 is retrieved, and parameter 1 bytes fram the cperand

(which is assumed to be a storage area of at least parameter 1

bytes) are pushed on the stack.

If parameter 1 is a large value, there will be one or more pauses

in the execution of the instruction to permit

REVSM

REtrieve Value Stack Multiple

—*paran'elter 2 —
parameter 1
1
IIP |
MEMORY :
[ope=]
- rand

} ADDR

access
path:

SA,

Value:

STACK AFTER

Chex

S

ul t

|

interrupts.

6.3.4.1

<paraml> bytes
fram the operand

125

(* REVSM *)

VAR
paraml : word;
param? : addr;
BEGIN
paraml := stack(lp-1):
IF 1lp > ms - paraml - 4 (* roam for parameters in case of interrupt *)
THEN exception(stack overflow);
IF odd(paraml) THEN
exception(odd operand);
param2.base := stack(1lp-5);
param2.disp := stack(lp-3):
IF param2.base.nilbit THEN
exception(nil exception);

lp := 1p - 6;
WHILE paraml > O DO (* unsigned campare *)
BEGIN

1p == 1p + 2;

stack(1lp-1) := memword(param?);

param2 := param2 + 2;

paraml := paraml - 2;

IF curlevel < nextlevel THEN

BEGIN
lp := 1p + 6;
stack(1lp~1) :
stack(1p-3) :
stack(1lp~5) :
GOTO fetch

END

END;
ip = ip + 1
END; (* REVSM *)

126

6.3.5 Pop a Storage Area 6.3.5

Parameter 1 is retrieved, and parameter 1 bytes are removed fram
the stack and stored as the result (which is assumed to be a
storage area of at least parameter 1 bytes).

If parameter 1 is a large value, there will be one or more pauses

in the execution of the instruction to permit interrupts.

6.3.5.1 SETST 6.3.5.1

SET STore Value: BChex
r - SETST
STACK BEFORE: STACK AFTER:

T T

1 |

[} [}

[}]

| i

[}

I

— parametter 2 — } ADDR_ Ip T
<paraml> bytes
opefand removed from
the stack
paramegter 1
o]
access
path: MEMORY :
sh, | re-

| sult | (<paraml> bytes

127

(* SETST ¥*)

VAR
paraml : word;
startl,param? : addr;
i : integer;
BEGIN
resume := true;
paraml := stack(lp~1):
startl := lp-1 - paraml;
param?2.base := stack(lp-l-paraml-4);
param2.disp := stack(lp-1-paraml-2);
IF odd(paraml) THEN exception(odd cperand);:
IF param2.base.nilbit THEN exception(nil exception);
FOR i := O TO paraml DIV2-1 DO
BEGIN
merbyte(param2-i*2) := stack(startl1+i*2);
IF interrupt condition THEN
instruction fetch
END;
resume := false;
lp := startl - 5;
ip = ip + 1
END; (* SETST *)

128

PROCEDURE CALIL, AND EXIT 7.

Enter a Routine 7.1

The execution of this instruction initiates a routine call. It

assumes that the actual parameters have been calculated on the
top of the stack.

(tegning 7.1)

STACK BEFORE EXECUTION OF THE INSTRUCTION

(ACTUAL
PARAMETERS

+~——LF

STACK FRAME ANONYMOUS
OF THE CAL- PARAMETERS

LING ROUTINE >~
LOCAL
OBJECTS {

I

|

|

I

|

N j T
ACTUAL |
|

PARAMETERS

[—————— LP

STACK AFTER EXECUTION OF THE INSTRUCTION

|

4

-

—— e e s e — e e e]

ACTUAL I

STACK FRAME PARAMETERS

OF THE < I -
ANONYMOUS

ROUTINE CALLED | protiiors
. .

129

The instruction has three parameters:

- Parameter 1
the value of which specifies the difference between the static
level of the alling routine and the static level of the
routine to be called.

- Parameter 2
the value of which specifies the entry point in the routine to
be called.

The execution of the instruction has the following effect:

- BAn area for the anonymous parameters is reserved and the con-
tents are defined.

- The local frame pointer, LF, is set to address the second byte
of the first anonymous parameter.

- The value of parameter 2 (an ADDR) is assigned to the instruc-
tion pointer, IP.

The anonymous parameters are:
Static link pointer

Dynamic link pointer, i.e. old LF
Return point

7.1.1

PCALS

Procedure CALl Static

130

Value: 7AH ex

IP » | PCAIS Jparaml [p a 1 a m Je t e r 2 |
STACK BEFORE: STACK AFTER:
) []
] []
: : 1
! actual ! actual
' para- ! > para-
i meters meters
I = |
LP i anonymous
1 ? para-
| meters
Lp
(* PCALS *)
VAR

paraml : byte;
param2 : addr;
FUNCTION get if(level : byte) : addr;

EXTERNAL; (* to retrieve address of

BEGIN

IF 1lp > ms - 12 THEN exception(stack overflow)

param] := membyte(ipt+l);

intermediate frame *)

param2.base := memword(ip+2);
param2.disp := memword(ip+4);
stack(1lp+l) := get if(paraml).base; (* static link *)
stack(1lp+3) := get if(paraml).disp;
stack(1lp+5) := lf.base; (* dynamic link *)
stack(1lp+7) := 1f.disp;
stack(1p+9) := ip.base; (* return point *)
stack(1lp+11) := ip.disp + 6;
1f := 1p + 2;
ip := param?2;
1p :=1p + 12

END; (* PCALS *)

7.1.1

131

7.1.2 PCALD

Procedure CALL Dynamic Value: 79Hex
P -
STACK BEFORE: STACK AFTER:
[} ¥
: !
] [}
' actual) 1 actual
! para- ' para-
i meters meters
—— paramgter 2— % entry P [—
anonymous
__paran-eter 7 — Static I — para"
meters
Lp | []
-
.]

Parameter 1 specifies explicitly the ADDR of the stack frame to
which the static link is to be connected.

(* PCALD *)

VAR
entry point : addr;
BEGIN
IF 1p > ms - 4 THEN exception(stack overflow)
entry point.base := stack(lp-7);
entry point.disp := stack(lp-5);

stack(1p~-7) := stack(1lp-3); (*static link *)
stack(1lp-5) := stack(lp-1);

stack(1lp~3) := lf.base; (* dynamic link *)
stack(1lp-1) := 1f.disp;

1f := 1lp -6;

stack(1lp+1) := ip.base; (* return point *)
stack(1lp+3) := ip.disp + 1;

ip := entry point;

lp: 1p + 4

END; (* PCALD *)

132

7.2 Exit from a Routine
The execution of this instruction terminates the current routine
call by returning to the point of call. The stack frame at the
top of the stack is removed.
7.2.1 PEXIT
Procedure EXIT Value: 7BHex
I -~ | PEXIT | parameter |
STACK BEFORE: STACK AFTER:
T : 3
; !
i !
: []
: : stack frame
i : | containing
\ : the point
1 i of call
; :
[} i
1]
1
[}
i) f \
: 1P parameters
! bytes
i
!
! stack frame
] [of the
| current
! procedure
1
i
J
1
|)
b]
(* PEXIT *)
BEGIN

lp := 1f - memword(ip+1);

ip.base := stack(1lf+7);

ip.disp := stack(1lf+9);

1f.disp := stack(1f+5)
END; (* PEXIT *)

7.2

7ﬂ2.]

133

JUMPS 8.

8.1

Unconditional Jumps 8.1

8.1.1

The operand is retrieved, and a result, which is interpreted as
an ADDR, is calculated and assigned to the instruction pointer,
IP.

JMPHC 8.1.1

JuMP H (path) local Context Value: 69y,

IP - | MPHC | p al]r a 4§ e tJe r |

STACK BEFORE: STACK AFTER:

Pt = - =

e e —

ip := result;

(* JMPHC *)
VAR

param : addr;
BEGIN

param.base := memword(ip+1);
param.disp := memword(ip+3);
ip.base := param.base;
ip.disp := param.disp

END; (* JMPHC *)

JMPPD

JuMP P (path) Direct

P > | JMPPD |

STACK BEFORE:

- -

—o peflr and-

- !
ip := result;

(* JMPPD *)

BEGIN
ip.base := stack(1lp-3);
ip.disp := stack(lp~1);
lp :=1p - 4

END; (* JMPPD *)

134

Value: GAHex

T T ——

8.1.3

135

JMPRW 8.1.3
JuMP Relative Word Value: 67,
IP +» [JMPRW | paraneter |
STACK BEFORE: STACK AFTER:

T ¥

i i

[} i

|]

] 1

] -4

|
F—o pefand-— P T

p]

ip := result;

The parameter is interpreted as a signed integer (relative ad-
dress) and added to the displacement field of the instruction
pointer (ip.disp). A carry is not transferred to the base field
(ip.base), but a 16-bit wrap—around is used.

(* JMPRW *)
VAR
param : word;
BEGIN
param := memword(ip+l1);

ip := ip + param
*

136

8.2 Case Jump 8.2

The operand is interpreted as the start address (ADDR) of a table
consisting of a range descriptor and program points (ADDR's). The
parameter is interpreted as an index to this table. The program
point selected by the index is assigned to the instruction
pointer, IP.

8.2.1 JMCHT 8.2.1

JuMp Case H (path) Table Value: 6By,

P > | JHT | p alr a ;1 e tle r |

STACK BEFORE: STACK AFTER:
¥ T
! I
H |
| |
i !
! [
‘ T P T CASE JUMPTARLE:
e PARAMETER—— min. value
max. value
otherwise -
ADDR
|
[base min. value
4 ¥ (max. value+ ADDR

min. value + 1)< |

bytes
case max. value

ADDR

137

(* JMCHT *)
VAR
param : addr:;
operand : word;
BEGIN
param.base := memword(ip+1);
param.disp := memword(ip+3):
operand := stack(lp-1):
IF (operand < memword(param))
OR (operand > memword(paramt+2)) THEN

BEGIN
ip.base := memword(paramt+4);
ip.disp := memword(paramt6)

END

ELSE

BEGIN
operand := operand - memword(param);
ip.base := memword(param+8+operand*4);
ip.disp := memword(paramt+]0O+operand*4)

g END;
lp :=1p - 2
END; (* JMCHT *)

o

138

8.3 Conditional Jumps with One Operand 8.3
The value of the operand is tested according to a relation (e.g.
operand = 0}. If the relation holds, a result is calculated and
assigned to the instruction pointer, IP. The result, which is in-
terpreted as an ADDR, is calculated as

result := IP + parameter

8.3.1 JMZEQ 8.3.1
JuMp Zero EQual Value: 61 Hex
IP » [OMZEQ | parankter I
STACK BEFORE: STACK AFTER:

T T
] i
i]
L] [
i]
! :
i |
opefand T
T P
LP

relation: operand = 0

(* JMZEQ *)
VAR
param : word;
operand : integer;
BEGIN
param := memword(ip+l);
operand := stack(lp-1):
IF operand = 0 THEN
ip := ip + param

ELSE
ip := ip + 3;
1p :=1p - 2

END; (* IMZEQ *)

8.3.2

139

JMZNE
JuMp Zero Not Equal Value:
Ip ~ [JMINE | parameter |

STACK BEFORE: STACK AFTER:

62

Hex

P S—
A R

opei:and T

1 1"

relation: operand <> 0

(* JMZNE *)

VAR
param : word;
operand : integer;
BEGIN
param := memword(ip+1):;
operand := stack(lp-1);
IF operand < O THEN
ip := ip + param;
ELSE
ip := ip + 3;
lp :=1p - 2
END; (* JMZNE *)

8'3.2

8.3.3

JMZLT

Judp Zero Less Than

I » | T | parankter

STACK BEFORE:

“—b——--——-
)

ope

-]

relation: operand < 0

STACK AFTER:

8.3.3

Value: 63H ex

—— s

The operand is interpreted as a signed integer.

(* amzLT *)

VAR
param : word;
operand : integer;
BEGIN
param := memword(ip+l);
operand := stack(lp-1);
IF operand < O THEN
ip := ip + param

8.3.4

JMZGT

JuMp Zero Greater Than

r -~ | Jmzcr | parameter

STACK BEFORE:

Ip !

relation: operand > 0

STACK AFTER:

8.3.4

Value: 64Hex

The operand is interpreted as a signed integer.

(* JMZLT *)

VAR
param : word;
operand : integer;
BEGIN
param := memword(ip+1);
operand := stack(lp-1);
IF operand > O THEN
ip := ip + param
EISE
ip:= ip + 3;
lp :=1p - 2
END; (* JMZGT *)

8.3.5

JMZLE

142

JuMp Zero Less Than or Equal

Ir » | JMIE | paraneter |

STACK BEFORE:

O
e}
0]
Hﬂ-uﬂ-&-—\!
fu

P]

relation: operand <= 0

STACK AFTER:

8.3.5

Value: 65H ex

Pt o -

The operand is interpreted as a signed integer.

(* IMZIE *)

VAR
param : word;
operand : integer;
BEGIN
param := memword{ip+1):
operand := stack(lp-1);
IF operand <= 0 THEN
ip := ip + param
EISE
ip = ip + 3;
lp :=1p - 2
END; (* JMZLE *)

8.3.6

143

JuMp Zero Greater Than or Equal Value: 66Hex

> [IM2GE | parameter |

STACK BEFORE: STACK AFTER:

. - -

P

relation: operard >= 0

The operand is interpreted as a signed integer.

(* IMZGE *)
VAR
param : word;
operand : integer;
BEGIN
param := memword(ip+1);
operand := stack(lp-1);
IF operand >= O THEN
ip := ip + param;

EISE
ip := ip + 3;
lIp := 1p - 2

END; (* IMZGE *)

144

9, OPERATORS
9.1 Monadic Operators
A single operand is retrieved, and a result is produced from this
operand in accordance with the operator.
9.1.1 NEG
NEGate Value: BOHex
STACK BEFORE: STACK AFTER:
H i
] I
I |
} i
! :
n 1
opefrand regult
p ! 2 T

operator: negative (monadic minus)

The operand is interpreted as a signed integer.
The result is the twos complement of the operand.
(* NEG *)

VAR
result : integer;
BEGIN
result := -stack(lp-1):
IF (overflow bit=1) AND (ps.suppr_overflow=0) THEN
exception(overflow);
stack(lp-1) := result;
ip := ip + 1
END; (* NEG *)

9.1

9.1

el

9.1.

145

NOT
NOT Value: 3DHex
 ~ [NoT |
STACK BEFORE: STACK AFTER:

T T

[]]

1 [}

1 [}

i I

i i

I]

1

opefrand regult

operator: not

The operand is interpreted as a boolean value.

The result is true (if the operand is false) or false (if the
operand is true).

(* NOT *)
BEGIN
IF stack(lp-1) = 1 THEN
stack(lp-1) := false
ELISE
stack(1lp-1) := true;
ip := ip + 1

END; (* NOT *)

9.1.

9.1.3

ABS

ABSsolute Value

- [aBs |

STACK BEFORE:

operator: absolute value

The operand is interpreted

The result is the absolute

(* ABS *)

VAR
operand : integer;
BEGIN
operand := stack(lp-1);
IF operand < O THEN
BEGIN
operand := -operand;

. A]

146

9.1.3

Value: S]Hex

STACK AFTER:

resiult

as a signed integer.

value of the operand.

IF (overflow bit=1) AND (ps.suppr overflow=0) THEN

exception(overflow);
stack(1lp-1) := operand
END
ip = ip + 1
END; (* ABS *)

e ~e

9.1.4

147

COMPL
COMPLement Value: 52Hex
P -
STACK BEFORE: STACK AFTER:
: | !
' I
! I
! |
[)
: : !
opekand regqult

. R T

operator: ones camplement

The operand is interpreted as a signed integer.
The result is the ones camplement of the operand.
(* COMPL *)

TYPE
bitword = PACKED ARRAY(0..15) OF bit;
VAR
i : integer;
operand : bitword;
BEGIN
operand := stack(lp-1);
FOR 1 := 0 TO 15 DO
operand(i) := 1 - operand(i);
stack(1lp~-1) := operand;
ip == ip + 1
END; (* COMPL *)

9.1.4

148

9.1.5 TNTLL

Test NILL address Value: 39,

1p - [TNILL

STACK BEFORE: STACK AFTER:

TR ————

La
o
Lt ——— ———]
o
—
o+

| parameter | }ADDR
T LP
Lp
access
MEMORY : path:
SAO
Lo perandd«——

The operand must start on a word boundary.

The cperand is retrieved, and the result true (= 1) is delivered
if the nilbit is set; otherwise false (= 0).

Warning: The parameter must be a valid address, not nil; other-
wise the result of executing TNILL is unpredictable.

(* TNILL *)

VAR
parameter : addr;
operand : addr;
result : word;

BEGIN

parameter.base := stack(lp-3):
parameter.disp := stack(lp-1);
operand := memaddr(parameter);
result := operand.base.nilbit;
stack(1lp-3) := result;

lp := 1p - 2;

ip s==ip + 1
END; (* TNILL *)

9.1.6

149

TOPEN

Test OPEN Semaphore Value: 3AHex

1p + [TOPEN

STACK BEFORE: STACK AFTER:
T i
i |
I |
| |
| I
H !
| parameter | }.ADDR result
¥] LP
LP
access
MEMORY : path:
SA
0
- semaphore A +~——

The operand must start on a word boundary.

The operand, which is interpreted as a semaphore, is retrieved,
and the result true (= 1) is delivered if the semaphore is cpen;
otherwise false (= 0).

Warning: The parameter must be a valid address, not nil; other-
wise the result of executing TOPEN is unpredictable.

(* TOPEN *)

VAR
parameter : addr;
semaphore : addr;
result : word;

BEGIN

parameter.base := stack(lp~3);
parameter.disp := stack(lp-1):
semaphore := memaddr(parameter);
IF semaphore.base.nilbit = 1 THEN
result := 0
EISE
result := 1 - semaphore.disp AND 1;
stack(1lp-3) := result;
1p :=1p - 2;
ip = ip + 1

END: (* TOPEN *)

9.1.6

150

9.1.7 TLOCK

Test LOCKed Semaphore Value: 3BHex

Ip ~+~ TLOCK

STACK BEFORE: STACK AFTER:

H
®
h“ﬂ” NP ——
[
»
ot

| parameter | } ADDR
LP
LP
access
V.
MEMORY: path:
SAO

- semaphore

The operand must start an a word boundary.

The operand, which is interpreted as a semaphore, is retrieved,
and the result true (= 1) is delivered if the semaphore is lock-
ed; otherwise false (= 0).

Warning: The parameter must be a valid address, not nil; other-
wise the result of executing TLOCK is unpredictable.

(* TLOCK *)

VAR
parameter : addr;
samaphore : addr;
result : word;

BEGIN

parameter .base := stack(1lp-3);
parameter.disp := stack(lp-1);
semaphore := memaddr (parameter);
IF semaphore.base.nilbit = 1 THEN
result := 0
EISE
result := semaphore.disp AND 1;
stack(1lp-3) := result;
lp = 1p - 2;
ip = ip + 1

END; (* TLOCK *)

151

9.2 Dyadic Operators 9.2

Operands 1 and 2 are retrieved, and a result is produced fram
these ¢perands in accordance with the cperator.

9.2.1 ADD 9.2.1
ADD Value: 44y,
P -

STACK BEFORE: STACK AFTER:
i i
i i
i I
i i
i i
' !
operfand 1 regult
operpnd 2 T
T LP
Lp

operator: add

Operands 1 and 2 are interpreted as signed integers.

(* ADD *)
VAR

operand]l, cperand2, result : integer;
BEGIN

operandl := stack(1lp-3);

operand2 := stack(lp-1);
result := operandl + operand2;
IF (overflow bit=1) AND (ps.suppr_overflow=0) THEN

exception(overflow);
stack(1lp-3) := result;
lp := 1p - 2;
ip := ip + 1

END; (* ADD *)

152

9.2.2 SUB 9.2.2
SUBtract Value: 45H ex
Ip > | SUB |
STACK BEFORE: STACK AFTER:

! !

I |

] I

]]

|]

I I
operhnd 1 result
operpgnd 2 T

T LP
Lp

operator: subtract

Operards 1 and 2 are interpreted as signed integers.

Operand 2 is subtracted fram operand 1.

(* SUB *)
VAR

operandl, operand2, result : integer;
BEGIN

operandl := stack(lp-3);

operand2 := stack(lp-1);
result := operand]l - operand2;
IF (overflow bit=1) AND (ps.suppr overflow=0) THEN
exception(overflow); -
stack(1lp=-3) := result;
l1p == 1p - 2;
ip := ip + 1
END; (* SUB *)

-,

9.2.3

153

MUL 9.2.3

MULtiply Value: 49,

STACK BEFORE: STACK AFTER:

-—— e -
- e o

]
®
LCRY
c
i_J
t

olo
ik o]
oo
K |R
W
=1 !
o o}
N—I

operator: multiply
Operands 1 and 2 are interpreted as signed integers.

The result contains the 16 least significant bits of the product.

(* MUL *)
VAR

operandl, operand2, result : integer;
BEGIN

operandl := stack(lp-3);

operand2 := stack(lp~1);
result := operand]l * operand2;
IF (overflow bit=1) AND (ps.suppr_overflow=0) THEN

exception(overflow);
stack(1lp-3) := result;
lp := 1p - 2;
ip = ip + 1

END; (* MUL *)

154

9.2.4 DIV 9.2.4
DIVide Value: 4AHex
r -

STACK BEFORE: STACK AFTER
i |
[} []
! i
l j
! 4
operpgpnd 1 regult
operpgpnd 2 T
T Ip
Lp

operator: divide

Operands 1 and 2 are interpreted as signed integers.
Operand 1 is the dividend and operand 2 the divisor.
(* DIV *)

VAR
operandl, operand2, result : integer;
BEGIN
stack(1p-3);
operand2 stack(1lp-1):
IF (operand2=0) AND (ps.suppr_overflow=0) THEN
exception(overflow);
result := operandl DIV operand2; (* integer division *)
IF (overflow bit=1) AND (ps.suppr_overflow=0) THEN
exception(overflow) ;
stack(1lp-3) := result;
lp = 1p - 2;
ip == ip + 1
END; (* DIV *)

9.2.5

155

MOD 9.2.5
MODulus Value: 4BHex
P >
STACK BEFORE: STACK AFTER:
‘lI]
: !
! i
: ?
operhnd 1 redult
operpgnd 2 T
J p
LP

operator: modulus

Operands 1 and 2 are interpreted as signed integers.

The result is the remainder fram the ocperator divide (see above).
The result has the sign of the first operand.

(* MOD *)

VAR
operandl, operand?, result : integer;
BEGIN
operandl := stack(lp-3);
operand2 := stack(lp-1):
IF (operand2=0) AND (ps.suppr overflow=0) THEN
exception(overflow); N
result := operandl - ((operandl DIV operand2) * cperand2);
IF (overflow bit=1) AND (ps.suppr overflow=0) THEN
exception(overflow) ; -
stack(1lp~3) := result;
1p := lp - 2;
ip = ip + 1
END; (* MOD *)

156

9.2.6 AND 9.2.6
AND Value:4CHex
r > [AaD |
STACK BEFORE: STACK AFTER:

T]

] i

] !

i |

i !

1 1

i !
operhnd 1 regult
operpnd 2 J

5
-,
8

operator: AND

]

Operands 1 and 2 are interpreted as ordered sets of 16 logical
values, true (=1) or false (= 0).

The logical operator AND cperates bit for b:i:t on the operands to
produce the 16 bits of the result.

(* AND *)

TYPE

bitword = PACKED ARRAY(0..15) OF bit;
VAR

operandl, operand2, result : bitword;

i : integer;
BEGIN

operandl := stack(1lp-3);

operand2 := stack(lp-1);

FOR i := 0 TO 15 DO

CASE operandl (i) + operand2(i) OF

0 : result(i) := 0;
1 : result(i) := 0;
2 : result(i) := 1
END;
stack(1lp~3) := result;
lp := 1p - 2;
ip = ip + 1

END; (* AND *)

9-2-7

157

OR 9.2.7
OR Value:ZLDHex

P - [OoR]

STACK BEFORE: STACK AFTER:

T T

[I

] '

[}]

]

! .'
operphnd 1 regult
operpnd 2 T

T Lp
Lp

operator: OR

Operands 1 and 2 are interpreted as ordered sets of 16 logical
values, true (=1) or false (= 0).

The logical operator OR operates bit for bit on the cperands to
produce the 16 bits of the result.

(* OR *)
TYPE
bitword = PACKED ARRAY(0..15) OF bit;
VAR
operandl, operand2, result : bitword;
i : integer:;
BEGIN
operandl := stack(lp-3);
operand2 := stack(lp-1);

FOR i := 0 TO 15 DO
CASE operandl (i) + operand2(i) OF
0 : result(i) :=
1 : result(i) :=
2 : result(i) :=
END;
stack(1lp-3) := result;
lp := 1p - 2;
ip = ip + 1
END; (* OR *)

9.2.8

158

SHC 9.2.8
SHift Cyclic Value: 53, .
P -~ SHC
STACK BEFORE: STACK AFTER:
H i
] [}
I |
i [}
I]

[}
operhnd 1 reqult
operpnd 2 T

T Lp
Lp

operator: cyclic shift .

Operands 1 is interpreted as an ordered set of 16 logical values,
true (=1) or false (= 0).

Operand 2 is interpreted as a signed integer. The 16 bits of
operand 1 are shifted cyclically the number of positions specifi-
ed by operand 2. If operand 2 is positive, the shift is to the
left; otherwise the shift is to the right.

159
(* sHC *)

TYPE
bitword = PACKED ARRAY(0..15) OF bit;
VAR
operandl, result : bitword;
operand2 : integer;
i : integer;
j : integer;
b : bit;
BEGIN
operandl := stack(1lp~3);
operand2 := stack(lp-1);
operand2 := operand2 MOD 16;
IF operand2 < O THEN
FOR i := - 1 DOWNTO operand2 DO
BEGIN
b := operandl(15);
FOR j := 15 DOWNTO 1 DO
operandl (j) := operandl(j-1);
operandl (0) := b
END
ELSE
FOR i := 1 TO operand2 DO °*
BEGIN
b := operandl (0);
FOR j := 1 TO 15 DO
operandl (j-1) := operandl(j);
operandl (15) :=.b
END:
stack(1lp~-3) := operandl;
lp := 1p - 2;
ip = ip + 1
END; (* SHC *)

o

160

9.2.9 ULT 9.2.9
Unsigned Less Than Value: 31, .
P -

STACK BEFORE: STACK. AFTER:
i |
| !
! |
! 1
! !
operfhnd 1 redqult
cperkand 2 T
T P
LP

operator: operand 1 < operand 2
Operands 1 and 2 are campared according to the relation Less
THAN. The result is true (= 1), if the relation holds; otherwise

the result is false (= 0).

Operand 1 and 2 are interpreted as unsigned integers (i.e.
nurbers in the range 0..65535).

(* uLT *)

VAR —

operandl, operand2: word;
BEGIN

operandl := stack(lp-3):

operand2 := stack(lp-1);

IF operand] < operand2 THEN

stack(1lp-3) := true
ELSE
stack(1lp-3) := false;
1p == 1p - 2;
ip = ip + 1
END; (* ULT *)

T -

9.2.10

161

EQ
EQual Value:32Hex
>~ [E]
STACK BEFORE: STACK AFTER
5 i
i i
! 1
s !
operpgnd 1 reqdult
ocoperpgnd 2 T
T P
LP

operator: operand 1 = operand 2

Operands 1 and 2 are campared according to the relation EQual.
The result is true (= 1), if the relation holds; otherwise the
result is false (= 0).

(* EQ *)

VAR
operandl, operarnd2: integer;
BEGIN
operand]l := stack(lp-3);
operand2 := stack(lp-1):;
IF operandl = cperand2 THEN
stack(1lp-3) := true
ELSE
stack(1lp-3) := false;
1p 1p - 2;
ip ip+1
END; (* EQ *)

nu

9.2.10

9.2.11

162

NE

Not Equal Value: 33Hex
r > []

STACK BEFORE: STACK AFTER:

¥ []

' i

')

] i

! [

- !
operhnd 1 redult
operpnd 2 T

T P
P

operator: operand 1 <> operand 2

Operands 1 and 2 are campared according to the relation Not
Equal. The result is true (= 1), if the relation holds; otherwise
the result is false (= 0).

(* NE *)

VAR
operandl, operand2: integer;
BEGIN
operandl := stack(lp-3);
operand2 := stack(lp-1);
IF operandl = operand2 THEN
stack(1lp-3) := false
ELSE
stack(1lp-3) := true;
lp == 1p - 2;
ip = ip + 1
END; (* NE *)

9.2.11

163

9.2.12 LT : 9.2.12
Less Than Value: 34y .
P -

STACK BEFORE: STACK AFTER:
i
I [}
] i
' I
! !
operpnd 1 redult
operpnd 2 T
T LP
Lp

operator: cperand 1 < operand 2
Operands 1 and 2 are campared according to the relation Less
Than. The result is true (= 1), if the relation holds; otherwise

the result is false (= 0).

Operands 1 and 2 are interpreted as signed integers.

(* LT *)
VAR
operandl, operand2 : integer;
BEGIN
operandl := stack(lp-3);
operand2 := stack(lp~1);

IF operandl < operand2 THEN
stack(1lp-3) := true
ELSE
stack(1lp-3) := false;
1p == 1p - 2;
ip := ip + 1
END; (* LT *)

9.2.13

GT
Greater Than
» - []
STACK BEFORE:
i
]
]
]
I
'
operf@gnd 1
operpgpnd 2
P]

164

operator: operand 1 > operand 2

Operands 1 and 2 are campared according to the relation Greater

Than. The result is true (= 1), if the relation holds; otherwise

the result is false (= 0).

Operands 1 and 2 are interpreted as signed integers.

(* ar *)

VAR

operandl, operand2 : integer;

BEGIN
operandl := stack(1lp-3):;
operand2 := stack(lp-1):

9.2.13

Value: 35Hex
STACK AFTER:

]

]

]

]

[}

i

]

redult

LP T

IF operand]l > cperand2 THEN

stack(1lp-3) := true
ELSE

stack(1lp-3) := false;
1lp == 1p - 2;
ip == ip + 1
END; (* GT *)

9.2.14

165

LE
Less Than or Equal Value: 36,
- [IE]
STACK BEFORE: STACK AFTER:
i H
i |
L} i
1]
| 1
: :
opergnd 1 regult
opergpnd 2 T
T p
P

operator: operand 1 <= operand 2

Operands 1 and 2 are campared according to the relation Less

Than or Equal. The result is true (= 1), if the relation holds;
otherwise the result is false (= 0).

Operands 1 and 2 are interpreted as signed integers.

(* LE *)

VAR
operandl, operand2 : integer;
BEGIN
operand]l := stack(lp-3);
operand2 := stack(lp~1):
IF operand]l <= operand2 THEN
stack(1lp-3) := true
ELSE
stack(1lp-3) := false;
lp := 1p - 2;
ip := ip + 1
END; (* LE *)

9.2.14

166

9.2.15 GE 9.2.15
Greater Than or Equal Value: 37H ex
r > [E]
STACK BEFORE: STACK AFTER:

reslul t

]

operator: operand 1 >= operand 2

Operands 1 and 2 are campared according to the relation Greater
Than or Equal. The result is true (= 1), if the relation holds;

otherwise the result is false (= 0).
Operands 1 and 2 are interpreted as signed integers.
(* GE *)

VAR
operand]l, operand2 : integer;
BEGIN
operand]l := stack(lp-3):
operand2 := stack(lp-1):
IF operandl >= operand2 THEN
stack(1lp-3) := true;
ELSE
stack(1lp-3) := false;
lp := 1p - 2;
ip ip + 1
END; (* GE *)

N

167

9.2.16 XOR

EXclusive OR Value: 4B .
P >
STACK BEFORE: STACK AFTER:
T T
| j
I |
I i
i 3
operhAnd 2 (op1) M (op2)
operpgnd 1 T
T LP
p

result := (operand] operand2) (operandl operand2)
(* XOR *)

TYPE

bitword = PACKED ARRAY(0..15) OF bit;
VAR

operandl, operand2, result : bitword;

i : integer;
BEGIN

operandl := stack(lp-3);

operand2 := stack(lp-1);

FOR i := 0 TO 15 IO

CASE operandl (i) + operand2(i) OF

0: result(i) := O;
1: result(i) := 1;
2: result(i) =0
END;
stack(1lp-3) := result;
1p == 1p - 2;
ip = ip + 1

END; (* XOR *)

9.2.16

9.2.17

UADD

Unsigned ADD

» ~ [uapD |

STACK BEFORE:

operh
operh

s R je’
jeljjeh
SN

L,

operator: unsigned add

168
9.2.17

Value: 42He.x

STACK AFTER:

<l o

(op1) (op2)

Operands 1 and 2 are interpreted as unsigned integers (i.e. rum~

bers in the range 0..65535).

(* UADD *)

VAR

operandl, operand2, result

BEGIN

operandl :
operand?2 :

= stack(1lp-3);
= stack(1lp-1);

: word;

result := operandl + operand2;

IF (carry bit=1) AND (ps.suppr overflow=0) THEN —
exception(overflow); -

stack(1lp-3) := result;

lp := 1p - 2;

ip = ip + 1

END;

(* UADD *)

169

9.2.18 USUB 9.2.18
Unsigned SUBtract Value: 43Hex
® -

STACK BEFORE: STACK AFTER:
T T
!]
| !
! |
i !
operpnd 2 (op1) M (op2)
operpand 1 T
T p
p

operator: unsigned subtract

Operands 1 and 2 are interpreted as unsigned integers (i.e. rum—
bers in the range 0..65535).

(* UADD *)

VAR
operandl, cperand2, result : word;
BEGIN
operandl := stack(1lp-3);
operand2 := stack(lp-1);
result := operand]l - operand2;
IF (carry bit=0) AND (ps.suppr overflow=0) THEN
exception(overflow); -
stack(1lp-3) := result;
1p :=1p - 2;
ip = ip + 1
END; (* uAaDD *)

170

9.2.19 UMUL 9.2.19
Unsigned MULtiply Value: 46Hex
P -
STACK BEFORE: STACK AFTER:

—

(op1) M (op2)

I

=N

— |l

operator: unsigned multiply

Operands 1 and 2 are interpreted as unsigned integers (i.e. rum-
bers in the range 0..65535).

(* UMUL *)

VAR

operandl, operand2, result : word;
BEGIN

operandl := stack(lp-3);

operand? := stack(lp-1);

result := operandl * operand2;

IF (carry bit=1) AND (ps.suppr_overflow=0) THEN

exception(overflow);

stack(1lp-3) := result;

lp := 1p - 2;

ip = ip + 1
END; (* UMUL *)

17

9.2.20 UDIV 9.2.20

Unsigned DIVide Value: 47y
P -~
STACK BEFORE: STACK AFTER:
T i
i I
f |
! i
i !
operpgnd 2 (op1) M (op2)
operiand 1 j
T Lp

operator: unsigned divide

Operands 1 and 2 are interpreted as unsigned integers (i.e. num-
bers in the range 0..65535).

(* UDIV *)

VAR
operandl, operand2, result : word;
BEGIN
operandl := stack(lp-3);
operand2 := stack(lp-1);
IF (operand2=0) AND (ps.suppr overflow=0) THEN
exception(overflow);
result := operandl DIV operand2; (* integer division *)
stack(1lp-3) := result;
1p = 1p - 2;
ip == ip + 1
END; (* UDIV *)

172

9.2'21 UmD 9.2.21
Unsigned MODulus Value: 48,
P -

STACK BEFORE: STACK AFTER:
T L}
! i
| f
) i
: !
operpgnd 2 (op1) M (op2)
opergnd 1 T
T Lp
Lp
operator: unsigned modulus
Operands 1 and 2 are interpreted as unsigned integers (i.e. num-
bers in the range 0..65535).
(* UMOD *)
VAR
operandl, cperand2, result : word;
BEGIN
operand] := stack(lp-3);
operand2 := stack(lp-1);:
IF (operand2=0) AND (ps.suppr_overflow=0) THEN
exception(overflow);

result := operand] - (operandl DIV operand2) * cperand2;
stack(1p-3) := result;
1p := lp - 2;
ip = ip + 1
END; (* uMOD *)

9.2.22

173

MADD

Modulo ADD Value: 40, .

P - MADD

STACK EEFORE: STACK AFTER:

—-—

(op1) ¥ (op2)

o]

33
— ||
e 12

operator: addition modulo 64K

The operands are interpreted as unsigned integers (i.e. numbers
in the range 0..65535) and the result is modulo 64K, i.e. over-
flow will not occur.

(* MADD *)

VAR
operandl, operand?, result : word;
BEGIN
operandl := stack(lp-3):
operand2 := stack(lp~1);:
result := operandl + operand2;
stack(1lp-3) := result;
lp == 1p - 2;
ip = ip + 1
END; (* MADD *)

9.2.22

9.2.23

174

MSUB
Modulo SUBtract Value: 41y,
I
STACK BEFORE: STACK AFTER:
] H
i ‘
| |
i i
i f
operpnd 2 (op1) VYl (op2)
operpnd 1
r s -
LP

operator: subtraction modulo 64K

The operands are interpreted as unsigned integers (i.e. numbers
in the range 0..65535) and the result is modulo 64K, i.e. over-
flow will not occur.

(* MSUB *)
VAR

operandl, cperand2, result : word;
BEGIN

operandl := stack(lp-3):

operand2 := stack(lp-1);
result := operandl - operand2;

stack(1lp~3) := result;
lp = 1p - 2;
ip = ip + 1

END; (* MSUB *)

9.2.23

175

9.2.24 CRC16 9.2.24
Cyclic Redundancy Check Value: 4Fp.,
T -

STACK BEFORE: STACK AFTER:
T T

] '

i |

! '

i !
operpnd 2 (op1) M (op2)
operpnd 1 j

T Lp

operator: crclé
- Operandl represents the polynamium

£ (x) = a5 x15+a14 x14+ ceo t 237 X+ 2g

where aj = operand] .bit 5

Note that }:ait0 is the most significant bit.
- Operand? represents the polynamium

g (x) = x1© + bg x1? + by x4

+ e + b] X + bo
where bj = operand2.bitj.

Note that x ° by convention is implicitly given.

176

The instruction delivers the remainder by the division

(£ (x) * x8)/g (x)
(* CrRC16 *)

VAR
operandl, operand2 : integer;
i : integer;

BEGIN
operand]l := stack(1lp-3);
operand2 := stack(lp-1);
FOR i :=1T08 DO

IF (operandl AND 1) = 1 THEN
operand] := (operandl SHIFT (-1)) XOR operand2
EISE

operandl := operandl SHIFT (-1);
stack(1lp~3) := operandl;
lp := 1p - 2;
ip ;= ip + 1
END; (* CRC16 *)

9.3

177

Operations on Sets

The representation of a set on the stack occupies a rumber of
words. These words are regarded as a consecutive array of bits
numbered from O on, the most significant being the rightmost bit
in the last used byte in the set representation. The set (.oper-
and 1 .. operand 2.) is represented by setting all bits from
operand 1 to operand 2 to one in the consecutive array of bits.

Note that the sets (.a..b.) and (.0..b.) occupy the same space on
the stack, where "a" and "b" are greater than zero.

The size (in bytes) of the resulting set is defined in the fol-

lowing word.

STACK

> size bytes

size

Figure 15: Stack Representation of the Set (.a..b.), 0 <= a <= b,
size = (1 + b DIV 16) * 2.

9.3

178

Set operations may be interrupted during execution, and then re-
sumed after interrupt handling at a higher level. Set operations
may therefore be activated in two modes, namely, the normal mode
and the resumption mode. The mode is detected by means of the
resume bit in the ps register of the register set. Execution in
the normal mode starts with the setting of the resume bit and
testing against stack overflow in the event of an interrupt.

During the execution of a set operation, the interrupt situation
is tested within the looping parts of the operation. If an in-
terrupt with higher priority occurs, the contents of the neces-
sary working registers (7 words) are dumped on the top of the
stack and the instruction is terminated without updating the in-
struction pointer. When the operation is resumed, the register
contents are reestablished and the operation continues. In the
algorithms below, this dump-exit-resume sequence is indicated by

'means of a procedure call (instruction fetch).

Construct a Set fram a Subrange

9.3.]

Operands 1 and 2 are retrieved, and a set is constructed and
pushed on the stack as the result. The set is initialized to con-—
tain the integers in the subrange (operand 1 .. operand 2). Oper-
and 1 must be greater than or equal to zero. If operand 2 is less
than operand 1, the set will be empty.

2.3.1

179

SETCR
SET CReate Value: 56,
P -
STACK BEFORE: STACK AFTER:
T i
| | :
: i
f | !
operand 1
operpmpnd 2 ——r e sfu l t — ; size of result
p]
.]

size of result: if operand2 >= gperandl then:

(1 + operand2 DIV 16) * 2 + 2,

otherwise: 2

Operands 1 and 2 are interpreted as the ordinal numbers of the
first and last elements to be included in the set. The smallest
ordinal number of an element in a set is O.

9.3.1.1

180

(* SETCR *)
TYPE
bit = 0..1;

setareatype = PACKED ARRAY(0..n) OF bit;
settype = PACKED RECORD
setarea : setareatype:;
size : integer
END:;
wordarray = ARRAY(O..(n DIV 16)) OF word;
VAR
i : integer:;
result : settype:;
resultwords : wordarray:;
operandl, operand2 : word;
PROCEDURE change(VAR s : settype; VAR w : wordarray); EXTERNAL;
BEGIN
operandl := stack(lp-3):
operand2 := stack(lp-1):
IF operandl > operand2 THEN
result.size := 0
ELSE
result.size := (1 + operand2 DIV 16) * 2;
IF operand] < O THEN operandl := O; s
IF lp > ms - (result.size + 2) - 14 THEN exception(stack overflow)
ELSE '
BEGIN
resume := true;
FOR i := O TO operandl - 1 DO
result.setarea(i) := O;
FOR i := operand] TO operand2 DO
result.setarea(i) := 1;
FOR i := operand2 + 1 TO 8 * result.size DO
result.setarea(i) := 0;
change(result, resultwords):;
FOR 1 := 0 TO result.size DIV 2 DO
BEGIN
stack(1lp-3+2*i) := resultwords(i);
IF interrupt condition THEN instruction fetch
END;
resume := false;
lp := 1lp - 4 + result.size + 2;
ip := 1ip + 1
END
END; (* SETCR *)

9.3.1.2

SETAD
SET ADjust
I - |SETAD
STACK BEFCRE:
i
[}
]
]
I
4
operagnd 1
operpgpnd 2
P]

size of result: operand2+2

181

Value: 5FH ox

STACK AFTER:

——r e sfu l t— > size of result

P 3

Operandl is interpreted as a set, which is truncated or enlarged

to a new set of size operand2 bytes. If the set is truncated, it
is tested that only words containing O-bits are truncated.

9.3.1.2

182

(* SETAD *)
TYPE
sizel, size2 : word;
set word : word;
i = : integer;
BEGIN
resume := true;

size2 := stack(lp-1);
IF odd(size2) THEN
exception(odd operand);
sizel := stack(lp-3):
IF sizel < size2 THEN (* unsigned compare *)
BEGIN (* enlarge *)
IF 1lp > ms - (size2-sizel) - 14 THEN
exception(stack overflow);
FOR i := 1 TO (size2-sizel) DIV 2 DO
BEGIN
stack(1p-3+(i-1)*2) := O;
IF interrupt condition THEN
instruction fetch
END; -
END
ELSE
BEGIN (* sizel >= size2 *)
IF 1lp > ms - 14 THEN
exception(stack overflow);
FOR i := 1 TO (sizel-size2) DIV 2 IO
BEGIN
set word := stack(lp-3 - 2*i);
IF set word <> O THEN
exception(setadjust truncation error);
IF interrupt condition THEN
instruction fetch
END
END;
resume := false;
lp := 1lp - 2 + (size2-sizel);
stack (1p-1) := size2;
ip := ip + 1
END; (* SETAD *)

183

9.3.2 QOperations on Sets Giving a Set as the Result 9.3.2

Operands 1 and 2, both of which are sets, are retrieved, and a
result, which is also a set, is produced fram these ocperands in
accordance with the operator.

The size (in bytes) of operands 1 and 2 and the result is defined
in the following word of each.

9.3.2.] SETUN 9.3.2.1

SET UNion Value: 5Cyq,

P -~ [_SETUN |

STACK BEFORE: STACK AFTER:*®

size of

—— opergnd 1 — i — —
per } size 1 regult result

side 1

— oOpergnd 2 — } size 2 Lp
side 2

P]
operator: wnion

size of result: max (sizel, size2) + 2

184
(* SETUN *)

VAR
startl, start2 : addr;
sizel, size2 : word;
i : integer;
FUNCTION min(a, b
FUNCTION max{a, b
BEGIN
resume := true;
IF 1p > ms - 14 THEN exception(stack overflow);
size2 := stack(lp-1);
sizel := stack(lp-size2-3);
start2 := lp-size2-1;
start] := start2-sizel-2;
FOR i := 0 TO min(sizel, size2) DIV 2 - 1 DO
BEGIN
stack(start1+2*i) := stack(startl1+2*i) OR stack(start2+2*i);
IF interrupt condition THEN instruction fetch

word) : word; EXTERNAL
word) : word; EXTERNAL

~s o

END;
IF size2 = max(sizel, size2) THEN
BEGIN
FCR i := 0 TO (size2-sizel) DIV 2-1 DO
BEGIN

stack(startl+sizel+2*i) := stack(start2+sizel+2*i);
IF interrupt condition THEN instruction fetch

END;
stack(startl+size2) := size2
END;
lp := 1lp - min(sizel, size2) - 2;
resune := false:
ip == ip + 1

END; (* SETUN *)

9.3.2'2 .

SETIN

SET INtersection

Ir > [SETIN |

STACK BEFORE:

— operand 1 —— } size 1

side 1

—— operand 2 — } size 2

sigqe 2

Ip]

cperator: intersection

185

Value: 5DH ex

STACK AFTER:

size of
reqgult result

-

LP

size of result: max (sizel, size2) + 2

9.3.2.2

186
(* SETIN *)

VAR
startl, start2 : addr;
sizel, size2, minlength, resultlength : word;
i : integer;
BEGIN
resume := true;
IF 1lp > ms - 14 THEN exception(stack overflow);
size2 := stack(lp-1):
start2 := 1lp - size2-1;
sizel := stack(lp-1 - size2-2);
start]l := start2 - sizel -~ 2;
IF sizel >= size2 THEN
BEGIN
minlength := size2;
resultlength := sizel
END
ELSE
BEGIN
minlength := sizel;
resultlength := size2
END;
FOR i := 0 TO minlength DIV 2 - 1 DO
BEGIN
stack(start] + 2*i) := stack(startl + 2*i) AND stack(start2 + 2*i);
IF interrupt condition THEN instruction fetch
END;
FOR i := O TO (resultlength - minlength) DIV 2 - 1 DO
BEGIN
stack(start]l + minlength + 2*i) := O;
IF interrupt condition THEN instruction fetch
END;
stack(startl + resultlength) := resultlength;
resume := false;
1p := 1lp - minlength - 2;
ip = ip + 1
END; (* SETIN *)

187

9.3.2.3 SETDI 9.3.2.3

SET DIfference Value: 5E:H ox

Ip ~ | _SETDI |

STACK BEFORE: STACK AFTER:

-—— -

; size of
—— operand 1 }s:.ze‘l regult result

size 1

]
— operqnd 2 — } size 2 LP
siée 2

!

p

operator: difference

size of result: max (sizel, size2) + 2

188

(* SETDI *)

VAR
startl, start2 : addr:
sizel, size2, minlength, resultlength : word;
i : integer;
BEGIN
resume := true;
IF 1p > ms - 14 THEN exception(stack overflow);
size2 := stack(lp~-1);
start2 := 1lp ~ size2-1;
sizel := stack(lp~-1 - size2-2);
start] := start2 - sizel-2;
IF sizel >= size2 THEN
BEGIN
minlength := size2;
resultlength := sizel
END
ELSE
BEGIN
minlength := sizel;
resultlength := size2
END;
FOR i := 0 TO minlength DIV 2 - 1 DO
BEGIN
stack(startl + 2*i) := stack(startl + 2*i) AND
COMPL (stack(start2 + 2*i));
IF interrupt condition THEN instruction fetch
END;
IF sizel = minlength THEN
FOR i := 0 TO (resultlength - minlength) DIV 2 - 1 DO
BEGIN
stack(start]l + minlength + 2*i) := O;
IF interrupt condition THEN instruction fetch
END;
stack(start]l + resultlength) := resultlength;
resume := false;
lp := lp - minlength - 2;
ip = ip + 1
END; (* SETDI *)

189

2.3.3 Camparison of Sets 9.3.3

Operands 1 and 2, both of which are sets, are campared according
to a relation. The result is true (= 1), if the relation holds;

otherwise the result is false (= 0).

The size (in bytes) of operands 1 and 2 is defined in the follow-

ing word of each.

9.3.3.1 SETEQ 9.3.3.1

SET EQual Value: 59Hex

STACK BEFORE: STACK AFTER:

T T

1]

[} I

] !

1)

1 l :

regult
——opergnd 1 — [size 1 Lp T
sige 1
oper 2 } size 2

side 2

p

relation : egual

190

(* SETEQ *)

LABEL exittest;
VAR

i : integer;

startl, start2 : addr;

result : boolean := true;

sizel, size2 : word;
FUNCTION min{a, b : word) : word: EXTERNAL:;
BEGIN

resume := true;

IF 1p > ms - 14 THEN exception(stack overflow):

size2 := stack(lp-1);

start2 := lp = size2-1;

sizel := stack(lp-size2-3);

startl := start2-sizel-2;

FOR i := 0 TO min(sizel, size2) DIV 2 - 1 DO

BEGIN
IF stack(startl+i*2) < stack(start2+i*2) THEN
BEGIN
result := false:
GOTO exittest

END;
IF interrupt condition THEN instruction fetch
END; -
IF sizel < size2 THEN
BEGIN
FOR i := 0 TO (sizel-size2) DIV 2-1 DO
BEGIN
IF stack(start2+sizel+i*2) < 0 THEN
BEGIN
result := false;
GOTO exittest
END;
IF interrupt condition THEN instruction fetch
END - -
END
ELSE
FOR i := 0 TO (size2-sizel) DIV 2-1 DO
BEGIN
IF stack(start+size2+2*i) < 0 DO
BEGIN
result := false;
GOTO exittest
END;
IF interrupt condition THEN instruction fetch
END;

exittest: stack(startl) := result;
lp == start 1 + 1;
resume := false;
ip == ip + 1
END; (* SETEQ *)

191

9.3.3.2 SETSB 9.3.3.2
SET SuBset Value: 5AHex
P -
STACK BEFORE: STACK AFTER:

—

L0,

resjult
—— operagnd 1 — [size 1 Ip T
sige 1
— operénd 2 —} size 2
sige 2

P

relation : subset

192
(* SETSB *)

LAREL exittest:
VAR
i : integer;
start], start2 : addr;
result : boolean := true;
sizel, size2 : word;
FUNCTION min(a, b : word) : word; EXTERNAL:
BEGIN
resume := true;
IF 1p > ms - 14 THEN exception(stack overflow);
size2 := stack(lp-1);
start2 := lp - size2-1;
sizel := stack(lp~1 - size2-2);
start] := start2 - sizel-2;
FOR i := 0 TO min(sizel, size2) DIV 2 -~ 1 DO
BEGIN
IF stack(start2+2*i) AND stack(startl1+2*i)
<> stack(startl+i*2) THEN
BEGIN
result := false;
GOTO exittest
END:;
IF interrupt condition THEN instruction fetch
END;
IF sizel > size2 THEN
FOR i := 0 TO (sizel-size2) DIV 2 -1 IO
BEGIN
IF stack(startl+size2+i*2) < 0 THEN
BEGIN
result := false;
GOTO exittest
END;
IF interrupt condition THEN instruction fetch
END;
exittest: stack(startl) := result;
lp := startl+1;
resume := false;
ip = ip + 1
END; (* SETSB *)

193

9.3.3.3 SETSP 9.3.3.3

SET SuPerset Value: 5By
Ir -~ SETSP

STACK BEFORE: STACK AFTER:

—]

¥

I

I

I

i

|

I
redult
—-—operalnd1—-— size 1 Ip T
sije 1

-——operaﬁmd 22— } size 2
side 2

P]

relation : superset

194

(* SETSP *)

LARFIL exittest:
VAR
i : integer;
startl, start2 : addr;
result : boolean := true;
sizel, size2 : word;
FUNCTION min(a, b : word) : word; EXTERNAL;
BEGIN
resume := true;
IF lp > ms - 14 THEN exception(stack overflow);
size2 := stack(lp~1);
start2 := lp - size2-1;
sizel := stack(lp-1 - size2-2);
start]l := start2 -~ sizel-=2;
FOR i := 0 TO min(sizel, size2) DIV 2 - 1 DO
BEGIN
IF stack(startl+i*2) AND stack(start2+i*2)
<> stack(start2+i*2) THEN
BEGIN
result := false;
GOTO exittest
END;
IF interrupt condition THEN instruction fetch
END; -
IF size2 > sizel THEN
FOR i := 0 TO (size2-sizel) DIV 2 - 1 DO
BEGIN
IF stack(start2 + sizel + 2*i) < 0 THEN
BEGIN
result := false;
GOTO exittest
END;

IF interrupt condition THEN instruction fetch

END:
exittest: stack(startl) := result;
lp := startl + 1;
resume := false;
ip == 1ip + 1
END; (* SETSP *)

195

9.3.3.4 TEQAD 9.3.3.4

Test EQual ADdresses Value: 3CHex

e ~ [TEQAD]

STACK BEFORE: STACK AFTER:

R ——

— addr 2 -— reshlt

—— addr 1 —

(* TEQAD *)

VAR
addrl, addr2 : addr:
result : boolean;

BEGIN .
addrl.base := stack(lp-3);
addrl.disp := stack(lp-1);
addr2.base := stack(lp-7):
addr2.disp := stack(1lp-5);

result := (nil(addrl) AND nil(addr2)) OR (addrl = addr2):
stack(1lp~7) := result;
lp := 1p - 6;
ip == ip + 1
END; (*TEQAD *)

196

9.3.4 Test for Membership of a Set 9.3.4
Operands 1 is interpreted as a set. Operand2 is interpreted as
the ordinal nmumber (unsigned integer) of an element in the set
operand 1. The result is true (= 1), if the operand 1 contains
the element with the ordinal mumber operand 2; otherwise the re—
sult is false (= 0).
The size (in bytes) of the set is defined in the following word.
9.3.4.1 SETTM 9.3.4.1
SET Test Membership Value: 57,
S

P -
STACK BEFORE: STACK AFTER:

T 7

' I

: :

| I

! !

operand 2 regult
—— opergnd 1 —— size Lp

-]

The smallest ordinal mumber of an element in a set is 0, and it
is represented by the most significant bit of the first word
(smallest address).

197

(* SETTM *) 9.3.3.4

VAR
size : word;
operand : word;
work : word;
boo : boolean;
BEGIN
boo := false;
size := stack(1lp-1);
operand := stack(lp-l1-size-2);
IF operand < size*8 THEN
BEGIN
work := stack(lp-l-size+(cperand DIV 16) * 2);
work := work shift(cperand AND 15);
boo := work < O;
END;
stack(lp~-1-size-2) := boo;
lp := 1lp - size - 2;
ip == ip + 1
END; (*SETTM *)

10.

198

INPUT/OUTPUT

The execution of an I/O instruction, like that of any RC3502 ma-
chine instruction, presupposes a process incarnation envirorment,
with a register set that points cut an incarnation stack (see
subsection 3.6.1 and section 4.1).

I/0 instructions can operate on devices and process incarnation
environments (either the incarnation that executes the I/O in-
struction or other process incarnations). I/O instructions can

also perform functions on devices.

A device is regarded as a set of registers:

function
control
status in
status out
data in
data out
eol

interrupt

A given device may be a subset of the above register set. The
structure of the individual registers is device dependent.

Algorithmetic Descriptions

It is assumed that field type is either a byte bit type or a
word bit type, where

bit = 0..1;
bit byte = PACKED ARRAY(0..7) OF bit;
PACKED ARRAY(0..15) OF bit:

Il

bit word

10.

199

The following constants and types are used in conjunction with

the device concept:

read data = #h000;
write data = #h040;
read status = #h080;
write control = #h0CO;

function type = read data .. write control;

device type = RECORD
function : function type:
control : field type:
status in : field type;
status out : field type:;

data in : field type:
data out : field type:
eoi : bit; (* end of information *)
interrupt Dbit
END;

The run-time environment which the I/0 instructions presuppose
and on which they operate is expressed by the following vari-
ables:

device : ARRAY(0..123) OF device type;

reg set : ARRAY(0..123) OF register set type:

incarnation descriptor : incarnation descriptor type;

The type message is defined in subsection 3.7.2.1.

The register set type is defined in subsection 3.6.1.1, and the

incarnation descriptor type in subsection 3.7.3.1.
The block instructions interpret the memory as being of type
buffer = ARRAY({0..32767) OF byte;

The buffer is described by a mumber of indices which satisfy the

relation

first < last < top (* signed comparison *)

10.1

Write Control

10.1.1

200

The parameter is interpreted as a device number. The value of the

operand is transferred to the control register of the device.

IOWC

Input/Output Write Control

r -~ [Ioic |

STACK BEFORE:

control

value

d e v

no

(* I0WC *)

VAR

devno : integer:;

BEGIN

devno := stack (1lp-1);

Value: Z]Hex

STACK AFTER:

devices (devno) :

control

value

device(devno).function := write control;
device(devno) .control := stack(1p-3);
l1p := 1p - 4;
ip = ip + 1
END; (* IOWC *)

10.1

10.1.1

201

10.2 Write Word 10.2

The parameter is interpreted as a device mumber. The value of the
operand is transferred to the data cut register of the device. On
erd of information, the value of the eoi register is transferred
to the eoi field of the ps register.

10.2.1 IOWW 10.2.1
Input/Output Write Word Value: 24y,
P -
STACK BEFORE: STACK AFTER:

ra—
e
A BN NP ——

dat a . T

devices (devro) :

data

202
(* IOWW *)

VAR
devno : integer:

BEGIN
devno := stack (1lp-1);
device(devno).function := write data;
IF device(devno).data out := stack(lp-3);
IF device(devno).eoi = 1 THEN ps.eoi := 1;
1p := 1p - 4;
ip = ip + 1

END; (* IOWW *)

203

10.3 General Output 10.3

This instruction, which is used for device testing and mainten-
ance, permits the execution of special, device-dependent func-
tions not provided by the other I/O instructions.

Operard 1 is interpreted as a device number. The function defined
by operand 2 is performed on the device. The word gperand 3 is
transferred, according to the function, to the data out,

status out, or control register of the device.

On end of information, the value of the eoi register is transfer-
red to the eoi field of the ps register.

10.3.1 IOGO 10.3.1
Input/Output General Output Value: 25y,
r -
STACK BEFORE: STACK AFTER:

P
—t-----

data T
funcgkion Lp
devno
b !
devices (devno) :
write control - data
read__status > data

write data > data

204

(* I0GO *)

VAR
devno : integer;
function : function type;
data : word;

BEGIN
devno := stack(lp-1);
function := stack(lp~-3);
data := stack(1lp-5);
device({devno).function := function
device{devno).status out := data
IF device(devno).eoi = 1 THEN ps.eoi := 1;
1p := 1p - 6;
ip := ip + 1

END; (* IOGO *)

205

10.4 Read Status 10.4

The first operand is interpreted as a device number. The result
is the status information selected by the second cperand fram the
device. First the second cperand is transferred to the status out
register of the device, and then the contents of the status in
register are transferred as the result.

10.4.1 IORS 10.4.1
Input/Qutput Read Status Value: 22,
P >
STACK BEFORE: STACK AFTER:

——

T

|

I

I

1

!
select value stalus
defvno ‘ T

devices (devro) :

(result)
select value

206
(* IORS *)

VAR
devno : integer;

BEGIN
devno := stack (lp-1);
device(devno).function := read status;
device(devno).status out := stack(lp-3);
stack(1lp~-3) := device(devno).status in;
1p == 1p - 2; -
ip :=ip + 1

END; (* IORS *)

207

10.5 Read Word 10.5

The operand is interpreted as a device mmber. The result is the
contents of the data in register of the device. On end of infor-
mation, the value of the eoi register is transferred to the eoi

field of the ps register.

10.5.1 IORW 10.5.1

Input/Output Read Word Value: 23,

P - |_IORW |

STACK BEFORE: STACK AFTER:

—

o ! Lp !

devices (devno) :

(data)

208
(* IORW *)

VAR
devno : integer;

BEGIN
devno := stack (lp-1);
device(devno).function := read data;
IF device(devno).eoi = 1 THEN ps.eoi := 1;
stack(1lp-1) := device(devno).data in;
ip = ip + 1

END; (* IORW *)

209

10.6 General Input 10.6

This instruction, which is used for device testing and mainten—
ance, permits the execution of special, device-dependent func—
tions not provided by the other I/0 instructions.

Parameter 1 is interpreted as a device nunber. The function de-
fined by parameter 2 is performed on the device. The word par-
ameter 3 is tramsferred to the status out register of the device,
and the resulting word is obtained, according to the function,

from the data in or status in register.

On end of information, the value of the eoi register is trans-

ferred to the eoi field of the ps register.

10.6.1 IOGI 10.6.1

Input/Output General Input Value: 26y,

STACK BEFORE: STACK AFTER
: T
. | :
| |
!
+ | l f
datl a reshult
funcition) T
devyno LP
b]

devices (devro) :

H

read status - (

o+

[CREeN ()
0| |0
clrt e
e SR
t

read data - (

H

210
(* IOGI *)

VAR
devno : integer;
function : function type;
data : word; -

BEGIN
devno := stack (lp-1);
function := stack(lp~3);
data := stack(lp~5);
device(devno).function := function;
device(devno).status out := data;
IF device(devno).eoi = 1 THEN ps.eoi := 1;
stack(1lp-5) := device(devno).status in
lp := 1p - 4;
ip == ip + 1

END; (* IOGI *)

10.7

211

Clear Current Interrupt

]Ol?l]

If in the current register set the timecut field of the ps
register has the value 0, the interrupt register of the device

with the level defined in the incarnation descriptor as its

device number is assigned the value = O.

IOCCI

Input/Output Clear Current Interrupt Value: 29,

IP -~ IOCCI

incarnation descriptor:

— chain -
leve 1l —— devices(level) :
!
i
]
|
]
{
interrupt=false
(* IOCCI *)
VAR
devno: byte;
BEGIN

devno := merbyte(gf+level);
IF ps.to = 0 THEN
device(devno).interrupt :
ip = ip + 1
END; (* IOCCI *)

0;

I

10.7

10.7.1

212

10.8 Execute Next Instruction After Clearing Interrupt
If in the current register set the timeout field of the ps regis-
ter has the value 0, the interrupt register of the device with
the level defined in the incarnation descriptor as its device
number is assigned the value 0, whereupon the next instruction on
this level is executed.

10.8.1 IONCI
Input/Output Execute Next Value: 27y,

Instruction After Clearing Interrupt

IP > [IONCI | next |

incarnation descriptor:

~ chalin —
leviel —— devices(level):
'
]
]
I
I
i
interrupt=false
(* IONCI *)
VAR
devno : byte;
BEGIN

devno := membyte(gf+level);
IF ps.to = 0 THEN
device(devno).interrupt := 0;
ip = ip + 1;
GOTO execute next (* next instruction on same level *)
END; (* IONCI *)

10.8

10.8.1

213

10.9 Get Current Device Address 10.9

The parameter is interpreted as the address of a reference. The
reference must be the address of a message of the kind 'channel
message'. The result is the device address (device number)
contained in the message. No input/output is performed.

10.9.1 IOCDA 10.9.1

Input/Qutput Get Current Device Address Value: 27y .

P - [IOCDA |

STACK BEFORE: STACK AFTER:

PP E———

3]
HH

oo
0w o
e}
o
o
o
=]
3

(V)
U +h
o

(* I0CDA *)

VAR
ref addr
ref
kind
devno
BEGIN
ref addr := memaddr (1lp-3);
ref := memaddr (ref addr);
IF ref.base.nilbit = 1 THEN exception(nil)
kind := mem(ref+messagekind);
IF kind < O THEN
BEGIN
devno := kind AND 127;
stack(1lp-3) := devno;

addr; (* address of reference *)
addr; (* address of message *)
integer;

integer;

1p == 1p-2;
ip = ip + 1
END;

ELSE exception(not channel message)
END; (* IOCDA *)

214

10.10 Initialize Block Transfer 10.10

This instruction is used to initialize the contents of the stack
preparatory to the execution of a read/write block instruction.

10.10.1 IOIEBX 10.10.1
Input/OQutput Initialize Block Xfer Value: 2By .
r -
STACK BEFORE: STACK AFTER:

figst tdp
lagt count
refefence] | s tagrt
addtess adddess |

i
i

215

(* IOIBX *)
VAR
first : word;
ref addr : addr;
top : word;
count : word;
start addr : addr;
ref : addr;
kind : integer;
m size : word;
BEGIN
ref addr := memaddr(lp-3);
ref 1= mnaddr(ref addr);
IF ref.base.nilbit = 1 THEN
exception(nil)

top := stack(lp-5)+1; (* last+] *)
first := stack(lp-7):
kind := mem(ref+messagekind);
IF kind < O THEN
exception(not data message)
m size := mem(ref+size);
IF m size < ((top+1)DIV2) THEN (* unsigned *)
exception(size too small)
IF first < top THEN (* unsigned *)
BEGIN
count := top—-first;
start addr := memaddr(ref+start);
start addr.disp := start addr.disp + first;
memaddr (1p-3) := start_addr;
stack(1p-5) := count;
stack(1lp-7) := top;
ip := ipt+l
END;
EISE
exception(last < first)
END; (* IOIBX *)

216

10.11 Write Block of Bytes 10.11

A block of bytes is transferred fram a buffer, one byte at a
time, to the data out register of the device with the current
interrupt level as its device mumber, until the buffer is empty
or a timeout occurs or the eoi register of the device contains
the value 1.

The buffer is defined by the operand and parameter 1: the former
is the address (ADDR) of the first byte of the buffer, and the
latter the number of bytes in the buffer.

Finally, the residual count is subtracted fram the 'top' par-
ameter to produce the result 'next', which is the index of the

byte following the last byte written. ~

For each byte transferred the instruction code and the stack par-
ameters remain in the register set. The next instruction to be

executed is selected in accordance with the interrupt condition.

217

_10.11.1 IOWBB 10.11.1

Input/Output Write Block of Bytes Value: 73y

Ir - JOWBB

STACK BEFORE: STACK AFTER:
T T
' ' 1
| [
! 1
! !
tagp i |
coudnt negx-t
stgrt —_—
T adddess B Lp T
MEMORY :
by
bytes to
ke output

device (current level):

output byte

interrupt=true

218

(* IOWBB, single step *)

CONST
iowbb = #h8373;
VAR
next : addr:
count : integer;
top : word;
PROCEDURE dumpregisters(level : integer);
EXTERNAL;
LABEL
ioblockfinis, ioblocktimeout;
BEGIN
IF ip.base <> iowbb THEN
BEGIN (* first step *)
IF curlevel = 0 THEN
exception(block i/o level 0)
ps.eol := 0;
dumpregisters(curlevel);
(* change mode *)

ib := iowbb; (* ip.base *)
1m := stack(1lp-7); (* top = last+] *)
ic := stack(lp-5); (* count *)
sf := stack(lp-3): (* next address.base *)
lu := stack(lp-1)-1; (* next address.disp-1 *)
GOTO fetchl

END

ELSE

BEGIN

WITH device(curlevel) DO
BEGIN

IF ps.to = 1 THEN GOTO icblocktimeout;
interrupt := 0; (* clear interrupt ¥*)
next.base := sf;
next.disp := lu;
count := ic;
top := 1lm;
function := write data;
data out := membyte(next+1);
next := next+l;
IF ecl = 1 THEN
BEGIN
ps.eoi := 1;
GOTO ioblockfinis
END;
count := count-1;
IF count > 0 THEN

BEGIN
lu := next.disp;
ic := count;
GOTO fetch

END;

ioblockfinis:

interrupt := 1;

219

ioblocktimeout:
1m := mem(gf+dumplm);
lu := mem(gf+dumplu)-6;
sf := mem(gf+dumpsf);
ib := mem(gf+dumpib);

ic := mem(gf+dumpic)+1;
stack(1lp-1) := top—count
END (* WITH *)
END (* ELSE *)
END; (* IOWBB, single step *)

220

10.12 Write Block of Bytes and Clear 10.12

This instruction resembles the Write Block of Bytes instruction

except that the current interrupt level is cleared after the last
write function is performed.

10.12.1 IOWBEC 10.12.1

Input/Output Write Block of Bytes and Clear Value: 724,

1P » [IOWBBC]

STACK BEFCRE: STACK AFTER: :
T]
i 1
' |
' |
tep nelxt
c O nt
| start — LP]
add e ss
Lp i
MEMORY :
- bytes to
be output

device (current level):

output byte

interrupt=true

221

(* IOWBBC, single step *)

CONST
iowbbc = #h8372;
VAR
next : addr;
count : integer;
top : word;
PROCEDURE dumpregisters(level : integer);
EXTERNAL;
LABEL
ioblockfinis;
BEGIN

IF ip.base <> iowbbc THEN

BEGIN

(* first step *)

IF curlevel = 0 THEN

exception(block i/o level 0)

ps.eoi := 0;
dumpregisters(curlevel);

(* change mode *)

ib := iowbbc; (* ip.base *)

1m := stack(1lp-7); (* top = last+l *)

:= stack(1lp-5); (* count *)

sf := stack(lp-3); (* next address.base *)
lu := stack(lp-1)-1; (* next address.disp-1 *)

GOTO fetchl

END
ELSE

BEGIN

WITH device(curlevel) DO

BEGIN

IF ps.to = 1 THEN GOTO ioblockfinis;

interrupt := 0; (* clear interrupt *)
next.base := sf;

next.disp := lu;

count := ic;

top := 1lm;

function := write data:
data ocut := membyte(next+l);
next := next+l;

IF eoli = 1 THEN

BEGIN

ps.eol :=1

GOTO ioblockfinis
END;

count := count-1;
IF count > O THEN

BEGIN
lu := next.disp;
ic := count;
GOTO fetch

END;

222

ioblockfinis:

Im := mem(gf+dumplm);
lu := mem(gf+dumplu)-6;
sf := mem(gf+dumpst);
ib := mem(gf+dumpib);
ic := mem(gf+dumpic)+1;
stack(1lp-1) := top-count

END (* WITH *)

END (* ELSE *)
END; (* IOWBBC, single step *)

223

10.13 Write Block of Words 10.13

This instruction resembles the Write Block of Bytes instruction
(section 10.11). A block of words is transferred, one word at a
time, to the data out register of the device fram the buffer.

10.13.1 IOWBW 10.13.1
Input/Output Write Block of Words Value: 77y,
P >
STACK BEFORE: STACK AFTER:

T T
: |
!
|
1 :
tdp
count nekt
| start | = j
addrxess LpP
Ip i
MEMDORY :
‘ words to
be autput

device (current level):

output word

interrupt=true

224

(* IOWBW, single step *)

CONST
iowbw = #h8377;
VAR
next : addr;
count : integer;
top : word;

PROCEDURE dumpregisters(level : integer);
EXTERNAL;
LABEL
ioblockfinis, ioblocktimeout:
BEGIN
IF ip.base <> iowbw THEN
BEGIN (* first step *)
IF curlevel = 0 THEN
exception(block i/o level 0)
ps.eoi := 0;
dumpregisters(curlevel);
(* change mode *)

ib := iowbw; (* ip.base *)
lm := stack(lp-7); (* top = last+] *)
ic := stack(lp-5); (* count *)
sf := stack(lp-3); (* next address.base *)
lu := stack(lp-1)-1; (* next address.disp-1 *)
GOTO fetchl -
END
ELSE
BEGIN
WITH device(curlevel) DO
BEGIN
IF ps.to = 1 THEN GOTO ioblocktimeout;
interrupt := 0; (* clear interrupt *)
next.pbase := sf;
next.disp := lu;
count := ic;
top := lm;

IF count = 1 THEN
GOTO ioblcckfinis;
function := write data;
data out := membyte(next+l);
next := next+2;
IF eoi = 1 THEN
BEGIN
ps.eoi := 1
GOTO ioblockfinis
END;
count := count-2;
IF count > 1 THEN
BEGIN
1lu := next.disp;
ic := count;
GOTO fetch
END;
ioblockfinis:
interrupt := 1;

225

ioblocktimeout:

1m := mem(gf+dumplm);

lu := mem(gf+dumplu)-6;
sf := mem(gf+dumpsf);
ib := mem(gf+dumpib);
ic := mem(gf+dumpic)+1;
stack(1lp-1) := top-count

END (* WITH *)
END (* ELSE *)
END; (* IOWBW, single step *)

nonouu

226

10.14 Write Block of Words and Clear 10.14

This instruction resembles the Write Block of Bytes instruction
except that the current interrupt level is cleared after the last
write function is performed.

10.14.1 IOWBWC 10.14.1

Input/Output Write Block of Words and Clear Value: 76y,

IP ~ |IOWBWC

STACK BEFCRE: STACK AFTER: o
T 1
1]
! |
i i
|
t &p nelx t
cownt
| s t rt Jd LP J
add I ess
Lp i
MEMORY :
words to
be cutput]

device (current level):

output word

interrupt=true

227

(* IOWBWC, single step *)

CONST
iowbwe = #h8376;
VAR
next : addr;
count : integer;
top : word;

PROCEDURE dumpregisters(level : integer);
EXTERNAL;
LABEL
ioblockfinis;
BEGIN
IF ip.base <> iowbwc THEN
BEGIN (* first step *)
IF curlevel = 0 THEN
exception(block i/o level 0)
ps.eol := O;
dumpregisters(curlevel);
(* change mode *)

ib := iowbwe; (* ip.base *)
1m := stack(lp-7): (* top = last+] *)
ic := stack(lp-5); (* count *)
sf := stack(lp-3); (* next address.base *)
lu := stack(lp-1)-1; (* next address.disp-1 *)
GOTO fetchl

END

ELSE

BEGIN

WITH device(curlevel) DO
BEGIN

IF ps.to = 1 THEN GOTO ioblockfinis;
interrupt := 0; (* clear interrupt *)

next.base := sf;

next.disp := lu;
count := ic;
top = 1lm;

IF count = 1 THEN
GOTO ioblockfinis;
function := write data;
data aut := memword(next+1);
next := next+2;
IF eoi = 1 THEN
BEGIN
ps.eoi := 1
GOTO ioblockfinis
END;
count := count-2;
IF count > 1 THEN
BEGIN
lu := next.disp:
ic := count;
GOTO fetch
END;

228

ioblockfinis: .

Im := mem(gf+dumplm);

lu := mem(gf+dumplu)-6;
sf := mem(gf+dumpsf);

ib := mem(gf+dumpib);

ic := mem(gf+dumpic)+1;
stack(1lp-1) := top-count

END (* WITH *)
END (* ELSE *)
END; (* IOWBWC, single step *)

—

10.15

229

Read Block of Bytes

A block of bytes is transferred to a buffer, one byte at a time,
fram the data in register of the device with the current inter-
rupt level as its device number, until the buffer is full or a
timeout occurs or the eoi register of the device contains the
value 1. This value is then transferred to the eoi field of the

ps register.

The buffer is defined by operand 1 and operand 2: the former is
the address (ADDR) of the first byte of the buffer, and the lat-
ter the number of bytes in the buffer.

Finally, the residual count is subtracted fram the 'top' par-
ameter to produce the result 'next', which is the index of the
byte following the last byte read.

For each byte transferred the instruction code and the stack par-
ameters remain in the register set. The next instruction to be

executed is selected in accordance with the interrupt condition.

10.15

230

10.15.1 IOREB

10.15.1
Input/Output Read Block of Bytes Value: 71y .
IP > [_IORBB]
STACK BEFORE: STACK AFTER:

P
e

tolp ne +
coujnt
. s tajrt 4 — P
addrless
w1
MEMORY :
resulting
S bytes
input

device (current level):

(input byte)

internupt=true

231

(* IORBB, single step *)

CONST

iorbb = #h8371;
VAR

next : addr;

count : integer;
top : word;
data: word;

PROCEDURE dumpregisters(level : integer):
EXTERNAL;
LAREL
ioblockfinis, icblocktimeout:
BEGIN
IF ip.base <> iorbb THEN
BEGIN (* first step *)
IF curlevel = 0 THEN
exception(block i/o level 0)
ps.eol := 07
dumpregisters(curlevel);
(* change mode *)

ib := iorbb; (* ip.base *)
1m := stack(lp-7): (* top = last+] *)
ic := stack(lp-5); (* count *)
sf := stack(1lp-3); (* next address.base *)
lu := stack(lp-1)-1; (* next address.disp-1 *)
GOTO fetchl
END
ELSE
BEGIN
WITH device(curlevel) DO
BEGIN

IF ps.to = 1 THEN GOTO ioblocktimeout;

interrupt := 0; (* clear interrupt *)
next.base := sf;

next.disp := lu;

count := ic;

top := lm;

function := read data;
data := data in;
IF eoi = 1 THEN
BEGIN
ps.eol := 1;
GOTO ioblockfinis

END;
membyte (next+1) := data AND 255;
next := next+l;
count := count-1;
IF coant > 0 THEN

BEGIN
lu := next.disp;
ic := count;
GOTO fetch

END;

232

ioblockfinis:
interrupt := 1;
ioblocktimeout:
1m := mem(gf+dumplm);
lu := mem(gf+dumplu)-6;
sf := mem(gf+dumpsf);
ib := mem(gf+dumpib);
ic := mem(gf+dumpic)+l;
stack(lp-1) := top—count
END (* WITH *)
END (* ELSE *)
END; (* IORBB, single step *)

233

This instruction resembles the Read Block of Bytes instruction
except that the current interrupt level is cleared after the last

10.16 Read Block of Bytes and Clear
read function is performed.
10.16.1 IORBBC

Input/Output Read Block of Bytes and Clear Value: 70y

1P ~ [IORBBC |

STACK BEFORE: STACK AFTER:
! |
! i
i {
|
top n eb<t
cogagnt T
| start 4 LP
addfress
Lp |
MEMORY :
—— resul-
ting byt
tes input

device (current level):

{input byte)

interrupt=type

10.16

10.16.1

234

(* IORBBC, single step *)

CONST
iorbbc = #h8370;
VAR
next : addr;
count : integer;
top : word;
data : word;
PROCEDURE dumpregisters(level : integer);
EXTERNAL;
LABEL
ioblockfinis;
BEGIN

IF ip.base <> iorbbc THEN
BEGIN (* first step *)
IF curlevel = O THEN
exception(block i/o level 0)
ps.eol := 0;
dunpregisters(curlevel);
(* change mode *)

ib := iorbbc; (* ip.base ¥*)
1m := stack(lp~7); (* top = last+] *)
ic := stack(lp-5); (* count *)
sf := stack(lp-3); (* next address.base *)
lu := stack(lp-1)-1; (* next address.disp-1 *)
GOTO fetchl

END

ELSE

BEGIN

WITH device(curlevel) DO
BEGIN

IF ps.to = 1 THEN GOTO ioblockfinis;

interrupt := 0; (* clear interrupt *)

next.base := sf;

next.disp := lu;

count := ic;

top := 1lm;

function := read data;

data := data in;

IF eoi = 1 THEN

BEGIN

ps.eoi := 1; interrupt := 1; (* set interrupt *)
GOTO ioblockfinis

END;
membyte(next+]) := data AND 255;
next := next+l;
count := count-1;
IF count > O THEN

BEGIN
lu := next.disp;
ic := count;
GOTO fetch

END;

235

ioblockfinis:

Im := mem(gf+dumplm);
lu := mem(gf+dumplu)-6;
sf := mem(gf+dumpsf);
ib := mem(gf+dumpib);
ic := mem(gf+dumpic)+1;
stack(1lp-1) := top—count

END (* WITH *)

END (* ELSE *)
END; (* IORBBC, single step *)

236

10.17 Read Block of Words 10.17

This instruction resembles the Read Block of Bytes instruction
(section 10.15). A block of words is transferred, one word at a
time, fram the data in register of the device to the buffer.

10.17.1 IORBW 10.17.1

Input/Output Read Block of Words Value: 75,

STACK BEFORE: STACK AFTER:
¥ T
{ '
I '
1 [}
I
tpe |
coynt negxt
| s tdrt 1 T
adddes s P
w1
MEMORY :
' ' resul-
ting- —
words inp

device (current level):

(input word)

interrupt=true

237

(* IORBW, single step *)
CONST

iorbw = #h8375;
VAR

next : addr;

count : integer;

top : word;
data: word;

PROCEDURE dumpregisters(level : integer);

EXTERNAL;

LABEL

ioblockfinis, icblocktimeout;

BEGIN

IF ip.base <> iorbw THEN

BEGIN

(* first step *)

IF curlevel = O THEN
exception(block i/o level 0)

ps.eoi := O;

dumpregisters(curlevel):;

(* change mode *)

ib := iorbw; (* ip.base *)
1m := stack(lp-7); ¢ (* top = last+l *)
ic := stack(lp-5); (* count *)
sf := stack(1lp-3); (* next address.base *)
lu := stack(lp-1)-1; (* next address.disp-1 *)
GOTO fetchl

END

EILSE
BEGIN

WITH device(curlevel) DO
BEGIN

IF ps.to = 1 THEN GOTO ioblocktimeout;
interrupt := 0; (* clear interrupt *)
next.base := sf;
next.disp := lu;
count := ic;
top := 1lm;
IF count = 1 THEN

GOTO ioblockfinis;
function := read data;
data := data in;
IF eoi = 1 THEN

BEGIN

ps.eoi := 1;
GOTO ioblockfinis

END;
memword (next+1) := data;
next := next+2;
count := count-2;
IF count > 0 THEN
BEGIN

lu := next.disp;

ic := count;

GOTO fetch
END;

u

238

ioblockfinis:
interrupt := 1;
ioblocktimeout:
1m mem(gf+dumplm) ;
1lu mem(gf+dumplu)-6;
sf := mem(gf+dumpsf);
ib := mem(gf+dumpib);
ic := mem(gf+dumpic)+1;
stack(lp-1) := top-count
END (* WITH *)
END (* ELSE *)
END; (* IORBW, single step *)

i

239

10.18 Read Block of Words and Clear 10.18

This instruction resembles the Read Block of Bytes instruction
except that the current interrupt level is cleared after the last
read function is performed.

10.18.1 IORBWC 10.18.1

Input/Qutput Read Block of Words and Clear Value: Tyax

Ip >

STACK BEFORE: STACK AFTER:

<
—

t o p nejx t

Lp—m—m—

B oo
(I e
0w ot |t

MEMORY:
resuting
—_— words
input

device (current level):

{(input word)

interrupt=true

240

(* IORBWC, single step *)

CONST
iorbwc = #h3374;
VAR
next : addr;
count : integer;
top : word;
data : word;

PROCEDURE dumpregisters(level : integer);
EXTERNAL;
LABEL
ioblockfinis;
BEGIN
IF ip.base <> iorbbc THEN
BEGIN (* first step *)
IF curlevel = 0 THEN
exception(block i/o level 0)
ps.eol := 0O;
dumpregisters(curlevel);
(* change mode *)
ib := iorbwc; (* ip.base *)
Im := stack(lp-7); (* top = last+] *)
ic := stack(lp-5): (* count *)
sf := stack(1lp~3); (* next address.base *)

lu stack(lp-1)-1; (* next address.disp-1 *)
GOIO fetchl
END
ELSE
BEGIN
WITH device{curlevel) DO
BEGIN

IF ps.to = 1 THEN GOTO ioblockfinis;

interrupt := 0; (* clear interrupt *)
next.base := sf;

next.disp := lu;

count := ic;

top := 1lm;

IF count = 1 THEN
GOTO ioblockfinis
function := read data;
data := data in;
IF eoi = 1 THEN
BEGIN
ps.eol := 1; interrupt := 1;
GOTO ioblockfinis

END;
membyte(next+1) := data;
next := next+2;
count := count-2;
IF count > 1 THEN
BEGIN
lu := next.disp;
ic := count;
GOTO fetch
END;

241

ioblockfinis:

1Im := mem(gf+dumplm);
lu := mem(gf+dumplu)-6;
sf := mem(gf+dumpsft);
ib := mem(gf+dumpib);
ic := mem(gf+dumpic)+1;
stack(lp-1) := top—count

END (* WITH *)

END (* ELSE *)
END; (* IORBWC, single step *)

242

MONITOR CONTROL AND SYNCHRONIZATION

The instructions described in this chapter support monitor con-

trol, synchronization, and message buffer manipulation.

The instructions cperate on a number of structures, including the
following:

- register set (see subsection 3.6.1)

- incarnation stack (see subsection 3.7.3.1)
- chain structures (see subsection 3.7.1.2)
- scheduler type (see below)

- semaphores (see subsection 3.7.2.2)

- message headers (see subsection 3.7.2.1)

The algorithmic descriptions in this chapter employ a number of
data structures, common variables, functions, and procedures.
Those which have not been defined in previous chapters are de-
fined below.

Data Structures

TYPE
counter type = RECORD
high : word;
low : word
END;

scheduler type = RECORD
active queue0 : addr;
n, (* highest active queue index *)
m, (* lowest active queue index *)
k, (* current active queue index *)
nxt : integer;
dummy counter : counter type
END; -
wait cause type = PACKED RECORD
- - unused : 0..63;
intrpt,
sem,
tim,
writecntrl : boolean;
unusedl : 0..15
END:

243

Cammon Global Variables

VAR
head a, last a, first a,
head b, last b, next : addr; (* used in queue manipulation *)
sem addr, sem, ref addr, ref, msg : addr;
reg : register . set - ._type;
register_sets : ARRAY(0..123) OF register set type;
cur level : 0..123;
wcause : wait cause type;
device : ... (* cf. chapter 10 *)

The term memaddr{a) is introduced to defined two consecutive
words in memory pointed ocut by the address a, for example:

memaddr(a) := b; means
memword(a) := b.base; and memword(a+2) := b.disp;
Routines

PROCEDURE get two addresses;
BEGIN
head a := memaddr(lp-3);
ref addr := memaddr(lp-7)
END; ~ (* get two addresses *)

PROCEDURE dump registers(VAR reg : register set type);
VAR
inc desc ptr : addr;
BEGIN
IF reg.ib < -1 THEN
BEGIN
inc desc ptr.base := reg.pb;
inc desc > ptr.disp := reg.pr;
memword (inc desc _pt.r+d1m1p1b)

reg.ib; (* entry point base *)
mermord(lnc desc_ptr+dumpic)

reg.ic; (* entry point disp *)

o wn

memword (inc « * desc_ptr+dumpsf) := reg.sf;
metrword(mc desc_ptr+dumplu) := reg.lu;
memword (inc > desc_ptr+dumplm) := reg.lm;
memword(inc desc ptr+dumpps) := reg.ps;
reg.ib := -l

END

END; (* dump registers *)

244

PROCEDURE load registers;
BEGIN (* entry requirement : next = incarnation descriptor *)
dump_registers(reg);
reg.lm := memword(next+dumplm);
reg.ps := memword(next+dumpps);
reg.lu := memword(next+dumplu);
reg.sf := memword(next+dumpsf);
reg.ib := memword(next+dumpib); (* entry point base *)
reg.ic := memword(next+dumpic) (* entry point disp *)

END; (* load registers *)

PROCEDURE get message;
BEGIN -
IF ref addr.base.nilbit = 1 THEN
exception(pointer = nil);
ref := memaddr(ref addr);
IF ref.base.lockbit = 1 THEN exception(reference locked)
END; (* get message *)

PROCEDURE reserve a;
BEGIN

IF head a.base.nilbit = 1 THEN exception(pointer = nil);
last a := memaddr(head a)
END; T* reserve a *)
PROCEDURE reserve_b;
BEGIN
IF head b.base.nilbit = 1 THEN exception(pointer = nil);
last b := memaddr(head b)
END; (* reserve b *)
PROCEDURE unchain;
BEGIN (* unlink next from last a with head head a *)
IF last a = next THEN (* chain goes empty *)~
memaddr(head a).base.nilbit :=]
ELSE
BEGIN (* queue remains non-empty *)
first a := memaddr(next);
memaddr(last a) := first a
END - -
END; (* unchain *)
PROCEDURE chain first(start monitor : boolean);
BEGIN (* put next into the chain of head b *)
IF last b.base.nilbit = 1 THEN chain(start monitor) (* see below *)
ELSE
BEGIN
memaddr (next) := memaddr(last b);
memaddr(last b) := next
END -

END; (* chain first *)

245

PROCEDURE put_elem ptr;
BEGIN

memaddr (ref addr) := next
END; (* put elem ptr *)

PROCEDURE change a b;

BEGIN -
head b := head a;
last b := last a

END; T* change a b *)

PROCEDURE set ps wait(wcause : wait cause type):
BEGIN

reg := register sets(level);

reg.ps.wait := reg.ps.wait OR wcause
END; (* set ps wait ¥)

PROCEDURE send_control :

VAR

oldlp : word;
BEGIN

oldlp := 1p:;

IF wcause.sem THEN lp := lp - 8;
device(cur level).function := write control;
device(cur level).control := memword(lp-1);
lp := oldlp ~
END; (* send control *)

PROCEDURE set ref message waited;
VAR
inc, ref addr : addr:
BEGIN
inc := memaddr(next);
ref addr := memaddr(inctmsg waited);
memaddr (ref addr) := ref
END; (* set ref message waited *)

PROCEDURE set chain head;
VAR
inc : addr;
BEGIN
inc := memaddr(next);
memaddr (inct+chainhead) := head b
END; (* set chain head *) -

246

PROCEDURE chain(start monitor : boolean);

(* put an incarnation/message (next) in an active/semaphore queue
(head b) as the last element; schedule if start monitor and
the queue was empty *)

BEGIN

IF memaddr(head b).base.nilbit = O THEN
BEGIN (* non empty queue *)

memaddr (next) := memaddr(last b);
memaddr(last b) := next
END -
ELSE
BEGIN (* queue empty *)
memaddr (next) := next;
IF start monitor THEN
set mterrupt(nbm.tor level); (* see below *)
menaddr(head b) := next
END

END; (* chain ¥)

247

PROCEDURE signal;
VAR
inc : addr;
BEGIN (* defined variables at entry:
head a is the address of the semaphore,
ref 1s the address of the message,
ref addr is the address of ref *)
reserve a; (* last a := memaddr(head a), i.e. the last
- element of the chain ¥*)
IF (last _a.base.nilbit=0) AND
(last a.base.bit15=1) THEN
BEGIN (* semaphore locked *)
next := memaddr(last a); (* first incarnation in the
chain *)
(* now next is the address of an incarnation descriptor *)
inc := memaddr(next);
(* now inc is a global frame pointer *)
IF menbyte(inct+level) = 0 THEN

BEGIN
head b := memaddr(inctactivequeue):;
reserve b;
set_ref message waited; (* inc msg waited) := msg *)

s et:chafn_head :
unchain; (* unlink incarnation from semaphore *)
chain(true)
END
ELSE
BEGIN (* level of receiving incarnation > 0 *)
set ref message waited;

set_interrupt(level); (* see below *)
memaddr (inctchainhead) .base.nilbit := 1;
unchain

END (* level > Q0 *)
END (* semaphore locked *)
EISE
BEGIN (* semaphore open or passive *)
change a b;
chain(false) (* chain the message to the queue of the
semaphore *)
END;
memaddr (ref addr).base.nilbit := 1
END; (* signal *)

PROCEDURE set interrupt(level : integer);
BEGIN
set external(level);
IF level <= 7 THEN
set_internal(level)
END; (* set_interrupt *)

248

PROCEDURE clear interrupt(level : integer):
BEGIN
clear external(level);
IF level <= 7 THEN
clear internal(level)
END; (* clear interrupt *)

PROCEDURE wait(multiple : boolean; VAR effwait : boolean);
BEGIN (* defined variables at entry:
head a is the address of the semaphore,
ref addr is the address of the ref to receive a mes-
sage *)
get message;
IF ref.base.nilbit = 0 THEN
exception(wait : reference <> nil);
reserve aj;
IF (last a.base.nilbit=0) AND
(last a.base.bit15=0) THEN
BEGIN ~ (* semaphore open *)
next := memaddr(last a);

unchain;
effwait := false;
put_elem ptr
END; ’
ELSE

BEGIN (* semaphore passive or locked *)
IF multiple AND (last a.base.bit15=1) THEN
exception(multiple wait on locked semaphore);
next := gf; (* current process *)
change a b;
memaddr (gf+msg waited) := ref addr;
IF cur level < O THEN
Clear interrupt
ELSE
BEGIN
head a := memaddr(gf+chainhead);
deschedulel0 (* see below *)
END;
effwait := true;
set _chain head;
chain(false)
END (* semaphore passive or locked *)
END; (* wait *)

11.1

249

PROCEDURE deschulelO;
BEGIN (* entry requirements: head a = active queue,
next = process *)
reserve a;
unchain;
set interrupt(monitor level)
END; ~(* deschedulelO *7

FUNCTION test interrupt : boolean;
BEGIN

test interrupt := cur level < next level
END; (* test interrupt *)

PROCEDURE deschedule;
BEGIN
IF cur level < O THEN
clear interrupt(cur level)
ELSE
BEGIN
next := gf;
head a := memaddr(gf+chainhead);
memaddr (gf+chainhead) .base.nilbit := 1
END
END; (* deschedule *)

Signal

The instructions in this group signal a message to a semaphore.
If the semaphore is closed, a process incarnation is moved fram
the semaphore to an active queue with a reference to the message.

If the semaphore is open or passive, the message is linked as the

last element in the semaphore queue.

11.1.1]

250

CSIGN

Control SIGN Value: 11,

I~ [CsTaN |

STACK BEFORE: STACK AFTER:

-

| ref. pddr ____| J

— sem. pddr —f

The state of the semaphore determines the chaining and unchaining
performed. These data structure modifications are not shown.

(* csigN *)

BEGIN
get two addresses;
get_message;
IF ref.base.nilbit = 1 THEN exception(pointer = nil);
signal;
lp := 1p - 8;
ip = ip + 1
END; (* CSIGN *)

11.1.1

A4

11.1.2

251

CRELE

Control RELEase Message Value: 124,

IP -+ [CRELE | parameter |

STACK BEFORE: STACK AFTER:

T
[
1
1
1
I

e

— ref. pddr -— T

P]
(* CRELE *)

VAR
semrel : word;
BEGIN
semrel := membyte(ip+1);
ref addr := memaddr(lp-3):
get message;
head a.disp := ref.disp + semrel;
head a.base := ref.base;
IF rel.base.nilbit = 1 THEN exception(pointer = nil);
reserve a;

signal;
lp :=1p - 4;
ip ;= ip + 2

END; (* CRELE *)

11.1.2

Wait

11.2.1

252

The instructions in this group wait for a message fram a sema-
phore. Depending on which of the instructions is used, the pro-

cess incarnation executing the instruction will/will not be re-

moved fram the active queue if the semaphore is closed or pas-

sive.

CSENS

Control SENSe Semaphore

- [csmS |

STACK BEFORE:

— ref.|addr—

L sem.| addr ——

b !

(* CSENS *)

BEGIN
get two addresses;
get message;

Value: 1 5H ex

STACK AFTER:

+__
===

IF Tef.base.nilbit = 1 THEN exception(reference < nil);
reserve a; (* last a := sem *)
IF (last a.base.nilbit=1) OR (last a.base.bit15=1) THEN

BEGIN ~(* not cpen *)

next := nil;
put_elem ptr
END
ELSE
BEGIN

next := memaddr(last a);

unchain; (* unlink message fram semaphore *)

put elem ptr
END;

lp := 1p - 8;

ip = ip + 1
END; (* CSENS *)

11.2.1

11.2.2

CWAIT

gontrol WAIT

- [(GaE]

STACK BEFORE:

— ref. pddr —

— sem, pddr —

(* CWAIT *)

VAR
dumy : boolean;
BEGIN
get two_addresses;
wait(false, dummy);
ip :==ip + 1
END; (* CWAIT *)

253

Value: 1 OH ex

STACK AFTER:

T

b ref. pddr —

—— sem. pddr —

11.2.3

254

CWTAC

Control WaiT énd Clear Value: 16Hex

P » | _CWIAC |

STACK BEFORE: STACK AFTER:

unchanged or

—— -

—— ref. pddr —

— sam. pddr —

(* cwrAaC *)

BEGIN
get two_addresses;
ref := memaddr(ref addr);
IF ref.base.nilbit = 1 THEN
clear interrupt(cur level)

EISE
BEGIN
lp := 1p - 8;
ip := ip + 1
END

END; (* CWTAC *)

11.2.3

255

11.3 Link/Unlink 11.3

The instructions of this group manipulate elements of a chained
structure (see section 3.7).

11.3.1 CLLST 11.3.1
Control Link LasT Value: 13Hex
» ~ [crist |
STACK BEFORE: STACK AFTER:

—— hepd -— T

elem
adgdr

The structure pointed out by elemaddr is linked as the last el-
ement in the chain pointed out by head.

(* CLLST *)

BEGIN
get_two addresses; (* head a := head; ref addr := elem addr *)
head b := head a;
reserve b; -
get message:
next := ref;
chain(false);
lp := 1p - 8;
ip = ip + 1
END; (* CLLST *)

11.3.2

256

CSKIP
Control SKIP to Next Value: 14Hex
P -
STACK BEFORE: STACK AFTER:
] I
| i
: | |
| !
' l
—head |addr — Ip 1
IP i
(* CSKIP *)
VAR
head addr, link : addr:
BEGIN

head addr := memaddr(lp-3):
IF head addr.base.nilbit = 1 THEN
exception(nil exception);
link := memaddr(head addr);
IF link.base.nilbit = 0 THEN
memaddr (head addr) := memaddr(link)
END; (* CSKIP *)

11.3.2

257

11.4 Select Level 11.4

This instruction is used to select a new level with corresponding

register set as the current level for a process incarnation.

11.4.1 CSELL 11.4.1

Control SELect Eevel Value: mﬁex

IP - CSELL

STACK BEFORE: STACK AFTER:

e e
R R——

new level T

As a process incarnation executing on a level > 0 is scheduled by
interrupts, the different cambinations of level = 0, level > 0,
new level = 0, and new level > 0 will cause different actions to
be taken.

258
(* CSELL *)

VAR
new level : integer;
BEGIN
new _level := stack(lp-1);
next := gf; (* global frame *)
head a := memaddr(next+activequeue):;
reserve a;
clear interrupt(cur level);
IF new level = 0 THEN
BEGIN
IF level < O THEN
BEGIN (* put current process into active queue *)
change a b;
set chain head;
chain first(false)
END
END
ELSE
BEGIN (* new level > 0 *)
set_interrupt(new_level);
IF level = O THEN
BEGIN (* unlink own from active queue *)

head b.base.nilbit := 1;

set chain head;

unchain;

set interrupt(monitor level)
END

END; (* new level > 0 *)
(* cammon select level action *)
menbyte(next+level) := new level;
dump registers(reg);
load registers;
reg := register sets(new level*S8+7);
reg.ps.to := 0O;
level := new level;
1p := lp - 2;
ip = ip + 1
END; (* CSELL *)

259

11.5 Stop 11.5

This instruction stops a process incarnation by removing it from
the chained structures. The contents of the register set will
have been dumped in the process incarnation descriptor after ex—

ecution. The instruction must be executed fram level 0.

11.5.] CSTOP 11.5.1

Control STOP Value: 1 BH ex

p » [CsmoP |

STACK BEFORE: STACK AFTER:

i 7

! [}

I !

: !

' i
t—wornkp — 1p T
—— p —

o f

The instruction may be executed only on level 0.

260
(* CcsTOP *)

VAR
reg : 0..123;
wpchain head, p, workp, pred, next : addr;
BEGIN
get two addresses;
workp := head a;
p := ref addr;
head b := memaddr(ref addr+chain head);
IF head b.base.nilbit = 0 THEN
BEGIN (* unlink p fram its chain *)
reserve b;
IF workp.base.nilbit = 0 THEN
BEGIN (* continue after interrupt *)
wpchain head := memaddr(workp + chain head);
IF wpchain head < head b THEN head a := last b
END
ELSE
head a := last b; (* first loop *)
rep: pred := head a;
head a := memaddr(pred);
IFheada=pTHENGO‘I'Ofound;
IF test_lnterrupt THEN
BEGIN
memaddr(1p~7) := head a; (* rewrite workp *)
instruction fetch
END; -
GOTO rep;
found: (* p = head a, pred = preceding process,
head b = head of chain, last b = last of chain *)
IF p = pred THEN memaddr (head b).base.nilbit := 1
EISE
BEGIN
next := memaddr(head a);
memaddr (pred) := next;
IF last b = head a THEN memaddr(head b) := pred
END
END; (* unlink p fram its chain *)
reg := merbyte(ptlevel);
IF reg < 0 THEN dump registers(register sets(reg)):;
ps := memword (p+dumpp) ;
memword(p+dumpp) := ps AND (NOT ps.wait); (* clear wait bit *)
lp := 1p - 8;
ip = ip + 1
END; (* CSTOP *)

261

11.6 Multiple Wait 11.6

The instructions in this group form together a multiple wait on
canbinations of three different events: a message fram a sema-
phore, an interrupt, and a timeout. This results in seven differ-

ent wait cambinations.

11.6.1 MCIS 11.6.1

Multiple Control Interrupt and Semaphore Value: 58H ex

r ~ [MIS |
STACK BEFORE: STACK AFTER:

—
- - -

control contjrol
— ref. pddr — — ref. pddr —
—— sem. pddr — — sem. pddr ——
(* MCIS *)

VAR
oldlp : addr:
dumy result : boolean;
BEGIN
WITH wcause DO
BEGIN
intrpt := true;
sem := true;
tim := false;
writecntrl := true
END:
set ps wait(wcause);
get two addresses;
wait(true, dummy result);
send control;
ip = ip + 1
END; (* MCIS *)

262

11.6.2 MCIT 11.6.2

Multiple Control Interrupt and Timer Value: 68H ox

P > | MIT |

STACK BEFORE: STACK AFTER:

-

contlkol contiol

e ! ip]

(* MCIT *)

BEGIN
WITH wcause DO
BEGIN
intrpt := true;
sem := false;
tim := true;
writecntrl := true
END:
set ps wait(wcause);
IF memword(gf+timer) > O THEN deschedule;
send_control;
ip = ip + 1
END; (* MCIT *)

263

11.6.3 MCIST 11.6.3

Multiple Control Interrupt, Semaphore, and Timer Value: 78,y

Ip - MCIST
STACK BEFORE: STACK AFTER:
: T
! '
i]
! 1
! [
control control
— ref. pddr —] — ref. pddr
" sem. pddr] [sem. pddr —
] f
LP / P
(* MCIST *)
VAR

oldlp : addr;
dumy result : boolean;
BEGIN
WITH wcause DO
BEGIN
intrpt := true:;
sem := true:
tim := true;
writecntrl := true
END;
set ps wait(wcause);
IF memword(gf+timer) > O THEN
BEGIN
get two _addresses;
wait(true, dummy result)
END; -
send control;
ip = ip + 1
END; (* MCIST *)

264

11.6.4 MWI 11.6.4
o
Multiple Wait Interrupt Value: 88Hex
P -
STACK BEFORE: STACK AFTER:
; |
f |
\ |
t 1
I |

The stack is not involved.

(* MWI *)

BEGIN (* suicide if executed an level O *)
WITH wcause DO
BEGIN
intrpt := true;
sem := false;
tim := false;
writecntrl := false
END;
set ps wait(wcause);
deschedule;
ip :=ip + 1
END; (* MWI *)

265

11.6.5 MWT 11.6.5
Multiple Wait Timer Value: 20Hex
I
STACK BEFORE: STACK AFTER:

T T
1 \ 1
1 I
' I
' !
| I
| |
p ! e !

The stack is not involwved.

(* MWT *)

BEGIN
WITH wcause DO
BEGIN
intrpt := false;
sem := false;

tim := true;
writecntrl := false
END;

set ps wait(wcause);
IF memword(gf+timer) > O THEN deschedule;
ip = ip + 1

END; (* MWT *)

266

11.6.6 MWIS

Multiple Wait Interrupt and Semaphore

P - [MIS |

STACK BEFORE: STACK AFTER:

Value: 1 8Hex

S

—ref. pAddr — — ref.|addr —
L'“'sem., hddr — F— seam.|addr —
2 T o]
(* MWIS *)
VAR

oldlp : addr;
dumy result : boolean;
BEGIN
WITH wcause DO
BEGIN
intrpt := true;
sem := true;
tim := false;
writecntrl := false
END;
set ps wait(wcause);
get two addresses;
wait(true, dummy result);
ip = ip + 1
END; (* MWIS *)

11.6.6

267

11.6.7 MWIT

Multiple Wait Interrupt and Timer Value: 28, .
P >
STACK BEFORE: STACK AFTER:

T T

I !

! [

I ;

! |

I

The stack is not involved.

(* MWIT *)
BEGIN
WITH wcause DO
BEGIN
intrpt := true;
sem := false;
tim := true;
writecntrl := false
END;

set ps wait(wcause);
IF mem{gf+timer) > O THEN deschedule;
ip :==ip + 1

END; (* MWIT *)

11.6.7

268

11.6.8 MWST 11.6.8

Multiple Wait Semaphore and Timer Value: 30y,

P » [MWST |

STACK BEFORE: STACK AFTER:

p— ref., addr ——— p— ref.|addr

b gem. @ddr — l—- sem.|addr ——

(* MWST *)

VAR
dumy result : boolean;
BEGIN
WITH wcause DO
BEGIN
intrpt := false;
sem := true;
tim := true;
writecntrl := false
END;
set_ps wait(wcause);
IF mem{gf+timer) > O THEN
BEGIN
get two addresses;
wait(true, dummy result)
END:;
ip == ip + 1
END; (* MWST *)

11.6.9

269

MWIST

Multiple Wait Interrupt, Semaphore, and Timer

» ~ | MWIST |

STACK BEFORE: STACK AFTER:

Value: 38H ex

———]
—— - —]

ref.| addr ref.|addr —-

sem.|{ addr — —— sem.|addr —

(* MWIST *)

VAR
dummy result : boolean;
BEGIN
WITH wcause DO
BEGIN
intrpt := true;
sem := true;

tim := true;
writecntrl := false
END;

set ps wait(wcause);
IF mem(gf+timer) > O THEN
BEGIN
get two addresses;
wait(true, dummy result):
END;
ip := ip + 1
END; (* MWIST *)

11.6.9

11.6.10

270

MWTAC

Multiple WaiT And Clear Value: WI—Iex

e~ [(MIAC |

STACK BEFORE: STACK AFTER:

- o
o e oy

cause fvalue

.. Tef. laddr —

}—sem. [addr —

P f
or:
STACK BEFORE: STACK AFTER:

T]

| I

i]

i |

i i

T cause [value

LpP

1o 1

The stack before execution is shown in two situations, either
containing semaphore and reference addresses or being empty. Fur-
thermore the stack may contain a control word in both situations
(placed at the lowest stack address). In all situations the stack
is emptied (0, 2, 8 or 10 bytes are removed), and the cause value
is placed as the result.

The cause value may be one of the following: O for interrupt; 1
for message; or 2 for timer.

11.6.10

271
(* MWTAC *)

VAR
causeval : (interrupt, message, timer);
t : integer;
BEGIN
IF register sets(cur level).ps.wait.sem = false THEN GOTO testtimer;
ref addr := memaddr(Ip-7):
ref.base := mem(ref addr);
IF ref.base.nilbit = 1 THEN GOTO testtimer;
causeval := message;
pfetch: IF register sets(cur level).ps.wait.sem THEN lp := lp - 8;
IF register sets(cur level).ps.wait.wrtcntrl THEN lp := lp - 2;
WITH wcause DO
BEGIN
intrp := false;
sem := false;
tim := false;
writecntrl := false
END;
set ps wait(wcause);
mem{1lpt+l) := causeval;
lp = 1p + 2;
ip :=ip + 1;
GOTO end nwtac;
testtimer:” (* if timeout, p is unlinked fram semaphore
by MI'IME instruction *)
IF register sets(cur level).ps.wait.tim = false THEN GOTO inttest;
t := mem(gf+timer); ~
IF £t > 0 THEN GQOTO inttest;
causeval := timer;
GOTO pfetch;
inttest: IF register sets(cur_level).ps.wait.intrpt = false THEN
GOTO repeatinst;
IF registers(curlevel).ps.wait.sem THEN
BEGIN (* unlink current process fram semaphore ¥*)
next := gf;
get two addresses;
reserve a;
unchain;
head b.base.nilbit := 1;
set_chain head
END; (* unlink own fram semaphore *)
causeval := interrupt;
GOTO pfetch;
repeatinst: deschedule; (* repeat instruction on next activation *)
end mwtac:
END; (* MWTAC *)

272

11.7 Time 11.7

This instruction is used to provide timeout service for process

incarnations requesting it.

11.7.1 MTIME 11.7.1

Monitor function TIME count down Value: 194o4

r ~ [MDE]

STACK BEFORE: STACK AFTER:
T T
f {
i f
! |
I {
J | .

incarnption __ | T
address Lp
b]
; This instruction must be executed on level 0!

273
(* MTIME *)

VAR
p : addr;
t, 1 : integer;
ps : word;
BEGIN
p := memaddr(lp-3):

IF p.base.nilbit = 1 THEN

1= 1lp - 4;
ip :=ip + 1;

t := mem(pt+timer);
IF t <= 0 THEN GOTO nextp:;
mem(p+timer) :=t - 1;
IF t - 1 < 0 THEN GOTO nextp:
(* time out *)
1 := membyte(pt+level);
IF 1 <> 0 THEN

BEGIN (* driver timeout *)

IF register sets(l).ib = - 1 THEN GOTO already scheduled;
(* p is stopped *)

ps := register sets(l).ps:
register sets(l).ps := ps OR to; (* time cut *)
set interrupt(l)
END
ELSE
ps := mem(p+dumpps) ;
IF ps.wait.tim = false THEN GOTO already scheduled;
head a := memaddr(p+chainhead); -
next := p;
IF (ps.wait.sem) AND (head a.base.nilbit=0) AND
(head a.base.bit15=0) THEN
BEGIN (* unlink process from semaphore *)
reserve a;
unchain;
memaddr (p+chainhead) .base.nilbit := 1;
head a.base.nilbit :=1
END;
(* schedule p *)
IF1 =0THEN (* level = 0 %)

BEGIN (* link p to active queue if and only if not already

linked *)

IF (head a.base.nilbit=0) AND (head a.base.bit15=1) THEN

GOTO already scheduled;

head b := memaddr(ptactive queue);

reserve b;

set_chain head;

chain(true)

END; (* else interrupt already set *)

already scheduled:
nextp:
p := memaddr(p+tchain);

IF NOT test interrupt THEN GOTO rep;
stack(1p~-3) := paddr.base;
stack (1p~1) := paddr.disp:
end mtime:
END; (* MIIME *)

274

11.8 Schedule Next Incarnation to Run 11.8

This instruction prepares the scheduling of the next process in—
carnation to run. The actual selection of the incarnation is in-
tegrated in the instruction fetch.

11.8.1 SCHED C 11.8.1

SCHEDule Value:]DHex

STACK BEFORE: STACK AFTER:
T T -~
i i
| 1
I i
| |
i L
I |
> T 2 !
The stack is not involved.
(* SCHED *)
VAR
scheduler data : scheduler type;
BEGIN
scheduler data.nxt := scheduler data.n; -

dump registers(register sets(0));
clear interrupt(monitor level);

ip := ip + 1
END; (* SCHED *)

11.9

275

Driver Activation

11.9.1

The instructions are used to start a driver on its associated

interrupt level, and to choose a new current lewel.

CSTDR

Control STart _]:_):R_iver Value: 1cHex

IP > | _CSTDR |

STACK BEFORE: STACK AFTER:

-

e — — =]

| in ation __ | j
address P

(* CSTDR *)

VAR
1 : integer;
BEGIN
next := memaddr(lp-3);
load registers;
1 := membyte(next+level);

set__interrupt(1);
lp := 1p - 4;
ip :=ip + 1

END; (* CSTDR *)

11.8.1

276

11.9.2 CSLEV 11.9.2

Control Set LEVel Value: 1EHex

P -

STACK BEFORE: STACK AFTER:

|
|

e —

— leviel —

-

(* CSLEV *) ~—

VAR
level : integer;

BEGIN
level := memword(lp-1);
cur_level := level;
set_interrupt(level);
lp := 1p - 2;
ip == ip + 1

END; (* CSLEV *)

— 11.10

277

Register Array Operations

11.10.1

The instructions in this group are used to manipulate the re-
gister array (section 3.6) and the RAM memory of the control

microprocessor (section 3.3).

CRGET

Control Register GET

Value: 21

Hex

P -
STACK BEFORE: STACK AFTER:

T T

| |

]]

I 1

l i

' :

operland reshlct

1 T 15

REGISTER ARRAY:

0
1
2
: |
[]]
i |
result —
1023
(* CRGET *)
VAR

registers : ARRAY(0..1023) OF word;
BEGIN
stack(1lp~1) := registers(stack(lp-1));
ip == ip + 1
END; (* CRGET *)

11.10

11.10.1

11.10.2

CRPUT

Control Register PUT

IP -+ CRPUT

STACK BEFCRE:

vallue
reg. nr.

Qr:

REGISTER ARRAY BEFORE:

- O

1023

The stack is not involved.

278

Value: Bl Hex

STACK AFTER:

REGISTER ARRAY AFTER:

N = O

reg. nr.-

1023

value

registers(memword(lp-1)) := memword(lp-3);

(* CRPUT *)
VAR

registers : ARRAY(0..1023) OF word;
BEGIN

lp = 1lp - 4;

ip :==ip + 1

END; (* CRPUT *)

.10.2

£

11.10.3

279

CRRAM

Control Read RAM of Control Processor Value: DOHe %

IP -~ | _CRRAM |

STACK BEFORE: STACK AFTER:

T
'
I
]
)
]
$

]
i
1
[}
i
]
of f get resjul t

1p ! 1]

CONTROL
PROCESSOR RAM CQOPY:

0

- -
-

result +~—

31

(* CRRAM *)

VAR
control byte addr : addr;
control processor ram copy : ARRAY(0..31) OF byte: (* placed as
first part
of the first
ram module *)
BEGIN
control byte addr.base := #hCO;
control byte addr.disp := stack(lp - 1):
stack(lp - 1) := word(membyte(control byte addr)):
ip == ip + 1 -
END; (* CRRAM *)

nu

11.10.3

280

11.10.4 CWRAM 11.10.4

-

gontrol Erite RAM of Control Processor Value: FOHe.x

1p - [CWRAR]

STACK BEFQRE: STACK AFTER:

—— e
—

—

o f flset +

LP

CONTROL
PROCESSOR RAM COPY:

0

value R

31

(* CWRAM *) -

VAR
control byte addr : addr
value : byte;
BEGIN
control byte addr.base := #hCO;
value := stack(lp-1):
control byte addr.disp := stack(lp - 3);
IF register sets(com8085).cow = 0 THEN
(* 8085 debugger not busy *)
BEGIN
menbyte(control byte addr) := value;
send_interrupt to the 8085 debugger
lp := 1p - 4;
ip = ip + 1

~e

END; (* CWRAM *)

281

11.10.5 CGREG 11.10.5

Control Get REGister Value: 1FHex

Ip -~ CGREG

STACK BEFORE: STACK AFTER:

A

Q
LP - 4
LP —

(* CGREG *)

BEGIN
IF 1lp > ms-2 THEN exception(stack overflow);

282

11.10.6 MBTES 11.10.6

Miscellaneous Bits TESt in Status Register Value: Dl .

o . [FETES]

STACK BEFORE: STACK AFTER:

<
— - —— ——
—

T I

-
8]
®
0

LP T
LP

(* MBTES *)

BEGIN
IF 1p > ms - 2 THEN exception(stack overflow):
IF reg.ps AND memword(ip+1) = 0 THEN
memword(1lp+l) := 0 (* false *)
EISE
memword(1lp+l) := 1;
lp :=1p + 2;
ip :=ip + 3
END; (* MBTES *)

—

11.10.7

283

MBSET

Miscellaneous Bits SET or Clear in Status Register

F1Hex
Ip -+ [MBSET | m 4 s k |
STACK BEFORE: STACK AFTER:
T T
1 l |
i |
: 1 ;
[
s elt T
T LP
LP
(* MBSET *)
VAR

set : boolean:
mask : word;

BEGIN
mask := memword(ip + 1);
set := memword(lp -~ 1);

req.ps := reg.ps AND NOT mask; (* clear mask bit *)
IF set THEN
reg.ps := reg.ps OR mask;
lp := 1p - 2;
ip ;== ip + 3
END; (* MBSET *)

11.10.7

284

11.71 Push and Poo 11.11

The instructions in this group are used for manipulation of
message stacks, i.e. they support the language constructs push
and pop.

11.11.1 LPUSH 11.11.1

Language Support PUSH Value: 7CHex

IP - |[LPUSH

STACK BEFORE: STACK AFTER: —
| : ;
| Jv t
I i
| | =
[referdnce I | 4
addrelss LD f
reference 2
addrelss 7
LP 4}
-

285

(* LPUSH *)
CONST
headerkind = 0;
msgkind = 4; (* offset in message header ¥)
msgsize = 6; (* offset in message header ¥*)
msgstart = 8; (* offset in message header *)
stackchain = 18; (* offset in message header *)
VAR

rla, r2a, ristack, rl, r2, r2saddr : addr;
rekind, r2size : word;
BEGIN

get two addresses; (* rla = ref addr, r2a = head a *)
get message; (* rl = ref *)
IF rl.base.nilbit = 1 THEN exception(push : nil r1);
ristack := memaddr(rl+stackchain);
IF ristack.base.nilbit = O THEN exception(push : not empty rl);
r2 := memaddr(r2a):;
IF r1 = r2 THEN exception(push : identical arguments):;
IF r2.base.lockbit = 1 THEN exception(push : locked r2);
memaddr(ria) .base.nilbit := 1;
memaddr (rl+stackchain) := r2;
memaddr (r2a) := rl;
rlkind := memword(rl+kind);
IF (r2.base.nilbit=0) AND (rlkind = headerkind) THEN
BEGIN (* copy buffer description *)

r2size := memword(r2+msgsize);

r2saddr := memaddr(r2+msgstart);

memaddr (r1+msgstart) := r2addr);

memword (rl+msgsize) := r2size
END;
lp := 1p - 8;
ip = ip + 1

END; (* LPUSH *)

11.11.2

LPOP

Language Support POP

IP

>

STACK BEFORE:

LP

addr

| _reference

ess

refere
addn

nce
ess

286

Value: 'IDHex

STACK AFTER:

Lp

11.11.2

287

(* LPOP *)
CONST
headerkind = 0O;
msgkind = 4; (* offset in message header *)
msgsize = 6; (* offset in message header *)
msgstart = 8; (* offset in message header ¥*)
stackchain = 18; (* offset in message header *)
VAR

rl, r2, rla, r2a, r2stack : addr;
r2kind : word;
BEGIN
get two addresses; (* rla = ref addr, r2a = head a *)
rl1 := memaddr(rla); - -
IF rl.base.nilbit = 1 THEN exception(pop : rl not nil);
r2 := memaddr(r2a);
IF r2.base.lockbit = 1 THEN exception(pop : locked r2):
IF r2.base.nilbit = 1 THEN exception(pop : nil r2);
memaddr(ria) := r2;
r2stack := memaddr(r2 + stackchain);
memaddr (r2+stackchain) .base.nilbit := 1;
memaddr (r2a) := r2stack;
r2kind := memword(r2+msgkind);
IF r2kind = headerkind THEN
BEGIN (* copy buffer description of msg 1 *)
memword (r2+msgsize) := 0O;
memword (r2+msgstart) .base.nilbit := 1
END
1p
ip
END;

=1lp - 8;
= ip + 1
(* LPoP *)

e 9 ~»

11.12

288

Lock Support

11.12.1

The instructions in this group support the language construct:
lock statement.

Language Support LOCK Type on Message Value: 7FHex

IP . [Lnock | paratheter |

STACK BEFORE: STACK AFTER:
| T l
| |
| |
! l I
+ | + !
reference _ n referince _
address .
mingize - T
T LP
LP
(* LLOCK *)
CONST
msgkind = 4; (* offset in message header *)
msgsize = 6 (* offset in message header *)

msgstart = 8; (* offset in message header *)
VAR
minsize, ldisp : word;
ref, ref addr : addr;
BEGIN -
1ldisp := memword(ip+l):
minsize := memword(lp~1);
ref addr := memaddr(lp-5);
ref := memaddr(ref addr);
IF ref.base.nilbit = 1 THEN exception(nil address):;
IF ref.base.lockbit = 1 THEN exception(reference locked):

IF memword(ref+msgkind) < O THEN exception(lock : type error);

11.12

11.12.1

IF memword (ref+msgsize) < minsize THEN exception(lock : size error);

memaddr (1f+1disp) := memaddr(ref+msgstart):
lp = 1p - 2;
ip :=ip + 3

END; (* LLOCK *)

289

11.12.2 LRESE 11.12.2

Language Support RESErve Reference Value: 7EHex

1p » [LRESE]

STACK BEFORE: STACK AFTER:

T
1
|
|
|

—

reference reference

— b —

address address

T

LP T LP T

(* LRESE, reserve reference, i.e. set lockbit *)

BEGIN
ref addr := memaddr(lp-3);
ref := memaddr(refaddr);
IF ref.base.nilbit = 1 THEN
exception(nil address);
IF ref.base.lockbit = 1 THEN
exception(reference locked);
ref.base.lockbit := 1;
ip = ip + 1
END; (* LRESE *)

290

12. INDEXING AN ARRAY 12.
S
12.1 Range Test 12.1
This instruction has two operands. Operand 1 is a range descrip—
tor, which describes a subrange of integers. If the value of
operand 2 does not belong to the subrange described by operand 1,
an exception occurs.
12.1.1 INTRS 12.7.1
INdex Test Range via Stack Value: 6CHe X
P -
STACK BEFORE: STACK AFTER:
T T
!
| ' =
! |
| - '
ocoperphpnd 2 operfand 2
—-—pararreter-—-—-}ADDR resul?
T LP
LP
access
MEMORY : path:
Shy

loperand 1 |+—
range descriptor

A range descriptor is an object of type DOUBLE. The first WORD is

interpreted as a signed integer, and specifies the lower bound of
the range. The second WORD is also interpreted as a signed in-
teger, and specifies the upper bound of the range. The first byte
of a range descriptor must be on a word boundary.

291
(* INTRS *)

VAR
range descriptor : RECORD
lower : integer;
upper : integer
END:;
index : integer;
address : addr;
BEGIN
index := stack(lp-5):
address.base := stack(lp-3);
address.disp := stack(lp-1);
WITH range descriptor DO

BEGIN
lower := mem(address);:
upper := mem(address+2);
IF (index < lower) OR (upper < index) THEN
exception(subrange out of bounds)

END;
lp := 1p - 4;
ip = ip + 1
END; (* INTRS *)

12.2

292

Indexing an Array

This instruction has three operands:

Operand 1 is interpreted as the address (ADDR) of the first byte
of the first element of the array to be indexed.

Operand 2 is interpreted as a dope wvector.

Operand 3 is interpreted as a signed integer. The value of this
operand is the index.

The result is the address (ADDR) of the first byte of the array
element selected by operand 3.

293

p 12.2.1 INDEX 12.2.1

INDEX Value: tEBDH ax

STACK BEFORE: STACK AFTER:
T l
: 1
| [
I l
I I
—operj@and 1 — resjult
operjand3 t
LP I
R — para.rfleter - ADDR
Ip]
access
MEMORY : path:
SA
—0 |

|l operand 2 |
dope
vector

A dope vector is an object which describes a one-dimensional ar-
ray. The object consists of a DOUBLE, which is a range descriptor
for the index type, followed by a WORD, which specifies the rum-
ber of bytes occupied by each element of the array. The first
byte in a dope vector must be on a word boundary.

294

(* INDEX *)

VAR
operand : addr;
dope_vector : RECORD
lower : integer;
upper : integer
size : integer
END;
address : addr;
index : integer;
BEGIN
index := stack(1lp-5);
address.base := stack(1lp-3)
address.disp := stack(1lp-1)
WITH dope vector DO
BEGIN
lower := mem(address);
upper := mem(address+2);
size := mem(address+4);

-
!
.
r

IF (index < lower) OR (upper < index) THEN

exception(index error);
operand.disp := stack(lp-7);

stack(1lp~7) := operand.disp + size * (index - lower)

2

1p := 1lp - 6;
ip = ip + 1
END (* INDEX *)

12.2

12.3

295

Push an Element of a Packed Array

This instruction pushes an element of a packed (one-dimensional)
array on the stack. The instruction has three operands:

Operand 1 is interpreted as the address (ADDR) of the first byte
of the first element of the array to be indexed.

Operand 2 is interpreted as a packed dope vector.

Operand 3 is interpreted as a signed integer. The value of this
operand is the index.

The result is a WORD. It is the value of the array element se-
lected by operand 3. The value is right justified with zero ex-

tension.

12.3

296

12.3.1 INPRS 12.3.1

S

INdex Packed Array Retrieve via Stack Value: 6Ey..

> [IWRS]

STACK BEFORE: STACK AFTER:
: T
i i
! i
|
| |
—oper@andl - — resmlt -
operjand3 T
—— parameter - ADDR. LP
e T v
access
MEMORY : path:
SA
—
loperand 2 |
| packed dope @ |
vector
A packed dope vector is an object which describes a cne-dimen-
sional packed array. The cbject consists of a DOUBLE, which is a -

range descriptor for the index type, followed by two BYTEs; the
first is the mumber of array elements packed in a single WORD,
and the second is the size of one element in bits. The first byte

in a packed dope vector must be on a word boundary.

297

(* INPRS *)

VAR
packed dope vector : RECORD
lower : integer;
upper : integer;

no : byte;
size : byte
END;

index : integer;
result : word;

addrl : addr;
addr2 : addr;
BEGIN

index := stack(lp-5):

addrl.base := stack(lp-3):

addrl .disp := stack(lp-1):

WITH packed dope vector DO

BEGIN
lower := mem(addrl);
upper := mem(addrl+2);
no := membyte(addri+4);
size := membyte(addrl+5);
IF (index < lower) OR (upper < index) THEN (* signed compare *)
exception(index error):

index := index - lower:;
addr2.base := stack(lp-9):
addr2.disp := stack(lp-7) + (index DIV no) * 2;
result := memword(addr2);
result := result SHIFT ((index MOD no) * size);
result := result SHIFT size;
result := result AND (1 shift size - 1);
stack(1lp-9) := result

ENDI
lp := 1p - 8;
ip := ip + 1
END; (* INPRS *)

298

12.4 Pop and Store a Value in an Element of a Packed Array 12.4

This instruction removes a value fram the stack and stores the
value in an element of a packed (one-dimensional) array. The in-

struction has four operands:

Operand 1 is interpreted as the address (ADDR) of the first byte
of the first element of the array to be indexed.

Operand 2 is interpreted as a packed dope vector.

Operand 3 is interpreted as a signed integer. The value of this
operand is the index.

Operand 4 is the value to be stored in the array element selected
by operand 3. The value of this operand is truncated fram the
left (high-order bits) to fit the size of the Aarray element.

299

12.4.1 INPSS 12.4.1

INdex Packed Array Store via Stack Value: 6Fy .

P~ [DPSS]

STACK BEFORE: STACK AFTER:

—_———

—operjand 1 — result —
operj@and 3 T
LP
— parageter - ADDR
tp |
access
MEMORY : path:
SA
—

loperand 2 |

| packed dope N
vector

For a descriptiocn of a packed dope vector, see subsection
12.3.1.

300

(* INPSS *)

VAR

mask : ARRAY(0..15) OF bit;
packed dope vector : RECORD

lower : integer;
upper : integer;

no : byte;
size : byte
END;
index : integer;
addrl : addr;
addr2 : addr;

operand : word;
no of shifts : integer;

BEGIN

index := stack(lp-7);

addrl .base := stack(lp-5);

addrl.disp := stack(lp-3);

WITH packed dope vector DO
BEGIN

lower := mem(addrl);

upper := mem(addrl+2);

no := membyte(addri+4);

size := membyte(addrl1+5);

IF (index < lower) OR (upper < index) THEN
exception(index error);

index := index - lower;

addr2.base := stack(lp-11);

addr2.disp := stack(lp-9) + (index DIV no) * 2;

operand := (stack(lp-1):

mask := 1 SHIFT size - 1;

no of shifts := 16 - (index MOD no + 1) * size;

operand := operand shift no of shifts;

mask := mask SHIFT no of shifts:

result := memword(addr2);

result := result AND (NOT mask);

memword(addr2) := result OR operand

301

13. MISCELLANEOUS 13.

13.1 No Operation 13.1

The execution of this instruction has no effect. The instruction

has no operands.

13.1.1 MNOCOP 13.1.1

_bqiscellaneous NO geration Value: 2E‘H ex

IP -~ MNCOP

STACK BEFORE: STACK AFTER:

s, b e . .]

(* MNOOP *)
BEGIN
ip = ip + 1

END; (* MNOOP *)

13.2

Exception

13.2.1

302

This instruction performs an unconditional jump to the program

point defined in the exception point field of the incarnation

descriptor. Before the jump, the multiple-wait flags are cleared
in the ps register of the register set and the maxstack pointer
reset to the value defined in the incarnation descriptor.

MXEPT

Miscellaneous eXcEPTion

P - [HXEPT]

STACK BEFCRE:

(* MXEPT *)

VAR
cause : integer;
BEGIN
cause := stack(lp-1);:
lp == 1p - 2;
exception(cause);

END; (* MXEPT ¥*)

Value: 2EH ox

STACK AFTER:

- ————

Lp T

13.2

13.2.1

303

13.3 Trap 13.3

Two instructions, with deliberatly illegal operation codes, are
reserved for software purposes. The parameter is interpreted by
software as a routine number.

13.3.1 TRAPE 13.3.1

TRAP Entry Value: 2C..

IP » [TRAPE |parametey

STACK BEFORE: STACK AFTER:

l
e] 1]

(* TRAPE *)

[

R

BEGIN
exception(illegal opcode);
END; (* TRAPE *)

304

13.3.2 TRAPR 13.3.2

TRAP Return Value: 2DHex

IP - [TRAPR [parameted

STACK BEFORE: STACK AFTER:

|

}

(* TRAPR *)

e e e e o
e

T

BEGIN

exception(illegal cpcode);
END; (* TRAPR *)

305

14. INSTRUCTION FETCH 14.

This chapter contains an algorithmetic description and a flow
chart of the instruction fetch performed by the microprogram.

The fetch point is the point to which all instructions return
after execution. A few instructions return to special points in
the fetch algorithm, viz. the block input/output instructions and
the 'Execute Next after Clearing Interrupt' (IONCI) instruction.

fetch: (* instruction fetch *)

IF debug request THEN
execute debug request;
IF stop mode THEN
BEGIN
IF breakpoint mode = 0 TdEN
GOTO fetch;
IF curlevel < nextlevel THEN (* interrupt with higher
priority *)
GOTO fetchl;
IF breakpoint mode > O THEN
breakpoint mode := breakpoint mode -1
ELSE h -
IF reg set(curlevel).ip = breakpoint ip THEN
GOTO fetch -
END;
GOTO execute next;

fetchl:

IF curlevel < nextlevel THEN
curlevel := nextlevel;
IF reg set(curlevel).ib.mode = block io mode THEN
BEGIN -
GOTO CASE reg set(curlevel).ib OF
(iorbbc, iorbb, iorbwc, iorbw, iowbbc,
iowbb, lowbwe, iowbw)
END;

306

execute next:

IF reg set(curlevel).ib.mode = dummy mode THEN
BEGIN
IF curlevel <> O THEN
BEGIN
dummy interrupt last := curlevel;
dummy interrupt count := dummy interrupt count +1;
device(curlevel).interrupt := 0; (* clear interrupt level ¥*)
GOTO fetch
END;
(* schedule; see subsection 3.7.5 *)
WITH monitor reg set DO
BEGIN
IF (n = -1) OR (nxt
BEGIN
dumy loop count :
GOTO fetch
END;
IF (nxt = -1) THEN
next := Xk
ELSE
IF (k <= nxt) AND {(nxt < -1) THEN
next := nxt +l
ELSE
nxt := nxt;
IF active queue(next).base.nilbit = 1 THEN
BEGIN
nxt := nxt -1;
GOTO fetch
END;
loadregisters(memaddr(active queue(next))):
GOTO fetch
END (* with monitor reg set *)
END; (* dummy mode *)
instruction := membyte(reg set(curlevel).ip):
GOTO map (instruction);
(* end fetch *)

m-1) THEN

dummy loop count +1; (* 32 bits *)

307

N

INIT RC3502

T YU R USRI, (S ——

K
N
k
L SINGLE STEP
————————— >
é
LEVEL Y Y
N
SH“T/ FETCH 1:1
N
INIT REGS
¥ BLOCK
i \I/O
N
BLOCK 1/0 BLOCK I/0
k
PARITY
M emos | D¥IR DEBUG

) K
CLEAR LEVEL SCHEDULE
N2
J J J)
INSTR 1 INSTR 2 INSTR 3
| | |
——e N ————
Fig. 16

RC3502 Microprogram Flow

15.

308

AUTOLOAD

The autoload function can be initiated in the following way:

- Power Restart
- Watchdog Restart

Power Restart

The built-in test programs are activated, controlled by the MODE
switch, (see subsection 16.2.1) and the CPU initializes the
registers, whereafter control is passed to the autoload program
residing in the first memory module.

Power Restart occurs:

- when power is turned ON manually on the Operator's Control
Panel (OCP) or on the power supply,

- after a temporary power failure,

- on manual activation of the autoload button on the OCP or

the AUTO push-button on the power supply.

Watchdog Restart

The CPU initializes the registers, whereafter control is passed
to the autoload program. No built-in test programs are activated.
The watchdog function can be activated manually by means of the
'Y' debug-console cammand as well as from the software (see sub-
section 3.3.4).

15.1

309

Initialization

The following algorithm is executed by the microprogram:

auto:
FOR i := 0 TO 123 IO
WITH reg set (i) DO

BEGIN
1m := -1;
ps := -1;
pb := =-1;
lu = -1;
sf = -1;
pr := -1;
ib = -1;
ic := -1;

END;

curlevel := 1;
WITH reg set (curlevel) DO

BEGIN
ps = 0O;
pb := #h <0;
ib := #h 0;
ic = 2;
END;

device (curlevel).interrupt := 1;
GOTO fetch;

15.1

16.

SWITCHES AND INDICATORS

16.1

Operator Control Panel

310

16.

16.1

CFF

ON

LOCK

OPOWER DK

QCPERATIN
OTESTMODE

POWER AUTOLOAD

QPOWER DK
OCPERATING

QOTESTMODE
AUTOLCAD

QPTWER DK
OCPERATING

CTESTMODE
AUTOLCAD

QPOWER DK
QCPERATIN

OTESTMODE
AUTOLCAD

Figure 17: OCP for Rack with One RC3502 or Three RC3502's.

Power is removed from the RC3502('s) by turning the POWER key to

the OFF position.

Power is applied to the RC3502('s) by turning the POWER key to
the ON position (or further to the LOCK position).

The AUTOLOAD button(s) is (are) enabled when the POWER key is in
the ON position, and disabled when the POWER key is in the LOCK

position.

311

The AUTOLOAD button initiates autoloading of the relevant RC3502.

The POWER OK lamp, when lit, indicates that the power is as it
should be on the RC3502.

The OPERATING lamp, when lit, indicates that the RC3502 is

running normally.

The TEST MODE lamp, when lit, indicates that the rc3502 is
executing the built-in test programs.

16.2 Processor Front Panel 16.2

The front panel of the processor board contains five switches,

five indicators, and a jack.

DI O

cr QO
BUS

P O
0-3

o\

12 > RP
*/a\" o
4-7
o\ ™O

. .

LTe)

8-11

o\, —

< 3 c
.,.\: (@]
12-15
\.\'1. f‘

s 3 =
LYY |
MQDE
«*/e

D "

a,.\.

Figure 18: Processor Front Panel, Switches, Indicators, and Jack.

312

All of the switches are rotary switches with 16 positions, indi-
cated by the hexadecimal digits O to F. The switches are set by
means of a screwdriver.

The four switches marked BUS are used to supply the processor
with data. There is a switch for bits 0 to 3, 4 to 7, 8 to 11,

16.2.1 Switches
16.2.1.1 Bus Switches

and 12 to 15.
16.2.1.2

Debug Mode Switch

The switch marked MODE is used to enable activation of the debug
console and to control the execution of the built-in test pro-
grams (subsection 16.2.2).

The switch settings O to 7 select a baud rate for the debug con-
sole and a program execution rmode, whereas the switch settings 8
to F select only a program execution mode, i.e. the console can-
not be activated, to debug mode (chapter 17).

Settings Baud Rate Execution Mode

0 (8) 300 bps run test, loop

1 (9) 1200 - run test, loop

2 (n) 300 - skip test

3 (B) 1200 - skip test

4 (C) 300 - run test, no loop
5 (D) 1200 - run test, no loop
6 (E) 300 - skip test

7 (F) 1200 - skip test

16.2.1

-

16.2.1.1

16.2%.2

313

Test Program Execution Modes

run test The programs are executed whenever the AUTOLOAD but-

ton is pressed.

skip test The programs are not executed.

loop The programs are executed in an endless loop.
no loop The programs are executed once.

16.2.2 Indicators
DI Disabled Interrupt

oP

This lamp, when lit, indicates that the processor is running
in the disabled interrupt mode.

Operation
This lamp, when lit, indicates that the processor is running
normally; when it is extinguished, the processor has stopped.

Left Parity Error

This lamp, when lit, indicates that a parity error has been
detected during a memory read in the left byte. The lamp can
be extinguished only by power restart or autoload.

Right Parity Error

This lamp, when lit, indicates that a parity error has been
detected during a memory read in the right byte. The lamp can
be extinguished only by power restart or autoload.

Test Mode

This lamp, when lit, indicates that the processor is execut-
ing the built-in test programs. The current program is indi-
cated by the OP, LP, RP, and ™ lamps, ™ representing the
least significant bit of the program number.

If an error is detected by a test program, one of the mes-
sages described below will be displayed on the debug console.
For a description of the display cammands, see section 17.2.

16.2.2

314

8085 Cammunication Test

Message: err 1 <dumy> <dummy>
¥YS5SD displays 6 bytes of transmitted data.
Y70 displays 6 bytes of received data.

Cammunication Test

Microprogram interrupt of debug microprocessor.
No message is displayed, but RP and TM are lit.

Working Register Address Test
Message: err 5 <address> <data read>
W<address> displays data read.

Working Register Data Test

Message: err 7 <address> <data read>
W<address> displays data read.

Memory Address Test

Message: err 9 <address.displacement> <data read> <err.type>

]

err.type: + 1 left parity error
+ 2 = right parity error
+ 4 = data error

Y40 displays memory module number.

M<memory module.displacement> displays data read.

Memory Data Test
Pattern 5555.
Message: err b <address.displacement> <data read> <err.type>

err.type: see 9
Y40 displays memory module number.
M<memory module.displacement> displays data read.

Memory Data Test
Pattern AAAA.

Message: err d<address.displacement> <data read> <err.type>
err.type: see 9
Y40 displays memory module nurber.
M<memory module.displacement> displays data read.

p—

16.2.3

315

Jack

16.3

The jack, marked CONSOLE, is a 9-pin CANON jack for connection of
a debug console (Teletype campatible device). The console, which
is further described in chapter 17, must have the following char-

acteristics:

8 data bits per character
no parity bit

1 stop bit

300 or 1200 bps

The electrical/logical characteristics of the signals in the jack
must conform to Recammendation V.24. The signals are as follows:

Pin No Signal Name

+5 Vv

+12 V

received data
~-12 V

ov

transmitted data
ov

(not used)

ov

O 0O N 00 e W -

Power Supply

The power supply (POW201) is supplied with a number of controls:
AC MAINS: Manual and autamatic circuit breaker.

LOCK: Spring loaded lock switch, which inhibits manual in-
tervention in AC MAINS and AUTO functions.

POWER CK: Indicator, which stays lit as long as power is as it
should be.

16.2.3

16.3

316

Push-button for manual generation of an autoload
signal.

Indicator, which remains on after a power break
caused by overheating.

317

The debug console can be in ocne of two possible modes: debug mode
(D mode) or terminal mode (T mode). A switch between the two
modes takes place when the EELL key (CTRL and G) is pressed.

If the MODE switch (subsection 16.2.1.2) is set in the range 0 to

console can be activated at any time by pressing the

BELL key (CTRL and G) without stopping instruction execution in

17. DEBUG CONSOLE

17.1 Activation of the Console
7, the debug
the processor.

17.2 Display Cammands

Display commands cause the display of eight words of data. The

following display cammands are available:

M <gaddr>

W <register>

Modify Memory
Displays the contents of the 8 memory locations
starting at <gaddr>.

Modify Working Registers

L <level>

Y <yaddr>

Displays the contents of the 8 working registers
starting at <register>.

Modify Working Registers
Displays the level nurber and the contents of the 8

working registers belonging to <level>.

Modify Control Microprocessor RAM
Displays the contents of the 8 control microproces—

sor RAM locations starting at <yaddr>.

17.

17.1

17.2

17.3

318

Display cammands are executed in the following situations:

1) when a display command is entered
One can now modify the displayed data by entering new data in

the same positions on the following line. Pressing the space

bar will move the cursor one position to the right.

A display cammand is terminated by pressing one of the follow—
ing keys:

CR The CR kay terminates the current display cammand.
The debug console will await the next cammand.

+ The + key terminates the current display cammand and
executes a display cammand for the succeeding 8
words (M or Y) or the 8 registers on the succeding
level (W).

- The - key terminates the current display cammand and
executes a display cammand for the preceeding 8
words (M or Y) or the 8 registers on the preceding
level (W).

ESC The ESC key terminates the current display cammand,
but no data modification takes place. The text <ESC>
is displayed. The debug console will await the next

cammand .

2) When a control command (section 17.3) is terminated
The last executred display cammand is repeated, but modifica-
tion of the displayed data is not allowed. The debug console

will await the next cammand.

Control Commands

The following control cammands are available:

R Run

The processor will start instruction execution.

17.3

-

17.4

319

S Instruction Step

The processor will execute one instruction, stop,

and reactivate the debug console.

S <steps> Multi-Instruction Step

The processor will execute <steps> instructions,

stop, and reactivate the debug console.

Cammand Parameters 17 .4

All numbers entered or displayed are hexadecimal.

At any time the entering of an empty cammand (i.e. pressing the
CR key) will cause the previous cammand to be repeated.

A global address (<gaddr>) is entered using one of the following

formats:

<base> : <disp>
or
: <disp>

<base> is the leftmost 16 bits of the 32-bit address.
<disp> is the displacement within the selected memory module,
i.e. the rightmost 16 bits of the address.

If the second format (: <disp>) is used, the last entered address
base will ke echoed and used.

320

17.5 Connection of the Console

1]

(CBL312 for RC822)
(CBL588 for RC831)

Console Jack
(subsection 16.2.3)

Figure 19: Connection of the Console.

17.5

Teletype Compatible
Device (RC822 or RC831)

18.

321

ACTUAL INSTRUCTION SET 18.

The Base Instruction Set (BIS) described in chapters 4 to 14 has
been extended with a number of encoded instructions to form the
Actual Instruction Set (AIS) for the RC3502. The candidates for
encoding were selected after camprehensive analyses of static and
dynamic instruction frequency for large application systems.
Every encoded instruction in the AIS has a single corresponding
instruction in the BIS, fram which it is encoded. In practice the
encoding follows one of the two models:

- A 16-bit parameter may be expressed in 8 bits, and the en-
coding is done by introducing a new instruction (new ocper-
ation code) occupying 8 bits less than its BIS form.

- A single 16~bit parameter value is so frequent that it may
be expressed implicitly in the operation code for the encod-
ed instruction.

In the description of encoded instructions, the following infor-

mation is given:

- Symbolic name

- Hexadecimal operation code value

- Original BIS instruction and the parameter value interval

- Number of bytes occupied. If several parameters follow the
operation code, the distribution of byte consumption on
operation code and parameters is shown (e.g. 3 bytes (1,1,1)
indicates that the instruction occupies 3 bytes, distributed
on operation code: 1 byte, parameter 1: 1 byte, and par-
ameter 2: 1 byte).

For the verbal, diagrammatic, and algorithmic descriptions, see
the description of the original BIS instruction, which is func-
tionally equivalent.

322

Synbolic | Op-Code Corresponding BIS Instruction | Number of Bytes
Name Hex Value | and Parameter Value Occupied
REAGDS CE REAGD,X; X € [0..255] 2
REAIDS CF REALD,X; X € [0..255] 2
RECO 60 RECHW, O 1
RECI 01 RECHW, 1 1
REC10 OA RECHW, 10 1
REC11 OB RECHW, 11 1
REC12 oC RECHW, 12 1
REC13 0D ~ | RECHW,13 1
REC14 OE RECHW, 14 1
REC15 OF RECHW, 15 1
REC2 02 RECHW, 2 1
REC3 03 RECHW, 3 1
REC4 04 RECHW, 4 1
REC5 05 RECHW, 5 1
REC6 06 RECHW, 6 1
REC7 07 RECHW, 7 1
REC8 08 RECHW, 8 1
REC9 09 RECHW, 9 1
RECHWS cs RECHW,X; X€ [0..255] 2
REVGRES 89 REVGB,X; X€ [0..255] 2
REVGDS E9 REVGD,X; X€ [0..255] 2
REVGFS o REVGF,X; X € [0..255] 3 (1,1,1)
REVGWS A9 REVGW,X; X € [0..255] 2
REVLBS 8B REVLB,X; X€ [0..255] 2
REVLDS EB REVLD,X; X € [0..255] 2
REVLFS CB REVLF,X; X € [0..255] 3 (1,1,1)
REVLWS AB REVLW,X; X € [0..255] 2
RVSBO 81 REVSB, 0 1
RVSB12 8D REVSB, 12 1
RVSB2 83 REVSB, 2 1
RVSB4 85 REVSE, 4 1
RVSB6 87 REVSRB, 6 1
RVSD12 ED REVSD, 12 1
RVSD2 E3 REVSD, 2 1
RVSD4 E5 REVSD, 4 1
RVSD6 E7 REVSD, 6 1
RVSFO Cl REVSF,0,X 2
RVSF12 D REVSF,12,X 2
RVSF2 C3 REVSF, 2,X 2
RVSF4 c5 REVSF, 4,X 2
RVSF6 c7 REVSF, 6,X 2
RVSWO Al REVSW, 0 1
RVSW12 AD REVSW, 12 1
RVSW2 A3 REVSW, 2 1
RVSW4 A5 REVSW, 4 1
RVSW6 A7 REVSW, 6 1

323

Symbolic| Op~Code Corresponding BIS Instruction | Number of Bytes
Name Hex Value| and Parameter Value Occupied
STVLBS 8A STVLB,X; X €[0..255] 2

STVLDS EA STVLD,X; X €[0..255] 2

STVLFS CA STVLF,X,Y; X €[0..255] 3(1,1,1)
STVLWS AA STVLW,X; X €[0..255] 2

SVSBO 80 STVSB, 0 1

SVSB2 82 STVSB, 2 1

SVsSB28 oC STVSB, 28 1

SVSB29 9D STVSB, 29 1

SVSB30 9E STVSB, 30 1

SVSB31 9F STVSB, 31 1

SVsB4 84 STVSB, 4 1

SVSB6 86 STVSB, 6 1

SVSFO 0 STVSF,0,X 2

SVSF2 c2 STVSF,2,X 2

SVSF28 DC STVSF, 28,X 2

SVSF29 DD STVSF, 29,X 2

SVSF30 DE STVSF, 30,X 2

SVSF31 DF STVSF, 31,X 2

SVSF4 Cc4 STVSF,4,X 2

SVSF6 c6 STVSF, 6,X 2

SVSWO AO STVSW, 0 1

SVSW2 A2 STVSW, 2 1

SVSw28 BC STVSW, 28 1

SVSW29 BD STVSW, 29 1

SVSW30 BE STVSW, 30 1

SVSW31 BF STVSW, 31 1

SVSw4 A4 STVSW, 4 1

SVSW6 A6 STVSW, 6 1

19.

324

INSTRUCTION EXECUTION TIMES

The calculated execution times of the RC3502 Rev. 5 machine in-
structions are based on an 18.432 MHz CPU clock, high-speed work-
ing registers, and the absence of DMA controllers stealing CPU
cycles. The execution time includes a non-interrupt instruction
fetch, with normal microinstruction flow. It is assumed that
block I/0 is stopped by count, and not because of end of medium.

For each memory write, 2 steps are added, and for each memory
read, 1 step or 0.5 step when there are microinstructions between
the request (address) and the read.

Same of the execution times may vary, e.g. arguments may start in
an odd or even address or there may be a differing murber of ones
in maltiplication. This deviation is indicated by percentages in
the table.

On level shift add:
level <= 7 12.0 step 2.6 pusec.
level > 7 18.0 step 3.1 psec.

Note: On block I/0 do not add level shifts.
Scheduling on level 0 is done by a level shift to level 1,
where the SCHED instruction is executed.

The following instructions are interruptable:
CSTOP IOREB IORBBC IORBW
IORBWC IOWBB IOWBEC IOWBW
IOWEWC MOVEB MOVEG REVSM
SCHED SETAD SETCR SETDI
SETEQ SETIN SETSB SETSP
SETST SETUN STCEA

19.

325

The following abbreviations are employed:

X time required for one microinstruction, viz. 217.0
nanoseconds

SH shiftout + shiftin time (controller dependent)

W nurber of words

Weq number of equal words before difference

B number of bytes

Beg number of equal bytes before difference

E element size
S element number in word
F first bit nunber in a field instruction bit;

0 is most significant bit

L last bit mumber in a field instruction bit;

0 is most significant bit

R static procedure level difference

NF nurber of empty queues before the SCHEDuled process is
found

P number of processes in queue before the CSTOPped pro-
cess

psec. microsecond(s)

Instruction

CEXCH
CGREG

CLLST

empty chain
not empty chain

COMPL

CRC16

CRELE
open semaphore

passive semaphore

closed semaphore
start level = 0

active queue empty,
semaphore
going passive
staying closed

active queue not ampty,
semaphore
going passive
staying closed

closed semaphore
start level > O
semaphore
going passive
staying closed

CRGET
CRPUT
CRRAM

CSELL
level = 0, new level > 0,
active queue

going empty
staying not empty

level > 0, new level = 0,
active queue

empty

not empty

326

Step

25.0
30.0
29.0
99.0
17.0
112.0
132.0
22.0

62.0

157.8

136.8

251.3
266 .3

257.3
272.3

179.8
194.8

23.0
30.0

33.5

299.5
302.5

Hsec.

5.4

6.5

6.3

21.5

3.7

24.3

28.6

4.8

13.5

34.2

29.7

59.1

39.0
42.3

5.0

6.5

7.3

43

133

2%

23

1%
1%

1%
1%

33
23

13

2%
23

1%
1%

Instruction

level > O,
new level > 0

level = 0,
new level = 0

CSENS
open semaphore
going passive

open semaphore
staying open

passive semaphore
closed semaphore

CSIGN
open semaphore

passive semaphore

closed semaphore
start level = 0

active queue empty,
semaphore

going passive
staying closed

active queue not empty,
semaphore
going passive
staying closed

closed semaphore
start level > O
semaphore
going passive
staying closed

CSKIP
active queue ampty
active queue not eampty

CSLEV
CSTCR
CSTCP
process not in queue
level = 0
level > 0O

process in queue

going empty
level =0
level > 0O

327

Step

249.0

194.5

121.0

136.0
96.0

97.0

151.0

130.0

250.5
265.5

173.0

188.0

35.0

26.5

136.0

97.5
146.5

150.5
199.5

psec.

54.0

42.2

26.3

29.5

20.8

32.8

28.2

32.7
43.3

23

23

1%
1%

63

1%

1%

Instruction

process in queue

staying not empty,
last process

in queue
level = 0
level > O

process in queue

staying not empty,
not last process

in queue
level = 0
level > 0
CWAIT

open semaphore
going passive

open semaphore
staying open

passive semaphore,
level = 0O,
active queue
going empty
staying not empty

passive semaphore,
level > 0

closed semaphore,
level = O,
active queue

going empty
staying not empty

closed semaphore,
level > O

CWRAM

CWTAC
reference nil
reference not nil

DIV

EQ

GE

GT

INDEX

elementsize <= 60
elementsize > 60

328

Step

16.0P+177.5
16.0P+226.5

16.0P+162.5
16.0P+211.5

120.0

135.0

207.0
222.0

167.0

64.0
55.0

99.0
30.5
31.0

31.0

psec.

3.5p+38.5
3.5p+49.2

41.0

7.8

13.9

11.9

21.5

6.6

6.7

6.7

0.2E+18.2
31.2

2%

23

5%

9%
2%
3%
3%

Instruction

INPRS
INPSS
INTRS
ICCCI
ICCDA
IOGI
ICGO
IOIBX
IONCI
IORBB
IORBEC
IORBW
IORBWC
IORS
IORW
IOWBB
IOWBBC
IOWBW
ICOWBWC
I0WC

IOWW

JMPHC
JMPPD

JMPRW

JMZGE

329

Step

2SE+3S+E+156.5
SE+3S+2E+187.0
46.0

21.0

46.5

SH/X+46.0

37.5

103.5

18.0
(SH/X+40.5)B+96.5
(SH/x+4o.5)B+89.§
(SH/X+47.0)W+96.5
(SH/X+47.0)W+89.5
SH/X+36.5
SH/X+36.5
(SH/X+40.5)B+96.5
(SH/X+40.5)B+89.5
(SH/X+45.5)W+96.5
(SH/X+45.5)W+89.5
28.5

32.5

66.0

29.0

23.0

18.0

25.5

25.5

26.0

26.5

psec.

.2(2SE+3S+E)+34.0
.2(SE+35+2E)+40.6
10.0

4.6

10.1

SH+10.0

8.1

22.5

3.9
(SH+8.8)B+20.9
(SH+8.8)B+19.4
(SH+&O.2)W+20.9
(SH+10.2)W+19.4
SH+7.9

SH+7.9
(SH+8.8)B+20.9
(SH+8.8)B+19.4
(SH+9.9)W+20.9
(SH+9.9)W+19.4
6.2

7.1

14.3

6.3

5.0

3.9

5.5

5.5

5.6

5.8

7%

1%
1%

9%

1%
13

8%

63

10%

R

10%

8%

Instruction

JMZLT

JMZNE
LE

LLOCK

LPOP
no description clear
description clear

LPUSH
no description copy
description copy

LRESE
LT
MADD
MBSET
MBTES

MCIS
open semaphore
going passive

open semaphore
staying open

passive semaphore,
level = O,
active queue

going empty
staying not empty

passive semaphore,

level > 0
timer = 0
MCIST

open semaphore
going passive

open semaphore
staying open

passive semaphore,
level = 0O,
active queue
going empty
staying not empty

330

Step

25.5
25.5
31.0
87.5

129.0
146.0

136.0
177.0
40.0
31.0
29.0
26.0

26.5

165.5

180.5

252.5
267.5

212.5

60.5

165.5

180.5

252.5
267.5

psec.

5.5

5.5
6.7

19.0

6.7
6.3
5.6
5.8

35.9

39.2

54.8

46.1

13.1

35.9

39.2

R

3%

2%

9%

33

&

13

Instruction

passive semaphore,
level > O

timer = 0

MCIT
level = O,
active queue
going empty
staying not empty

level > 0O
timer = 0O
MNOOP
MOD
MOVEB

MOVEG
even bytes
both even
one odd
both odd

odd bytes
both even
one odd
both odd

MSUB

MTIME
empty timer chain

For each process in

timer chain add one

of the following times:
own.timer = 0
own.timer > 0

own.timer = 1,
level = O,
semaphore
not used
going passive
staying closed

own.timer = 1,
level > O,
semaphore
not used
going passive
staying closed

331

Step

212.5

60.5

128.5
143.5

71.5
59.5
10.0
98.5

18.0B+40.0

17 .5W41.0
24.0w+41.0
30.5W+41.0

30.5W+56.0
24 .0W+56.0
17 .5W+56.0

29.0

175.5
215.5
230.5

89.0
129.0
144.0

96.5

psec.

46.1 1%

13.1

15.5 4%
12.9
2.2
21.4 10%
3.98+8.7
8WH+8
«2WH8
+6W+8

2%

o w
[te Jate e

6.6W+12.2
5.2W12.2 2%
3.8W+12.2

6.3

4.6

oy
~N O

19.3 2%
28.0 2%
31.2 1%

20.9 10%

Instruction

MWI
level = O,
active queue

going empty

staying not empty

level > 0

MWIS
open semaphore,
going passive

open semaphore,
staying open

passive semaphore,
level = O,
active gqueue

going empty

staying not empty

passive semaphore,
level > O

MWIST
open semaphore,
going passive

open semaphore,
staying open

passive semaphore,

level = O,

active queue
going empty

staying not empty

passive semaphore,
level > 0

timer = O
MWIT
level = O,
active queue
going empty
staying not empty
level > 0
timer = 0
MWST

open semaphore,
going passive

open semaphore,
staying open

332

Step

93.0
108.0

36.0

142.0

157.0

189.0

142.0

157.0

106.0
121.0

49.0

37.0

142.0

157.0

psec.

20.2
23.4

30.8

34.1

49.7
52.9

41.0

30.8

34.1

30.8

34.1

2%

23

63

Instruction

passive semaphore,
level = O,
active queue
going empty
staying not ampty

passive semaphore,
level > 0 -

timer = 0O

MWT

level = O,
active queue

going empty
staying not empty
level > 0O

timer = 0

MWTAC

Wait Start
Causes Reason Level
I I -
S S -
S not S 0
active queue
going empty
staying not empty
S not S >0
T T -
T not T 0
active queue
going empty
staying not empty
T not T >0
Is I -
semaphore
going passive
staying closed

Is S -
IT I -
IT T -
TS T -
TS S -
TS I 0
active queue
going empty
staying not oOpen
TS I >0
IsT I -
semaphore

going passive

staying closed
IST S -
IST T -

333

Step

189.0

37.0

106.0
121.0

49.0

37.0

Hsec.

8.0

23.9

27.1
11.5
10.1

32.4
35.7
11.8
14.2

23

63

13
1%

7%

1%
1%
13
1%
1%

5%

1%
1%

Instruction

NOT

OR

PCALD

PEXIT

READB

REAGD
REAGDS

REATD

REASD

RECO

REC1-REC15

RECHWS
RENMB
RENFB
REVAB
REVAD

even address
odd address

334

Step

30.

24.
24.

29.

81

7.0R+86.

44.

41

37.

38.

33.

31

7.0R+43.

33.

31
32

45

25.
16.
18.
41.
25.
22.

21.

18

42.

67

5

0

5
0

.0

3

5

.0

5
5

0

.8

3

0

.8

.0

.0

0]

0

0

0

0

8

.0

0

.0

Hsec.

6.6 2%
5.2
5.3 2%
6.3
17.6
1.5R+18.7 7%
9.7 3%
8.9 7%
8.1
8.4
7.2 5%
6.9 9%
1.5R+2.4 11%
7.2 5%
6.9 9%
6.9 5%
9.8 3%
5.4
3.5
3.9
8.9 7%
5.4 6%
4.9 128
4.6 7%
3.9

9.1 7%

(E %)
5 o

— el
.[; —
P

Instruction

REVAF

even address
odd address

REVAW
even address

odd address

REVGB
REVGBS

REVGD

even address
odd address

REVGDS
even address

odd address

REVGF
even address
odd address

REVGE'S

even address
odd address

REVGN
even address

odd address

REVGWS
even address
odd address

REVIB

REVID
even address
odd address

REVIF

even address
odd address

REVIW
even address
odd address
REVLB

REVLBS

REVLD
even address
odd address

335

Step

-F+79.3
-F+85.3

41.5
47.5

34.0

32.8

47.0
59.0

45.8

-F+71.3
-F+77.3

-F+70.0
-F+76.0

33.5
39.5

32.3
38.3
7.0R+43.3

7.0R+56.3
7.0R+68.3

7.0R-F+80.5
7.0R-F+86.5

7.0R+42.8
7.0R+48.8
34.0
32.8

47.0
59.0

Hsec.

-.2F+17.2 9%
-.2F+18.5 8%

9.0 7%
10.3 6%

7.4 4%

7.1 9%

10.2 3%
12.8 3%

9.9 6%
2.5 5%

-.2F+15.5 8%
-.2F+16.8 7%

-.2F+15.2 10%
-.2F+16.5 9%

43
43

w0
o W

9%
7%

[SeL N |
w O

1.5R+9.4 11%

1.5R+12.2 9%
1.5R+14.8 7%

1.5R-.2F+17.5 118%
1.5R~-.2F+18.8 10%

1.5R+9.3 118
1.5R+10.6 10%

7.4 4%

7.1 9%

10.2 3%
12.8 3%

Instruction

REVLDS
even address
odd address

REVLF
even address
odd address

REVLFS

even address
odd address

REVLN
even address
odd address

REVLIWS

even address
odd address

REVPD

REVPW

REVSB

REVSD

even address
odd address

REVSF
even address

odd address

REVSM
even address
odd address

REVSW
even address
odd address

RVSBO

RVSB2-RVSB12

RVSDO

even address
odd address

RVSD2-RVSD12

even address
odd address

RVSFO
even address

odd address

336

Step

45.
57.

-F+71.
-F+77.

-F+70.
-F+76.

33.
39.

32.
38.
34.
22.
46.

T 59,
71.

~-F+83.
-F+89.

17.5W+34.
23.5W+34.

45.
51.
39.
40.

52.
64.

53.
65.

-F+76.
-F+82.

8
8

3
4

w

Hsec.

N WY
61 X}

.2F+15.
.2F+16.8

w

«2F+15.2
.2F+16.5

10.0

12.8
15.4

-.2F+18.1
-.2F+19.4

3.8W+7.4
5.1W+7 .4

8.5

8.7

-.2F+16.6
-.2F+17.9

8%
7%

10%
93

33

33
2%

6%
6%

33
33

5%
43

Instruction

RVSF2-RVSF12
even address
odd address

RVSWO
even address
odd address

RVSW2-RVSW1 2
even address
odd address

SCHED

SETAD
even address

odd address

SETCR

SETDI
both even
one odd
both odd

SETEQ
result true
both even
one odd
both odd

result false
both even
one odd
both odd

SETIN
both even

one odd
both odd

SETSB
result true
both even
one odd
both odd

result false
both even

one odd
both odd

337

Step

-F+77.3
-F+83.3

38.5
44.5

39.5
45.5

34.5NF+192.0

36.0W+79.5
42.0W+79.5

108.5W+85.5

45.0W+80.5
51.0w+80.5
57.0wW+80.5

38.5W+81.5
44.5W+81.5
50.5W+81.5

38. 5Weq+106.0
44.5Weq+112.0
50. 5Weg+118.0

45.0W+80.5
51 .0w+80.5
57.0W+80.5

38.5W+81.5

44 .5W+81.5
50.5W+81.5

38.5Weq+106.0
44.5Weq+112.0
50. 5Weq+118.0

8.4Weq+23.0
9.7Weq+24.3 3%
11.0Weq+25.6

8.4Weq+23.
9. TWeq+24.
11.0Weq+25.

Hsec.

-.2F+16.8 4%
-.2F+18.1 4%

WO 0
~3

8.6
9.9
7.5NF+41.7 4%

7.8W+17.3 10%
9.1W+17.3 8%

23.5W+18.6 18%
9.8W+17.

11 0W17.
12.4W+17.

8%
73
6%

L n

8.4W+17.
9.7TWH+17.
11.0wW+17.

43
43
43

N

3%
3%
9.8W+17.5 4%

1T.TW+17. 43
12.4WH17. 4%

(S99

~J

8.4W+17. 43

9. TW+17.7 4%
11.0W+17.7 4%

33
33
3%

oW O

Instruction

SETSP

result true
both even

one odd
both odd

result false
both even
one odd
both odd

SETST
even address
odd address

SETTM

even address
odd address

SETUN
both even

one odd
both odd

SHC

SHC8

STCEA
result true
result false

STNHB

STVAB

STVAD
even address
odd address

STVAF
even address

odd address

STVAW
even address
odd address

STVGB

STVGD
even address
odd address

STVGE

even address
odd address

338

Step

38.5W+81.
44 .5W+81.
50.5wW+81.

38. SWeq+106.
. SWeq+112.
50.5Weq+118.

35.0W+75.
41 .OW+75.

56.
62.

45.0W+80.
51 .0W+80.
57.0wW+80.

39.

24.
18.0B+48.

18.0Beq+64.

19.

38.

50.
64.

-F-L+101.
-F-L+114.

38.
45.
30.

42.
56.

-F-L+93.
-F-L+106.

5
5
5

0
0
0

0
0

usec.

8.4WH17.7
9. TW+17.7
17.7WH17.7

8.4Weg+23.0
9.7Weg+24.3
11.0Weg+25.6

9.8W+17.5
11.1TW+17.5
12.484+17.5
8-6

5.2

3.98+10.4
3.9Beq+13.9

4.1

8.4

-.2F-,21+422.0
-.2F-.21+24.8

© ©
O

()}
[0)}

.

[\ o]
w N

-.2F-.21+20.2
-.2F-.20423.1

4%
4%
43

3%
33
33

10%
9%

14%
13%

8%
7%
63

22%

83

63
5%

9%
7%

8%
7%
5%

43
33

8%
63

Instruction

STVGW

even address
odd address

STVIB

STVID

even address
odd address

STVIF
even address
odd address

STVIW
even address

odd address

STVLB

STVLBS

STVLD
even address
odd address

STVLDS
even address

odd address

- STVLF

even address
odd address

STVLES
even address
odd address

STVLN
even address
odd address

STVLINS
even address
odd address

STVSB

STVSD
even address
odd address

STVSF
even address
odd address

STVSW
even address
odd address

339

Step

30.
37.

(S 0]

7.0R+39.8

7.0R+51.8
7.0R+65.8

7.0R-F-L+102.
7.0R-F-L+115.

urn

7.0R+39.8
7.0R+46.8

30.5

29.3

42.
56.

(SIS

41.
55.3

w

-F-L+93.
-F-L+106.

ww

-F-L+92.
-F-L+105.

oo

30.
37.5

(9]

29.
36.

w W

44.0

57.0
71.0

-F-L+105.
-F-1+118.

@

44'0
51.0

usec.

6.6 5%
8.1 4%

1.5R+8.6 12%

1.5R+11.2 9%
1.5R+14.3 7%

1.5R-.2F-.2L+22.2 11%
1.5R-.2F-.21+25.1 9%

1.5R+8.6 12%
1.5R+10.2 10%

6'6

5%

6.4 10%

N W
wN

NS IRNe]
o o

-.2F-.21+20.2
_-ZF--2L+23-1

43
3%

7%
5%

8%
63

-.2F=-.20+20.0 103

-.2F-.21+422.8

® o
- O

8%

Ul
o0 oo

6.4 10%

7.9

9.5

12.4
15.4

-.2F=-.20+23.0
-.2F-.21+25.8

8%

3%

3%
2%

6%
5%

3%
33

Instruction

SUB
SVSBO

SVSB2-SVSB31

SVSFO

even address
odd address

SVSF2-SVSF31
even address
odd address

SVSWO
even address
odd address

SVSW2-SVSW31
even address
odd address

TEQAD

TLOCK

TNILL

TOPEN

UADD

UADHW

UDIV

UMOD

UusuB

XOR

340

Step

30.0
38.0
39.0

-F-1+99.8
-F-L+112.8

-F-L+100.8
-F-L+113.8

38.
45.

eNe]

39.
46.

oo

43.

o

41.0
40.5
42.0
30.0
45.0
93.0
30.5
93.0
92.0
30.0

29.0

Hsec.

[09] < o
N,

w

-.2F=.2L+21.7
-.2F-.21+424.5

-.2F-.21421.9
-.2F-.21+24.7

8.9
8.8
9.1
6.5
9.8
20.2
6.6
20.2
20.0
6.5

6.5

5%
43

-2%

2%

2%

3%

9%

341

INSTRUCTION TABLES

Instructions Listed by Operation Code

For each instruction the following is given: operation code
(hexadecimal), symbolic name, and number of bytes in each par-

ameter (if any).

00: except 2b: ioibx 56: setcr
01: recl 2c: trape 1 57: settm
02: rec2 2d: trapr 1 58: mcis

03: rec3 2e: mxept 59: seteq
04: recd 2f: mnoop 5a: setsb
05: rec5 30: mwst 5b: setsp
06: recé 31: ult 5¢c: setun
07: rec?7 32: eq 5d: setin
08: rec8 33: ne 5e: setdi
09: rec9 34: 1t 5f: setad
0a: reclO 35: gt 60: recO

Ob: recll 36: le 6l: jmzeg 2
Oc: recl2 37: ge 62: jmzne 2
0d: recl3 38: mwist 63: jmzlt 2
Oe: recl4 39: tnill 64: jmzgt 2
0f: recl>5 3a: topen 65: jmzle 2
10: cwait 3b: tlock 66: jmzge 2
11: csign 3c: tegad 67: jmprw 2
12: crele 1 3d: not 68: mcit

13: cllst 3e: except 69: jmphc 4
14: cskip 3f: except 6a: jmppd
15: csens 40: madd 6b: jmcht 4
l6: cwtac 41: msub 6c: intrs
17: mwtac 42: uadd 6d: index
18: mwis 43: usub 6e: inprs
19: mtime 44: add 6f: inpss
la: csell 45: sub 70: iorbbc
lb: cstop 46: umul 71: iorbb
lc: cstdr 47: udiv 72: iowbbc
1d: sched 48: umod 73: iowbb
le: cslev 49: mul 74: iorbwc
1f: cgreg 4a: div 75: iorbw
20: mwt 4b: mod 76: iowbwc
21: iowc 4c: and 77: iowbw
22: iors 4d: or 78: mcist
23: iorw 4e: xor 79: pcald
24: ioww 4f: crclé 7a: pcals 1 4
25: iogo 50: neg 7b: pexit 2
26: iogi 51: abs 7c: lpush
27: ionci 52: compl 7d: lpop

28: mwit 53: shc 7e: lrese
29: iocci 54: shc8 7f: llock 2

2a: iocda 55: except 80: svsb0

a5:

a7:
af8:
ag:
aa:
ab:

rvsb0
svsb2
rvsbh2
svshbd
rvsb4
svsbé
rvsbé
mw i
revgbs
stvlbs
revlbs
stnhb
rvsbl2
renpb
renhb
readb
crget
stvgb
revgb
stvib
revib

stvlb
revlb

stvsb
revsb
stvab
revab
svsb28
svsbh29
svsbh30

svsb31l
svswO

rvsw0
SVsSw2
rvsw2
svswé
rvswid
SVsSwb
rvswb
rechw
revgws
stvlws
revlws

[RS S

[o8]

RN NN NN

= N

cb:

342

moveb
rvswl?2
moveg
revpw
readw
crput
stvgw
revgw
stviw
reviw
stvlw
revlw
stvsw
revsw
stvaw
revaw
svsw28
svsw29
svsw30
svsw3l
svsfO0

rvsfO
svsf2

rvsf2
svsf4d
rvsfd
svsfé
rvsfé
rechws
revgfs

stvlfs
revlfs

revsm
rvsfl2
reagds
realds
crram
mbtes
stvgf
revgf
stvif
revif
stvlef

B O NHEEFENDN

e b e b e e e

[

NN NN

\)

e

RN

d7:
d8:
d9:
da:
db:
dc:
dd:
de:
df:
el:
el:
e2:
e3:
ed:
e5:
eb:
eb:
e7:
e8:
ef:
e9:
ea:
eb:
ec:
ed:
ee:
ef:
f0:
fl:
£f2:
£3:
fa:
£5:
f6:
£7:
£8:
£9:
fa:
fb:
fc:
fd:
fe:
ff:

revlf
stvsf
revst
stvaf
revaf
svsf28
svsf29
svsf30
svsf3l
reagd
rvsd0
reaid
rvsd2
reald
rvsd4
uadhw
reasd
rvsdo
reaad
rechd
revgds
stvlds
revlds
setst
rvsdl2
stcea
revpd
cwram
mbset
stvgd
revgd
stvid
revid
stvld
revld
stvsd
revsd
stvad
revad
reard
reaxd
cexch
except

(NS S N S XY N

-

3]

NN

SR SE S

B RN NN HEFEND NN

e

o

A.2

Instructions Listed by Name

abs
add
and
cexch
cgreg
cllst
compl
crclé
crele
crget
crput
crram
csell
csens
csign
cskip
cslev
cstdr
cstop
cwait
cwram
cwtac
div

eq
except
except
except
except
except
ge

gt
index
inprs
inpss
intrs
iocci
ioc@a
iogi
iogo
ioibx
ionci
iorbb
iorbbc

51

4c
fe
1f
13
52
4f
12
91
bl
do
la
15
11
14
le
lc
1lb
10
£f0
16
4a
32
00
3e
3f
55

37
35
6d
be
6f
6¢c

29
2a

25
2b
27

71
70

iorbw
iorbwc
iors
iorw
iowbb
iowbbc
iowbw
iowbwc
iowc
ioww
jmcht
jmphc
jmppd
jmprw
jmzeq
jmzge
jmzgt
jmzle
jmzlt
jmzne
le
llock
lpop
lpush
lrese
1t
madd
mbset
mbtes
mcis
mcist
mcit
mnoop
mod
moveb
moveg
msub
mtime
mul
mwi
mwis
mwist
mwit

343

75

22
23
73
72
77
76
21
24
6b
69

6a
67

61
66
64
65
63
62
36
7f

7c

Te
34

40
f1l
dl
58
78
68
2f
4b
ac
ae
41
19
49
88
18
38
28

mwst
mwt
mwtac
mnxept
ne
neg
not
or
pcald
pcals
pexit
reaad

readb
readw

reagd
reagds
reaid
reald
realds
reard
reasd
reaxd
recO
recl

reclO
recll

recl2
recl3
recld
recl5
rec?
rec3
recéd

recb
rechét

rec’
rec8
rec9
rechd
rechw
rechws

renhb
renpb

30
20
17
2e
33
50
3d
4d
79
7a
7b
e8
90

el
ce
el
ed
cf
fc
eb
fd
60
01

Oa
Ob

Oc
0d
Oe
0Of
02
03
04
05
06
07
08
02
e
a8
c8
8f
8e

A.2

revab
revad
revaf
revaw
revgb
revgbs
revgd
revgds
revgf
revgfs
revgw
revgws
revib
revid
revif
reviw
revlb
revlbs
revld
revlds
revlf
revlfs
revlw
revlws
revpd
revpw
revsb
revsd
revsf
revsm
revsw
rvsb0
rvsbl2
rvsb2
rvsbd
rvsbé
rvsd0
rvsdl?2
rvsd?2
rvsd4
rvsdé
rvs£f0
rvsfl2

9b
fb
db
bb
93
89
£3
e9
d3
c9
b3
a9
95
£5
a5
b5
97
8b
£7
eb
d7
cb
b7
ab
ef
af
99
£9
d9
cc
b9
81
8d
83
85
87

el

el
e5
e?

cl
cd

rvsf2
rvsf4d
rvsfo
rvswl0
rvswl2
rvsw2
rvswéd
rvswé
sched
setad
setcr
setdi
seteq
setin
setsb
setsp
setst
settm
setun
shc
shc8
stcea
stnhb
stvab
stvad
stvaf
stvaw
stvgb
stvgd
stvgf
stvgw
stvib
stvid
stvif
stviw
stvlb
stvlbs
stvld
stvlds

stvlf
stvlfs

stvlw
stvlws

344

c3
c5
c7
al
ad
a3
ab
a7
1d
5f
56
S5e
59
5d
5a
5b
ec
57
5¢
53
54
ee
8c
9a
fa
da
ba
92
£2
d2
b2
94
f4
d4
b4
96
8a
o6
ea

dé
ca

b6
aa

stvsb
stvsd
stvst
stvsw
sub
svsbO
svsb2
svsh28
svsb29
svsb30
svsb3l
svsbd
svsbé
svsfO
svsf?2
svsf28
svsf29
svsf30
svsf3l
svsf4
svsfb
svsw0
SVSW2
svsw28
svsw29
svsw30
svsw3l
svswd
SVSW6
tegad
tlock
tnill
topen
trape
trapr
uadd
uadhw
udiv
ult

umod
umul

usub
XOor

98
£8
ds
b8

80
82
9¢
9d
9e
9f
84
86
cO
c2
dc
dd
de

df
cd

cb
a0
a2
bc
bd
be
bf
ad

3c
3b

3a
2c

42
eb
47
31
48
46
43
de

A.3

345

Instructions, Section Reference

abs
add
and
cexch
cgreg
cllst
compl
crclé
crele
crget
crput
crram
csell
csens
csign
cskip
cslev
cstdr
cstop
cwait
cwram
cwtac
div
eq
except
ge

gt
index
inprs
inpss
intrs
iocci
iocda
iogi
iogo
ioibx
ionci
iorbb
iorbbc
iorbw
iorbwc
iors
iorw

« s =

O« WO WOWW
L]
W owkhMNdE+

== ;o oW

11
l .

9.2.24
11.1.2
11.10.1
11.10.2
11.10.3
11.4.1
11.2.1
11.1.1
11.3.2
11.9.2
11.9.1
11.5.1
11.2.2
11.10.4
11.2.3
9.2.4
9.2.10
13.2
9.2.15
9.2.13
12.2.1
12.3.1
12.4.1
12.1.1
10.7.1
10.9.1

10.6.1
10.3.1

10.10.1
10.8.1
10.15.1
10.16.1
10.17.1
10.18.1
10.4.1
10.5.1

iowbb
iowbbc
iowbw
iowbwc
iowc
ioww
jmcht
jmphc
jmppd
jmprw
jmzeq
jmzge
jmzgt
jmzle
jmzlt
jmzne
le
llock
lpop
lpush
lrese
1t
madd
mbset
mbtes
mcis
mcist
mcit
mnoop
mod
moveb
moveg
msub
mtime
mul
mw i
mwis
mwist
mwit
mwst
mw t
mwtac
mxept

10.11.1
10.12.1
10.13.1
10.14.1

10.1.1

—
o
[y]

= Q0 0O QO QO QO COQO CO OO O
.
Ne WWWLWWWWHHKEN
L]
HaNWOdd AWK

11.10.7
11.10.6
11.6.1
11.6.3

[
=
.«
L] L] .

R WO

B e o

W W o
O WHEWRNDOFERND

[¢a W)
= D e

HHEHF O .
B e o

¢ e @
AN NN] .
.« o o

* o @
. & @

[+)W)
oo

=
[y

11.6.10
13.2

ne
neg
not
or
pcald
pcals
pexit
reaad
readb
readw
reagd
reagds
reaid
reald
realds
reard
reasd
reaxd
recO
recl
recl0
recll
recl?2
recl3
recld
recl5
rec?
rec3
recd
rec5
recé
rec?
rec8

recH9
rechd

rechw
rechws
renhb
renpb
revab
revad
revaf
revaw

O
e N~ WO WO WD
e > e o o

vt
Ul e

° e N
e e

(S0,
LI L)
W W We o PN D) e
e o e PNDBMN e o o s e
O AN OWUO O WNFHF NI N

= o e o

-
o 0o ™

I b e e
Q0 O 0 W

18

e & & e d e e
O W N D

A.3

revgb
revgbs
revgd
revgds
revgf
revgfs
revgw
revgws
revib
revid
revif
reviw
revlb
revlbs
revld
revlds
revlf
revlfs
revlw
revlws
revpd
revpw
revsb
revsd
revst
revsm
revsw
rvsb0
rvsbl2
rvsb2
rvsb4
rvsbé
rvsdo
rvsdl2
rvsd2
rvsdd
rvsdé
rvsfO
rvsfl2
rvsf2
rvsfd
rvsft6
rvsw0

5.4.11
18
5.4.13
18
5.4.14
18
5.4.12
18
5.4.15
5.4.17
5.4.18
5.4.16

5.4.7
18

5.4.9
18
5.4-10

e U N wm
. .
LI ~ S =Y o=
¢« e =
O N O N0

W e

oo on
e e
> e B B e
L)

DN e DN o

(%))
L]
L]

T
00 0D 00 0O 00 QO

—
0 ©

= e b e
o 0O 00 00 00 Q0 00 00

rvswl?2
rVvsw2
rvswid
rvswo
sched
setad
setcr
setdi
seteq
setin
setsb
setsp

setst
settm

setun
shc
shc8
stcea
stnhb
stvab
stvad
stvaf
stvaw
stvgb
stvgd
stvgf
stvgw
stvib
stvid
stvif
stviw
stvlb
stvlbs
stvld
stvlds
stvlf
stvlfs
stvlw
stvlws
stvsb
stvsd
stvsf
stvsw

O OO OOYWw
L)

O O

ARG OO

[e)

346

18

o

WWwowww www W+

NN RWWWND W -

e o . e o
L] e o . e o
- e @ * o e .

L]
. - L
.« o @

.
e

. e
° .

SO O
NN RN W

ME OAUVTWONF ORE WHFEF WO O WRNN W N

e DN NNN NN -

B e
e M HEKHFHPH K.

—
[a 0]

(o3}
28]
-

[
[0 0]

6.2.8
18
6.2.6
18
6.2.17
6.2.19
6.2.20
9.2.18

sub
svsbO

svsh2
svshb28
svsb29
svsb30
svsb3l
svsbd
svshé
svsfO
svsf2
svsf28
svsf29
svsf30
svsf3l
svsfd
svsfb
svsw0
sSvsw2
svsw28
svsw29
svsw30
svsw3l
svswd
sSVsSwé
tegad
tlock
tnill
topen
trape
trapr
uadd
uadhw
udiv
ult
umod

umul
usub

Xor

(o]
.

18

. - . - L]
[. - L] L[]

O
Ve WWWOWOWWO W

NN N e N e

== e

A OO OO dNHOUMI &

Do
We WWHHKF W

O
\D e
[ye]
RN e N

O WO WO
L I
L

P

RETURN LETTER

Title: RC3502 Reference Manual RCSL No.: 52-2A972

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address:

Date:
' Thank you

1288

424

................. Do not tear - Fold hereand staple
Affix
postage
here
¢REGNECENTRALEN
af 1979

Information Department
Lautrupbjerg 1

DK-2750 Ballerup
Denmark

