
RCSL No: 52~AA972

Edition: February, 1983

Author: Poul Mélgaard —

at 1979{
C
S
L

 N
o

 4
24

4
a
v
e

[2 8 REGNECENTRALEN

Abstract: *

(360° printed’ pagés) .

=

R
C
S
L
 N
o
 4
2-
1
21
64 Printed by A/S Re

. Users of this-manuafare cautionéd that the specifications contai-

oepet

. Copyright. . ©1983, A/S Regnecentralen af 1979
; RC Computer A/S

nécentialen’ af 1979, Copenhagen

ned herein are subject to change by RC at any time without prior no-

. tice. RC is.not responsiblector typogranhical or arithmetic errors
which may appear in this manual and shall not be responsible for

any damages caused by reliance on any of the materials presented.

TABLEOF CONTENTS ;

1. INTRODUCTION ..-cecccccccccccccsccccnscevecccens ee cecees

1.1 ProcessingUnit ss .ceccccccce recs c rev ecccecsccecens

1.1.1 Working Registers ...ceceesecee rcee rece venes

1.1.2 Interruption System we cee ee ceeeecenee

1.1.3 InstructionSet cccesecenecceeccececvceseces

1 +1-5 System Start-Up .

“1.2 Debugging System ..+-.e+++
ds 3 , Summary of the Hardware System: »

i }

b
e
l

A
u

b
P

P
F

K
B

P
B

W
w
W
N

A
=

H
H

m
y

#

1.3.3 Processing Unit Architechture | Sana veseees
1.3.4 Processing Unit Instruction Set6.

. DESIGNCONSIDERATIONS +++ tecereresese encesMP ORT TPS BRPaie oe B... See ce eel

2.1 Memory Addressing ...secessevesecsccece ereceeeecene 8 eg: oth

2. 2 Register Structure see eesees.

2.3 Instruction set seesegeg
e AL

3. COMPUTER ORGANIZATION ve eeeeeeeeneereagtenteenas 12

wine nann ommend aL... Processing. Unit Archi techture iw ee ee ecemewitee wey ye aed Dene see =

3.2 Backplane BUS ...ceces cece e eee r eee seceeevetessseene 15

3.3 Control Microprocessore6. nee rea +. 16

3.3.1 Variable Array ..seceececees encecceccacnce » 17

3.3.2 Real-Time Clock obec becederncnncene 18

3.3.3 Console (TTY) Communication ...sssseeeeeeeee 19

3.3.4 Watchdog ..cccscccessccccvcccvcecccessevcees 19

3.3.5 Configuration sc eeieccccceccccervercecvece 19

3.4 InterruptionSyStemeveceeec ec ceceetecccecece 20

3.5 Input/Output6- soccer ncececes er cecenecons 21

3.5.1 Serial Transfer:....... sc ceecenees eseee 22

OVS! ga ede: soso BeS/2 DMA Transfer Weeve cc ceceee eee wees ee eeceee 23

24

ek errors ewe ee .
3 Gab ‘Working Registers":Seee eee e een cescesceees - 24
foes PE MAL: Tt ” SE the

Boge WG tyme ty saeghe we ba gueybu tony

“ai

TABLE OF CONTENTS (continued)

3.7

3.8

4.1..

4.2.

5.1

5.3.

Data Formats. and Structures once dee eee Caddie dnc ee

3.7.41.

3.7.2

3.7.3

3.7.4

. 3.7.5

3.7.6

Basic Formats and Structur@s’... 6. Eve ee eee

Communication Structures (fee tee Lee edPeeceeece

The Process Incarnation Stack: Descriptor ...

Structures Depending on Stack Orientied ex-

ecution ... Mere Ones Oe oe Oe Oe ewe a Ome Oe eee eee

Structures Deriving .from “Process Exécution .

Structures Deriving from Range Testing and

Indexing eee. ene

. Number Representation

Pe meee eww eesceeerercesce

Runtime Environment. .. wees.

4.2.1

4.2.2.

» 4.2.3

4.2.4.

4.2.5,

- 4.2.6

4.3.

Operation and Parameter on vleseceseceseeceee

Operand and Result

Effective Address w.scecedeeseee “eese cee oeee

AGALESS 2c ccc ccc nnecne comes

Size

Addressingecee-

Functional Description oO ndae we ee eee seeeeee

SUTUCKULE 2... ccecec ence ace cccenantnceesceree4.3.1

Push Nonsense (Reserve Stack Space) ..essueedaneees

5.1.1.

5.2.

-RENPB

- 362.1 RECHW

ee aay oe

5.2.2 RECHD or REAAD....cn00.

Push Address ...

-REAXD.5.3.1.

5.3.2

5.3.3

5.3.4

5.3.5

REALD

REAGD.

REAID

34

34

37

40

41

42

45

45

49

49

51

51

52

54

56

56

56

57

58

58

59

60

60

61

62

63

64

“TABLE OF CONTENTS (continued) PAGE

o
n

‘5 +4e19 REVSB os wccceeececes

+ 54.20 REVSW cece ec ee dence cian tee weeces "Slee eeeee sees 85

5.4.16 REVIW ...06- EGET Oe eve rs eee aedeccsccescece 81

564.17 REVID soon cece ese re cece nee nc ccc eneseeeeeees 82,

5.4.18 REVIF voce scec cee cccceccee Co vce eee cccvces 83

5.4.21 REVSD

5.4.22 REVSF ..

5.4.23 READB

5.4.24 READW

6. . STORAGE OF A VALUE. 6c oe hed chee Bowes eee e cece ee eeenes 90

6.1

- 6.2.

POP Garbage eecvcenecccsecececeeceseeereees “see eeeeees 90

6.1.1 STNHB eeeee meee ween eee eeerenne orereres 90

Pop RESULE coc nceescrcceneecneces Cet ee ew eeedeceee 91

6.2.1. STVAB........ Ooo eee reece reeweeneees eee eeees 91

/\) eee eeecens 92

6.2.3. STVAD0e5. toe eremee dene teses iaeeees sees 93

» 64264. STVAE coe eeecues See eee tee eeeeees 94

» Be2e5 . STVLB nce ccccnccecccececes cee e eee ee ee eecnee 96

6.2.6. STVLW Pace cee c eee eee neces cececs +. 97

iv

TABLE OF CONTENTS (continued) Fel es “0 B72" PAGE

. 98

+. 99

6.259 STVGB wecescnsccscccecsevuses cay paiacccccccce 101

6.2.10 STVGW ...csesescccevens en eS ay 102

6.2.11

6.2.12

6.2.13

6.2.14

6.2.15

6.2.16

6.2.17.

6.2.18. STVSW. 2. .csesscceaececcce claw cewecerceoeeces 112

6.2.19. STVSD. em acme meee eee ee eee ere eeeeeeses 113

6.2.20. STVSF. 2. .cnaesccasceescannes seccsecseeeseees 114

6.3 Manipulation. of. Storage. Areas 06... e cee ede ee eeenee 116

-- 6.3.1]. . Move. a Storage. Area seve veises cesereencereree 116

.6.3.2. Exchange Two. Storage Addresses «.......+.+.- 120

. 6.3.3. Compare Two. Storage. Areas:.... Ve ceeeeeees eee 122

6.3.4... Push a Storage. Area. 2.0...cee esee ec eee cece 124

6.3.5 Pop. a. Storage Area. .+..eeeseee ‘ealewte ceeeecee 126

PROCEDURE CALL. AND. EXIT ee re 128

7.1 . Enter. a ROUtine. os cvwwescceecewececce “pete eee ewes «+ 128

-7.1.1. PCALS «2.0005 130

721.2.) PCALD. «2 ease: 131

7.2 Exit. froma Routine+.... ce eee eweecereccees 132

Ta Qed. PEXIT. cc cease cnc eens ee ceases ewes neseeeee 132

8.1. Unconditional. Jumps. wemeewens amele enw eesececeees 133

8.1.1. IMPHC «2 ..wsee eceweew eee nae

8.1.2) IMPPD. 2 wee cen cree

8.2 Case Jump .ereceewenwece

8.2.1 IMCHT ...seeee fe eee ete ee

8.3 Conditional Jumps. with One. Operand+

8.3.1 IMZEQ wn cece cece weeneedMoree bees .

9.2.3.

922.6

OF CONTENTS (continued) PAGE

8.3.2. . MZNE. ccc eee e cece ec eecnes eee rrr 139

sie 8.3.3 -IMZLT. wc cece secs cecccccrcccccsvces eeeeceeeee 140

3 © B.3.4 TMZGT we cecccecccccccceccccrcreseeesssssees 141

© 8.3.5. IMZLE se ccwecccerercnccscecccevessesesecees - 142

8.3.6 IJMZGE oo. cece ecw cece cece enc ceeee se eeeeeee 143

9. OPERATORS. ...+.eseeen- we ewvcecceeses see c eee wee esceceeens 144

9.1. Monadic Operatorsccccccecneccteeeenserceccsees 144

9.1.1

5 9.1.2

9.1.3

f 9.1.4.

9.1.5

9.1.6

9.1.7

9.2. Dyadic.

9.2.15

9.2.2

9.2.4.

9.2.5

9.2.7.

9.2.8

9.2.9

9.2.10

9.2.11

9.2.12 LT ...eeee

9.2.13 GD. cescancceeceees

9.2.14 LE w.....0, dase a oe ERS 0 87

9.2.15. GE we...

9.2.16 XOR

9.2.17 UADD

9.2.18 USUB...

9.2.19. UMUL

9.2.20. UDEV. vse

9.2.21. UMOD

TABLE OF CONTENTS (continued) TD et PAGE

9.2.22 MADD ee ec eeeseeeaNg sd OTDMRee eeeeee 173

9.2.23 MSUB ..cececcreeeeee wba nw acca beeiaccceccees 174

9.2.24 CRCIG cr seeceevccees Se cee ee etS Cet eelebeeee 175

9.3 Operationson Sets0% Seer eeebevcececcecees 177

9.3.1 Construct a Set from a Subrange:\.7).4..... 178

9.3.2 Operations on Sets Giving a Set as the Re-

SULt ..seceeeee PR eee oewss peer aeaedoeee - 183

9.3.3 Comparison of Sets pecen ses eeescees «+» 189

9.3.4 Test for Membership of a Seteeeveeee 196

INPUT/OUTPUT .. ccc ccc cnce cence tener eeentneeetasesceneeees 198

10.1. Write Control ... pec ences Poa eecceercccccccecs 200

10.1.1 IOWC. rs ee ees 200

10.2 Write Word pn oeweneesere Preeceeee casecesens 201

10.2.1 IOWW....... een ceccceene Boe e ces ecrccccccvcene 201

10.3. General Output.eeeeeee eae cee e ee seoencs eeeee 203

10.3.1. LOGO. ... cece cece cee cence erence eccceccees 203

10.4 Read Status. ...eeseseeceesene Deeee accecceerecceee 205

10.4.1 TORS wc. ccs ceccecen ccteecce : ee ceeeeeees 205

10.5. Read Wordseeceeeesseee bbeec cc cercccevecceecs 207

10.5.1 IORW. ... cece ceeee saa ete cece eee eeerserces 207

10.6 .General Input2006- eeer ee 209

10.6.1 IOGI 2... cceacccnne seer cere reece eeeeeeeenee 209

10.7 Clear Current. Interrupt. 2.0... vee ee eee ceeeecenes +. 211

10.7.1. IOCCL. «2.22.0. eh er rr eee 211

10.8 Execute. Next Instruction. After Clearing Interrupt 212

- 10.8.1. IONCL. .. 22secees cece eb ecceetecscercevcees 212

10.9 Get. Current. Device Address Wie eseer ese eeceeeeeeeee 213

10.9.1. IOCDA. «2... ceececeeee ota eee ese eercaeees eee 213

10.10 Initialize Block Transfer... sees ceesseccecesceeee 214

10.10.71 TOIBX. ...eeeeeeeeecetes Poeed oe ccreeccnscecs 214

10.11 Write Block of Bytessnceeecsccceeccceece +. 216

10.11.1 ITOWBB 2... cceccsecewteccnas Bec veeee seeeee 216

10.12 Write Block of Bytes and Clear’. .eseeceeee ceeeeees 220

10.12.17 IOWBBC 2... cc ccc cece cence nae eceenes eeveee 220

10.13 Write Block Of Words beeen ccc en nr eecsnenee 223

10.13.17 TOWBW 2... ee ceeeeceene eee erences eccesenes 223

10.14 Read Block of Words and Clear errrrrrs eee 226

10.14.71 TORBWC... cece eee ec cece veee eereees eeeceeee226

<TABLE OF CONTENTS (continued) PAGE

10.15. Read. Block Of ByteS. ..ssseceesee reccseeececencs see 229

«10.15.17 IORBB cece cece cece cence creer cccenes eeeeee 230

10.16. Read. Block of Bytes and Clear ...seeessseececececs 233

: 10.16.1 IORBBC A rr ir ri rary 233

10.17. Read Block Of Wordsc ccc ec ccc ce ccc crencsceee 236

~3 HOLT 7.1 TORBW conccc cc cece cece ccc e cre ceeececeeeee 236

10.18 Write. Block of Words and Clear ... bocce cencces 239

10.18.1 ITOWBWC 2... cc ccc ecw e ccc ween esse encene 239

11. MONITOR CONTROL AND SYNCHRONIZATION ...ceecececccececece 242

11.1. Signal...... ween cece eeee cece cece cece eee eeeeeeaee 249

T1.1.1. CSIGN cece cc cece ccc ececceeee eee eeeeeceees 290

T1.1.2 CRELE cece ccc cece tec c ccc n een e enc erenees 251

T1.2 Wadt coccccccccrcccrccevevcnecccsvecevccvesvcs sees 252

T1.2.1 CSENS wc cece cece cece cere crete ececcvccees 252

T1.2.2 -CWAIT. ce ccc cece cece cee cn rence cc cncenecees 253

T1.2.3. CWTAC. cc ccc cece ccc eee e ceca cee eceecresene 254

11.30 Link/UnLink. 0... cssee eee e eee cece eee e cece eeeeeenes 255

11.3.1]. CULST.000e Sec e cece rer erecccccseses 255

11.3.2 CSKIP. cc cee cece cece ccc cteeeece seeeeeeeees 296

11.4 Select Level eve ceecveeete Deec cece cccces 257

11.4.1 CSELLce cece ween errorsrrr ere ri 257

11.5 Stop ceceeseesceceees see cee cece eceeeeeteeeeceeaees 259

11.5.1 CSTOP...... Oe sew esevedesecece ‘wees Teeseees 259

11.6 Multiple Wait.ceseeeeeecees sece reece reece ees 261

11.6.1 MCIS cccc cece cece cceweees re rr sees 261

11.6.2 MCIT Somme cence rere cee ne cereseseeeees 262

11.6.3 MCIST seeea cect ee te cece ecw e cece eee ene 263

11.6.4 MAL. cree eee ece cn vene beweee pece eee rescceens 264

11.6.5. MAT... cecece eee cece eee eee eee seeees 265

11.6.6. MNIS. ccc cece c cece cette ame cccvececeeseenene 266

11.6.7. .MWIT. cc...e cee eeee “Sececacee eee cer eceecece 267

11.6.8. .MWNST. ccc cece cers cece nec n ces cescnecnece yee. 268

11.6.9 MWISTccceee eens see cece cece ec eeeees 269

viil

TABLE OF CONTENTS (continued) 2 PAGE

11.7 Time6.6.. sce cece ecens

11.7.1 MTIME oevoee eeeeee o++ 272

11.8 Schedule Next Incarnaticn to Run - 274

11.8.1 SCHED ee reccceees sewere ees ccceencs 274

11.9 Driver Activationcceeeeecee ecceee teeeeecewees 275

11.9.1 CSTDR SSS nas 275

11.9.2 CSLEV 2... ccc ce cece ccc eeee cee weceeccececes 276

11.10 Register Array Operations eee eeeeececceeceees 277

11.10.17 CRGET ccc cece ccc eee c cee c ccc ee ere eee eeee 277

11.10.2 CRPUT we becccevcces seve weceeeceeee 278

11.10.3 CRRAM ..ceeeecccenee we eeeece wee eeeceecesee 279

11.10.4 CWRAM6. Cece esceerecvece ot ee weeeee 280

11.10.5 CGREG Pomeree reer ecccceee eee cee cerns 281

11.10.6 MBTES ... cc cece cree rcceccvee obec ee eeecenee 282

11.10.7 MBSET 2... cece eee secew scene eee eeee ee eeeee 283

11.11 Push and Pop ..eeccerecccceeces Perec er eeeseesecs +. 284

T1.11.1 LRUSH cc ccc ccc cc ccc cece cece reece rene ceece 284

11.11.62 LPOP wc ccc cee wee ce seeceves eee wee eeiwees 286

11.12LOck SUPPOKt cece ees c ees ceec rec ecewenecsceeveceecs 288

11.12.1 LLOCK eee ceeecateceees eee weer ce ceeeas 288

11.12.2 LRESE co. cee eee ee ioe cee cececet edwecece 289

12. INDEXINGAN ARRAY-+- eeecevense ocevesee oeecsees 290

12.1 Range Test Perec meee cece e renee eens eeneees 290

12.1.1 INTRS 2. cece cece cece ence nets ees eeeseseee 290

12.2 Indexing an Arrayssesceecceesccere recess nenes 292

12.2.1 INDEX 2c cece ec ccc e ence eee ecw cee cenesecee 293

12.3 Push an Element of a Packed Array--.-.++2- 295

12.3.1 INPRS coec wcrc creer ev erereeesccence 296

12.4 Pop and Store a Value in an Element of a Packed

ALTAY secs ece cece ncnsscesscvece ese e eee c cee cereres 298

12.4.1 INPSS cece eeee eter eneeee see eeceeeee 299

13. MISCELLANEOUSeeceeeee eeee ee a 301

13.1 NO Operation 2... ccrececccccecceee tescecceeeessene 30]

13.1.1 MNOOP 2... cece eee e ences oes e een eersesecens 301

13.2 Exception sence neseeee ee eenes eeeceseees 302

13.2.1 MXEPT 2. cece ccc ccc cee e cece n ween een cneee 302

ix

TABLE OF CONTENTS (continued) PAGE

eC Yb «-\ 0 ee eee e cece eevee 303

. ©. 13.3.1 TRAPE ccc cece cece ccc cree e reser eeeeeeereece 303

13.3.2 TRAPR ccc cecccccrcccccrcessrseerevcene oe 304

14. INSTRUCTION FETCH ..-ccceceescscccccves emer cece ecco sence 305

":15. AUTOLOAD eee sccesesecs ccc weer r ccc rcccercces 308

/ 15.1 Initialization ccc cece cece reece cence ceee -. 309

16. SWITCHES AND INDICATORSceecececeee ences eeeeeeees 310

7S .. 16.1 Operator Control Panel oe. eesseeeseeeeeseees scene 310

_ 16.2 Processor Front Panel ...cceeeececccsecccenceevece 311

16.2.1 Switchescccecevescceceves eee cee eeecee 312

16.2.2 Indicators ...ccceecccc ce cece cere svcenvece 313

16.2.3 Jack .ocrccccccccccevecccrcccccecveseveves 315

16.3 Power Supply ceceeeeecececececscerecscessseceseees 315

17. DEBUG CONSOLE occ cece cece ccc c cece cece ccc e cece eee eeeee 317

17.1. Activation of the Consolecceeeeeecevececcves 317

17.2 Display Commandsccececeecceccnccececccceees 317

17.3 Control Commandscccecccccece reece cree cnece 318

17.4 Command Parameterseeeeeeee pe veconecccccrees 319

17.5 Connection of the Consoleseeeeeeee vec eeees 320

_°18. ACTUAL INSTRUCTION SET Beer c cece res cecesvcccccccece 321

19. INSTRUCTION EXECUTION TIMES Cove ces r scene cccces 324

APPENDIX:

A INSTRUCTION TABLES 2... cece cece ccc cece cence si nevcsseece 341

A.1 Instructions Listed by Operation Code 341

A.2 Instructions Listed by Name ...eeceec eeeeeeeeeeeeee 343

A.3 Instructions, Section Reference 1... scee cece ee eeeee 345

INTRODUCTION

1 1

The present publication is the Reference Manual for the RC3502

Processing Unit, the building block of the RC3502 Minicomputer

System. The RC3502 is designed primarily for real-time control

applications. Thus the RC3502 is used, for example, as a terminal

concentrator, a front-end processor for general-purpose com-

puters, and a node in packet-switching networks and other com-

munication systems. The RC3502 is programmed in the high-level

language Real-Time Pascal (PASCAL80).

Processing Unit

1 -1.1

The processing unit contains a 16-bit ALU. The processor can ad-

dress up to 4M bytes of memory. The processing unit has 124 in-

terruption levels. Each interruption level is connected to a re-

gister set, thereby supporting very fast context switching. The

instruction set is stack oriented and supports communicating par-

allel process incarnations. A number of input/output instructions

control data transfer between peripherals and the processor.

Working Registers

1.2

The processing unit has 124 register sets. A register set occupi-

es eight 16-bit words. Each register set defines a number of mem-

ory references, namely, to a process incarnation stack and to the

current instruction in the program being executed by the incarna-

tion. Each register set is permanently associated with a specific

interruption level.

Interruption System

Because each interruption level is connected to a register set,

the time required by the processing unit to perform context

switching is reduced to the connection of a new register set to

the control and arithmetic unit. Each time an instruction is ex-

1

1

1

od

el.

el.

1.1.3

ecuted, the register set associated with the interrupt signal mm

the level with the highest priority is selected as the current

register set, and the instruction pointed out by this register

set is executed as the next instruction.

Instruction Set

The analysis of real-time control applications which led to the

extensions incorporated in Real-Time Pascal also influenced the

design of the instruction set for the processing unit. The design

objective was to ensure that operations which are time-critical

in such applications would be supported efficiently by the in-

struction set. These operations include data manipulation, com-

munication between process incarnations, procedure entry and

exit, and context switching (incarnation scheduling).

The machine instructions can be divided into three groups:

© Those which support Real-Time Pascal and similar high-level

procedural languages (i.e. this group of instructions spe-

cifically supports stack processing).

© Those which support context switching and communication

between process incarnations.

© Those which support the runtime system, I/O, and operations

necessitated by the underlying hardware.

The instructions have a varying length, namely, one byte for the

operation code and zero, one, or more bytes for parameters. The

functionality of the instruction set is specified by the Base In-

struction Set, which contains the instructions in their longest

form. In order to conserve space and increase efficiency, the Ac-

tual Instruction Set was developed om the basis of extensive

statistical analyses of the way in which large application sys-

tems actually use the instructions and their parameters. The Ac-

tual Instruction Set is obtained by adding to the Base Instruc-

tion Set a subset of the latter in compactly encoded form (i.e.

with fewer parameters).

1.1.3

1

ol. Input/Output

1 1.

nput/output is the transfer of data between a peripheral and the

physical memory addressable by the processing unit.

The actual transfer is basically performed in two modes:

1. Programmed Input/Output

Here the transfer is performed by the processing unit execut-

ing input/output instructions. The instructions transfer a

single byte, a single word, or a block of bytes or words be-

tween the peripheral and the address space, possibly directed

by interrupt signals from the peripheral. The peripheral may

interrupt once for every byte or word transferred.

. Direct Memory Access (DMA).

Here the transfer of data between the peripheral and the ad-

dress space is performed by a controller without interrupting

the processing unit.’The transfer is initiated by the process-

ing unit. The controller interrupts the processing unit at the

end of the (block) transfer. The controller may access the ad-

dress space by cycle stealing via the backplane bus or may be

equipped with a dual ported memory which is part of the ad-

dress space. In the latter case the transfer to memory may be

performed without interfering with the processing unit.

System Start-Up

System start up can be initiated manually by an operator, auto-

matically from hardware, or from software. Controlled by switch-

es, the built-in memory and processing unit tests are executed.

The registers are initialized, and a jump is made to a boot pro-

gram residing in PROM. This program autoloads programs from an

external device controlled by switches, and includes programs re-

siding in other PROM modules.

1

1

ol.

ele

1. Debugging System

1.

The processor front panel contains five switches, five indi-

cators, and a jack.

The switches control the autoload procedures, the built-in test

programs, and the speed of the debug console.

The current status of the processing unit is displayed on the in-

dicators.

The jack makes it possible to connect a Teletype compatible ter-

minal to the system either locally or remotely via a modem.

The connection is controlled by a microprocessor, which makes it

possible to inspect and modify the memory and registers of the

processing unit and to control the instruction execution of the

processing unit.

Summary of the Hardware System

1 -3.1

This section describes the most important hardware characteris-

tics of the RC3502 Processing Unit.

Basic Physical Unit

1 +3.2

© 16-bit processor with 64K bytes of RAM and 8K bytes of EPROM

memory on 3 circuit boards.

© Backplane bus, power supply, and crate with 16 free circuit-

board slots for additional hardware modules.

Additional Hardware Modules

Oo 64K bytes of RAM and 16K bytes of EPROM memory.

1.

1.

1

1

3.10

-3.2

1

+3.3

o 64K bytes of EPROM memory.

© 4-line synchronous HDLC controller (max. 64K bps).

o §8-line asynchronous miltiplexer (max. 9600 bps).

oO 8-channel I/O module. For connection of peripheral devices

and front-end processor adapter (for RC8000 computer series).

© Video display controller (for RC850 terminal series).

© Multibus adapter. For connection of RC3502 processing units.

Processing Unit Architechture

Oo 16-bit arithmetic-logic unit (ALU) built around four AM2901A

bit-slice chips.

Oo Dynamic MOS memory with a cycle time of 480 ns.

o Up to 4M bytes of directly addressable memory. The basic

memory unit is an 8-bit byte. The smallest addressable

quantity is a byte.

oO 124 sets of working registers. Each register set is perma-

nently associated with an interruption level.

o Active process incarnations are scheduled in the processing

unit as follows:

Class I: High priority. Interrupt handler class. Managed

by the hardware interrupt priority mechanism.

Class II: Medium priority. Coroutine class. Internal prior-

ity within the class and round robin for a given

priority.

1

-3.3

1.3.4

Class III: Low priority. Time-slice class. Time-sliced

round-robin algorithm with built-in priority.

o The I/O system supports character-oriented and block-oriented

peripherals. Programmed I/O between a peripheral and any mem-

ory module can be performed, using, for example, 8-channel

I/O modules. DMA I/O between a controller and memory can be

performed on a cycle stealing basis via the backplane bus or

via a dual ported memory situated in the controller.

o A Teletype compatible device can be connected as both a debug

and an operator console to the front panel of the processing

unit for communication with the control microprocessor (Intel

8085A) on the internal data bus.

Processing Unit Instruction Set 1.3.4

oO Stack-oriented instruction set.

o Arithmetic operations with twos complements.

o Instruction format: 1 byte operation code followed by 0, 1,

or more bytes as instruction parameters. Operands, moreover,

can be located elsewhere in memory (e.g. in the incarnation

stack).

oO Base Instruction Set comprises 177 instructions, including:

push and pop operations; procedure call and return; uncondi-

tional jumps, case jump, and conditional jumps; monadic and

dyadic operators and operations om sets; monitor control and

synchronization, including signal and wait operations on

queue semaphores; and indexing of arrays.

o I/O instructions include: read status, write control, read/

write word, initialize block transfer, read/write block of

bytes/words, and clear current interrupt.

oO Addressing: direct or relative to the instruction pointer,

local stack frame, global stack frame, an intermediate stack

frame, or address on the stack.

The memory of the RC3502 is directly addressable. The smallest

addressable quantity is an 8-bit byte. In order to reach the

total address space, an address consists of two 16-bit words.

The RC3502 contains a number of 16-bit words in a IK register ar-

ray. This array is organized as a mmber of register sets.

The execution of code in the RC3502 is closely related to the

stack processing of procedural languages. The register set mist

therefore support the stack structure as it is represented in

Beyond a number of pointers associated with the stack and the

program code in memory, the designers considered representing the

top of the stack in the register set in order to save memory ac-

cesses. Closer analysis indicated, however, that the cost of ad-

ministering the contemplated "cashe" register would exceed the

saving. The idea of a stack representation in the register sets

of the RC3502 was therefore abandoned.

Each register set occupies eight 16-bit words. There are 124 re-

gister sets. Each register set corresponds to an interruption

The many register sets and interruption levels provide advantag-

es, such as greater efficiency, in the performance of context

2. DESIGN CONSIDERATIONS

2.1 Memory Addressing

2.2 Register Structure

memory.

level.

switching and input/output.

2.3 Instruction Set

An RC3502 machine instruction consists in principle of an oper-

ation part and a parameter list part.

2.1

2.2

2.3

2.4

The operation part occupies an 8-bit byte. This is followed by

zero, one, or more parameters, depending on the instruction spec-

ified by the operation part. Each parameter may occupy an 8-bit

byte, a 16-bit word, or two 16-bit words, depending on the oper-

ation code.

The instruction set is designed to support Real-Time Pascal and

similar procedure-oriented high-level programming languages, i.e.

the instruction set specifically supports stack processing. On

the other hand, support is also provided for the basic runtime

system, so that linking and unlinking, for example, are effi-

cient. Finally, the instruction set supports operations necessi-

tated by the underlying hardware (e.g. initialization of register

sets).

The instruction set is divided into a Base Instruction Set, or

BIS, and an Actual Instruction Set, or AIS.

The BIS specifies the functionality of the set, and contains the

machine instructions in their longest form.

The AIS contains, in addition, a mimber of machine instructions

each of which corresponds functionally to an instruction in the

BIS, but has a shorter form (fewer parameters).

The AIS is constructed m the basis of statistical analyses of

the generated code in the BIS from a large number of programs.

Input/Output Structure

Particular emphasis was placed on the design of an efficient and

versatile input/output system, because the RC3502, like most

minicomputers, is used in real-time control applications, where

I/O capability has a profound influence on total system effi-

ciency.

The input/output system supports character-oriented as well as

block-oriented devices. Moreover, the RC3502, equipped with in-

2.4

2.5

10

telligent device controllers, facilitates direct miltibuffered

memory I/O, independent of program control when first initiated,

and thereby supports input/output at high rates.

The RC3502 has a large mmber of I/O channels, on which any of

these operations can be performed, depending on the devices con-

nected.

Character and block operations are under program control, and

whenever a character or block is ready for transfer, an interrupt

signal is generated. Each interrupt signal is associated with a

register set. The direct connection between the interrupt signal

and a register set minimizes context switching time. The I/O

channels with interrupt signals and register sets may be arranged

so that high-speed channels have priority over low-speed chan-

nels.

The register set associated with a certain interruption level has

priority over register sets associated with lower interruption

levels. Therefore, processing of input and generation of output

should be performed at the lowest level so as not to block the

I/O system.

Intelligent input/output controllers based on microprocessors

step up throughput in RC3502 systems by relieving the RC3502 pro-

cessor of time-consuming control tasks. In such a configuration,

all comminication between the RC3502 processor and the controller

is handled through a section of dual-port memory that resides in

the controller subsystem. This setup allows more efficient trans-

fer of large blocks of data from the I/O device to the system

without contention over access to the backplane bus. It also sim-

plifies interprocessor communication because the subsystem con-

troller appears to the RC3502 as an additional RAM board.

Modularity 2.5

The RC3502 is constructed in a modular fashion. Upgrading in the

form of additional memory capacity, controllers, and miltiplexers

2

is accomplished by inserting the relevant modules in the 16 free

positions in the RC3502 module crate.

The technology employed is based on contemporary state-of-the-art

electronics, including fast bit-slice chips and 16K memory chips.

The crate used in the RC3502 is a standardized mechanical unit,

prepared for double Europe boards (DIN NORM 41494). This ensures

stable deliveries, proven design, and great flexibility.

12

COMPUTER ORGANIZATION

3.1 Processing Unit Architechture 3.1

For details, refer to fig. 1, microprogram structure and fig. 2,

internal bus sources and destinations.

The RC3502 processing unit, or PU, is built around an internal

data bus (bus 0-15) as shown in fig. 2. This bus is interfaced to

the backplane bus, working registers, control microprocessor, and

register ALU, a 16-bit arithmetic-logic mit based on four

AM2901A CPU bit-slice chips.

The flow a the internal data bus is controlled fram the RC3502

microprogram, which implements the various features of the pro-

cessing unit, and is physically contained in a read-only memory

of 2048 60-bit words. The execution time per microinstruction is

217 nanoseconds.

A word in the microinstruction contains the following informa-

tion:

Bits Interpretation

00-03 microprogram sequencer command

04-07 condition select

08-15 register ALU register select

16-26 register ALU

27-28 carry load control

29-31 working register address select

32-37 bus source and destination control

38-49 micranachine manipulation operations

50-59 next address field

13 WWYLL"ICLLNODEBaSn— p
WWOONd||-ONDIWWAHIO

[ti‘CS;z*Cr
UAHLOa0bh——TS|MOSSHOONdONOIN©omaaBorfava

v

;yOKAVAssaaav|-oaas|9G4a0wLvdNYHONWYELALAYOWINWHOCNUCHOINLIG-09XuzNOLLIC|sotwisaInNGOW9-noo[eriwo‘a0‘ouaz)
ol-0uuaSMLWLSIv“IOLLNODkZSALNOLLIGNOO|uaona

noas
|

)
meneOl-0WWLXN~OUDIW1062WWLO

A
NEL

aww
NTL

ANTTAdI
d

NAL

Ld

;‘OOdwSSAGAY
ONLLYVLSa0NOLLOCMLSNI

Z

NOLLWO

-8al

—_TataowINWLSNOOSt-8b-00l-6-9-SUI
aI

ssauaay,yNALSMIVESaindaenasco[aaoouoOWLTWNOTLwaLsIodd|NOLLOOLLSNI¢
»>St-0SN9L

Figure 1: Microprogram Structure.

)CISION—RRIVO/NDISSNDRIOMANOWIWdOSLISP71
SYOLVOICNI|WwuDOudTANWd-ONOIWWOULM
NOTNODNODTIOQLLNOD9MLAS|YayO7aMcM\zbMem)aWISHLAGZH5992-0)J"TOMLNODOIUOdshyaLM:SGL8TaNSlo05OM.\=0_Sh

a
a

woudaSHOrIsLIaSaaTiM8SSLATMpTyWALSIOMYees“—OM+WLO6ZWYUNodaond7cMF~RIOWAW7M0
¥S808100wivdNIWLVd|wwanoddOYOIWoeONTO)%TT7WOUNOLL

4
wOssaoodd-OMMLSNISOLIScM8-ONOIWNINLSLt-9LMco)WS808'THINIaNDISonWIOWICAsng

SAALOMILS4
U}{}wwsoud§<->-onodTTWU1-0snaSNAnd@qWOHND-IWOL&YONAALTYYaLONIesTUNOILINT4<—__]_aguerinasJa

ALIuWdS0K
:

YONAALLALETTORLWaATYCSAdALaOeNSOoawot7]-3S"IndANVIGYOVEPILTOM7,|SNWIaOWaPCWAA{)odfy

ALTWWdZ-St-0SndL
OL

'TASGOWL

3.2

15

Backplane Bus

For details, refer to fig. 3, backplane bus structure.

The backplane bus is used to interconnect the various kinds of

modules in the RC3502 camputer family.

This bus is normally controlled fram the processing wit, for

communication between the latter and memory or I/O devices, but

there are facilities on the bus which enables other masters to

request its use. When the processing unit acknowledges such a

request, the bus becames available to the requesting device.

The backplane bus contains 16 data lines and 8 module address

lines. The latter are used to select a source or destination re-

gister in a memory module or an I/O device. The data transfer is

initiated by a READ or WRITE pulse.

As the backplane bus is asynchronous, the processing unit can ex-

tend READ and WRITE until the addressed device acknowledges the

operation by XACK.

When the processing unit reads or writes in memory, the address

is sent in one backplane bus cycle and the data in the next.

The transfer rate on the backplane bus is 5 MHz.

3.2

"DV
CIOcisto
n

VE£‘SLIM2‘GWaeL

~

I-0YOI‘2-0‘THSWL()
|||awa2‘awdT|{}Sl-0SnaZSOL

gL
0\Z

WaW

STAATTLdRUSINI8WUdSULAMP9aINGOW
SHOIANGO/I8WaSALA1b9LINN

FINGOWO/THINGOWRYOWAWONISSAOONd
SHINGOWO/TSaTINGOW

9LOLdnAYOWW9LOLdn
STANNY

HOD
8

"TOMLNOOONTI
WALSFDAWWISTWNOISSTOULNOODSOL
WLSLTSFINGOWANWIdSNdsndWLVdFigure 3: Backplane Bus Structure.

3.3Control Microprocessor3.3

An Intel 8085A microprocessor system is connected to the internal

data bus of the processing unit. The microprocessor interfaces

the switches, indicators, and console jack described in chapter

16 to the processing unit.

3.3.1

17

If a Teletype (TTY) campatible device is connected to the micro-

processor system, the former can be used as a debug console for

the processing unit, enabling the operator to examine and modify

the contents of memory locations and working registers as de-

scribed in chapter 17.

The TTY can also be used as an operator console, by employing

instructions that work on the micromachine RAM.

The following subsections describe additional functions incorpor-

ated in the microprocessor system.

Variable Array 3.3.1

For details, refer to fig. 4, control microprocessor RAM layout.

The variable array is a RAM memory area in the microprocessor,

which can be accessed by the debug console qperator using the

camand Y <yaddr> described in section 17.2. A copy of this RAM

area is kept in the RC3502 memory; whenever the microprocessor

writes in the area or the microprogram writes in its copy, an

update communication takes place between the microprocessor and

the microprogram.

18

RAM addr O | RIC level

1 TTO level

2 | TTI level

3 | timer low]

4 | timer high

5 | watchdog low]

6 | watchdog high

7 | TTI input

8 | TTO output

9 | version number

A | switches 0-7

B | switches 8-F

Cc

unused

1B

1c | RAM module

1D | configuration

1E | EPROM module

1F | configuration

20

unused

3F

Figure 4: Control Microprocessor RAM Layout.

3.3.2 Real-Time Clock 3.3.2

The value of this timer is placed in RAM addr (4, 3). The step

value of the timer is 2.5 milliseconds. When the timer counts

down to O, an interrupt is sent to the level placed in RAM addr

O. The default value of addr 0 is level |. The default value of

addr (4, 3) is (0, 8) corresponding to a timer value of 20

milliseconds.

3.3.3

19

Console (TTY) Communication 3.3.3

3.3.4

Canmmication with the Teletype (TTY) compatible debug console

occurs on two interruption levels, one for input (RAM addr 2) and

one for output (RAM addr 1). RAM addr 7 and 8 are used as cata

buffers. After power up, RAM addr 1 and 2 are undefined.

Watchdog 3.3.4

3.3.5

This timer counts down fram the value placed in RAM addr (6, 5),

and if O is reached, the microprogram is commanded to execute an

autoload. The step value is 2.5 milliseconds. The default value

of RAM addr (6, 5) is (0, 0) corresponding to a disable of the

watchdog function.

Configuration 3.3.5

After power up, the microprocessor tests the current RC3502 hard-

ware configuration for RAM modules and EPROM modules, and gener-

ates a configuration table in its ow RAM area.

RAM Configuration

The RAM mocule configuration bit map is placed in microprocessor

RAM addr (1C, 1D) with the following layout:

MODULE NUMBER

1C: Oo |] 2{3/4/5]6 {7

1D: BI{9{A}]B{C{D|IE|/F

If a module exists, a1 is placed in the corresponding bit posi-

tion; otherwise a 0 is written.

EPROM Configuration

The EPROM module configuration bit map is placed in microproces-

sor RAM addr (1E, 1F) with a layout like that of the RAM con-

figuration. The existence of an EPROM module can be detected only

if the first address (word) in the memory module contains the

value AAAA .
Hex

3.4

20

Interruption System

A program interruption feature permits automatic switching from

the current program sequence to another program sequence in ine

mediate response to specific external and internal events. The

efficiency of an interruption system is directly related to the

time required by the processing unit to perform such context

switching. In the RC3502, therefore, a set of working registers

is associated with each interruption level, so that context

switching is reduced to the connection of a new register set to

the control and arithmetic wit. This is illustrated by fig. 5,

interruption system.

MEMORY

O
N

P
O
V

-
W
u
U
u
d
A
)

>

CONTROL AND

ARITHMETIC UNIT

|

3.4

r PRIORITY SELECTION NETWORK

|o
o

register

set: 0 124

interrupt

level: 0 1 124

Figure 5: Interruption System.

3.5

21

The priority selection network contains a 128-bit interrupt re-

quest register, IR, which can collect incaming interrupt signals:

a rT

0 1 2 124

A 1 in a bit position corresponds to an interrupt request, and

bit n corresponds to interruption level n. Bit 0 in the IR re-

gister is exceptional insofar as its value remains 1, which is

equivalent to a permanent interrupt request.

The priority selection network is distributed to the I/O modules

placed on the backplane bus. A priority chain, starting with

highest priority nearest to the processing unit circuit boards,

defines the selection network.

Simultaneous interrupt signals are served in the order of their

priority, and the signal which is connected to the highest num

bered bit in the IR register has the highest priority. I/O de-

vices with high transfer rates should therefore be placed nearest

to the processing unit. If all incoming interrupt signals have

been served and no new request arrives, interruption level 0 is

autamatically selected.

Input/Output

The RC3502 has three forms of input/output:

1) Serial transfer using I/O modules (i.e. circuit boards for 8

I/O channels each).

2) DMA (direct memory access) transfer directly via the backplane

bus.

3) Dual-port memory on an intelligent controller.

3.5

22

3.5.1 Serial Transfer 3.5.1

A peripheral device is connected to the processing unit by means

of a 4 pairs cable, which is transformer coupled at both ends.

This ensures high noise immmity.

The transfer of data is performed in serial mode regardless of

whether the connected device is serial or parallel. The data word

transferred consists of a 4-bit header and fram 0 to 16 data

bits:

HEADER DATA

[1] | [1 | (0 to 16 data bits) J

The header contains the following information: wa

TRANSFER FROM PROCESSING UNIT TO DEVICE

Output 1}, 0!0{1 read data

Header 1 0 1 1 read status
1 1 0 1 write data

1 [71] 1 1 write control

TRANSFER TO PROCESSING UNIT FROM DEVICE

Input 1{7oTot 7] 16 bits (word)

Header 1{, 0/1/11 EOI (end of information)
1 1 0 1 8 bits (byte)

j 1 1 1 not used

In principle each device contains four 16-bit registers: one

status register, cme control register, and two data registers

(one for each direction of the flow). In a given device, however,

one or more of these registers may be amitted, some may be caon-

bined into me register, or the register size may be reduced fran

16 bits right down to 1 bit. The processing unit initiates an I/O

instruction by selecting the I/O cable leading to the device ad-

dressed, whereupon the data is transferred.

-~

3.5.2

23

PROCESSING UNIT

I/O CHANNELS

A status

{control

atta in

Lf«ds data out

PARALLEL DEVICE

Figure 6: Device connected by I/O Modules.

Canmunication may be initiated either by a program or by an in-

terrupt fram a device. An interrupt is detected on the data line

when a 1 bit is sent to the processing unit and it has not re-

quested data.

The data flow between the processing unit and the four device

registers is illustrated by four general I/O instructions: read

status, write control, read data, and write data. These instruc-

tions describe the possible pattern of execution for the I/O

channels and the device controllers. Specific details about the

storage of data are given in chapter 10, where the I/O instruc~

tions are defined.

DMA Transfer 3.5.2

By using the DMA facilities in the backplane bus, an interface

with a high transfer rate, e.g. a high-speed cammmication con-

troller, can transfer data directly between the peripheral equip-

ment and the RC3502 memory. When the interface wishes to use the

backplane bus, it sends a request to the processing unit, which

releases the bus at a suitable moment. The interface then has

access to all backplane signals.

24

To eliminate the need for requesting the bus, it is possible to

use dual-port memory on a controller, i.e. both the RC3502 pro-

cessing unit and the controller are able to read and write in

this memory. The RC3502 processing unit is not interfered with

when the controller uses the dual-port memory.

The RC3502 processing unit contains a register array og 1024 16-

bit words, which is organized as a number of working register

sets and an area that is used as a working memory by the micro-

3.5.3 Dual-Port Memory

3.6 Register Array

machine.

3.6.1 Working Registers

The register array contains 124 sets of working registers. Each

set comprises eight 16-bit words.

The first two bits of the 7th register in a register set define a

state.

A register set is in me of three states:

1) Normal mode; when the register set is used to execute instruc-

tions except block input/output instructions.

2) Block I/O mode; when the register set is used to execute a

block input/output instruction.

3) Dunmy mode; when the register set is unused.

3.5.3

3.6

3.6.1

25

3.6.1.1 Normal Mode 3.6.1.1

The structure of the register set in normal mode is as follows:

IM | maximum stack displacement

Ps | flag bits

PB} global frame pointer base

LU | last used byte pointer disp

SF | local frame pointer disp

PR | global frame pointer disp

IB | instruction pointer base

Ic [| instruction pointer disp

The register set consists of a number of memory references, a

word for administration of the stack overflow check, and a word

containing various flag bits. The memory references are closely

connected with the RC3502 implementation of the Real-Time Pascal

program and process incarnation concepts.

There are three references to the process incarnation stack:

- global frame pointer (PB, PR)

- local frame pointer (PB, SF)

~- last used byte pointer (PB, LW)

The is also a reference to the current instruction in the program

being executed by the process incarnation:

- instruction pointer (IB, IC)

Each register set is associated with an interruption level. Level

O is always set. Fach time an instruction (or step in an inter-

rupable instruction) is executed, the register set associated

with the interruption level having the highest priority is se-

lected as the current register set, and the instruction pointed

out by this register set is executed as the next instruction (or

step in an interruptable instruction) in the runtime environment

defined by the register set, program, and process incarnation

stack (see further chapter 4).

26

The LM word in the register set is used in conjunction with run-

time checking of stack overflow, which is performed automatically

by the microprogram. If the execution of an instruction will

cause stack overflow, the process incarnation is activated in-

stead in its exception routine (see section 13.2).

The PS word in the register set contains a number of flag bits.

The structure of this word is as follows:

QO 1 2 3 |
[x]s [x x

8 9 1011/12 13 14 15

A _1I_T [Rsm] xX [To [For[ovy

4 5 6 7

X xX xXI[wWw

».4 Not used.

s Statistics (reserved).

WAIT Used by multiple wait instructions to define the cause of

waiting and the stack contents.

bit 10: interrupt wait cause

bit 9: semaphore wait cause

bit 8: timer wait cause

bit 7: write control version of interrupt wait

RSM Resume. Used by set instructions to indicate that execution

has been suspended by an interrupt with a higher priority

and that the stack format is special.

TO Timeout. Indicates timeout and prohibits clear-interrupt

functions in I/O instructions.

EOI End of information. Indicates whether the last I/O read/

write data function received an EOI status from a device.

OVF Overflow. Used to control the arithmetic overflow excep-

tion. A 1 bit causes suppression of this exception.

27

In Real-Time Pascal notation, a register set is a variable of

register_set_type defined by the following type declarations:

word = 0..65535;

bit = 0..1;

nibtype = PACKED RECORD <* this type is used in normal mode *>

mode : 0..3; <* mode= 0 *>

unused : 0..31;

onebit : bit; <* one *>

memkind : bit; <* zero for external memory,

one for internal *>

module : 0..31; <* module number *>

zerobit : bit; <* zero *>

END;

bibtype = PACKED RECORD <* used in block I/O mode *>

mode : 0..3; <* mode= 2 *>

unused : 0..15;

const : 0..7; <* const = 6 *>

instr : 0..127; <* instruction value *>

END;

dibtype = PACKED RECORD <* used in dummy mode *>

mode : 0..3; <* mode= 3 *>

rem : 0..16383; <* rem = 16383 *>

END;

pstype = PACKET RECORD

unused : bit;

statistics : bit;

unused : 0..31;

wait : 0..15;

bit;

unused : bit;

bit;

: bit;

ov£ : bit;

END;

resume :

to :

eoi

3.6.1.2

28

register_set_type = RECORD <* this type is used in normal mde *>

im : word;

ps : pstype;

pb : basetype; <* see 3.7.1.1 and 4.2.4 *>

lu : word;

sf : word;

pr : word;

ib : nibtype;

ic : word;

END;

Block I/O Mode

When a register set is in normal mode, and the register set IB,

IC points at a block I/O instruction, the following changes are

made in that set after instruction fetch:

Ist, 2nd, 4th, 5th, 7th, and 8th registers are dumped.

lst register is changed to last + 1.

4th - - - - next addr disp- 1.

5th - - - - next addr base.

7th - - - - bib.

8th - - = - count.

The indication in bib shows that the register set is now in block

I/O mode.

An interrupt to a level where the register set is in dummy mode

will have the effect:

clear the interrupt

goto instruction, e.g. use of information on bib

execute the I/O code

if the I/O instruction is finished, reload the register set,

i.e. the register set is set to normal mode again

3.6.1.2

3.6.1.3

29

fetch the next instruction

In Real-Time Pascal, the structure of a register set in block I/O

mode notation is as follows:

register_set_ type = RECORD

top : word;

ps : pstype;

pb : basetype; <* see 3.7.1.1 and 4.2.4 *>

nadrd : word;

nadrb : word;

pr : word;

ib : bibtype;

count : word;

END;

Dummy Mode

In Real-Time Pascal notation, the structure of a register set in

dummy mode is as follows:

register _set_type = RECORD

unused

unused

unused

unused

unused

unused word;

dib : dibtype;

unused : word;

END;

It is also possible to set a register set to dummy mode during

the run. A register set in dummy mode belonging to a specific

level will perform no instructions. If an interrupt arrives to

‘After autoload, all register sets are set to dummy mode.

3.6.1.3

3.6.2

30

such a level greater than zero, the effect will be:

clear the interrupt indication to that level

write the level in the dummy register "dummy intr last" (see

subsection 3.6.2.4)

increment the counter in the dummy register "dummy intr last”

(see subsection 3.6.2.4)

Micromachine Working Area 3.6.2

3.6.2.1

Besides the 124 register sets, there are 32 registers which are

used as a micramachine working area. —

The 32 registers may be seen as 4 register sets.

Monitor Register Set 3.6.2.1

The address of the first register in this set in the W register

array is 3EO. The structure of the register set is as follows:

3E0: actq base ; active queue base

3E1l: actq disp ; active queue displacement

3E2: n wa

3E3: m } priority selectors

3E4: k

3E5:; nxt 7 working register during scheduling

3E6: dic msb
dummy loop counter (32 bits)

3E7: dic 1sb

This register set is used to select among coroutines and proces-

ses running at level 0.

actq base, actq disp points at an array of addresses of corou-

tines and processes. n, m, k, and nxt are pointers to the active

3.6.2.2

31

queue used to select the next process (see the instructions

SCHED, CSTDR, and section 3.7).

dlc msb, dlc lsb is a 32-bit counter, which is incremented by one

when the microprogrammed scheduler has found no process to start.

After autoload, the entire register set is initialized with ones.

This forces the scheduler to perform a dummy loop. The scheduler

is started when the monitor initializes all registers by means of

the instruction OCPUT.

In the running system, the scheduler is initialized by SCHED. The

use of the pointers is explained in section 3.7.

COM8085 Register Set

This register set is used for commimnication between the control

microprocessor and the micromachine. It is addressed as 3E8

through 3EF in the W register array.

The contents of the register set are:

3E8: £fif056 ; 6-byte FIFO buffer

3E9: £ifo34 7 used to save parameters in

3EA: fifol2 7 comminication with the

control microprocessor

3EB: COW ; 2-byte buffer used by the

instruction CWRAM

3EC: dummy ; unused 16-but register

3ED: messcode ; code used after parity error

message

3EE: messbase ;

base and displacement

3EF: messdisp ;

of word with parity error,

to the control microprocessor.

3.6.2.2

3.6.2.3 Working Register Set

3.6.2.4

32

This register set is used as a working area by the micromachine.

Its use varies according to the instructions that use it. The

registers are addressed as 3FO through 3F7 in the W register

array. The process synchronizing instructions use the registers

as follows:

3F0:

3F1:

3F2:

3F3:

3F4:

3F5:

3F6:

3F7:

idbb

shptr

ldba

share

1ldbb

shptr

ldba

share

last base b

addr ref variable

last base a

addr mess

last displacement b

addr ref variable

last displacement a

addr mess

The registers are defined only within one instruction.

Dummy Register Set

The addresses of this register set in the W register array are

3F8 through 3FF, and the use of it is as follows:

3F8:

3F9:

3FA:

3FB:

3FC:

3FD:

3FE:

3EF:

breakp base

breakp disp

puerrmsk

breakp mode

dummy intr last

dummy intr count

parity error base

parity error disp

address used in breakpoint mode

breakpoint mode

save of level in dummy node

after interrupt

count of interrupt on level

in dummy mode

address with parity error

saved when the instruction

READB or READW detects a

parity error

3.6.2.3

3.6.2.4

3.6.2.5

33

Breakpoint Mode

When the machine is in stop mode (after an "s" cammand to the

control microprocessor, see section 17.3), the dummy register set

can be used as a breakpoint facility:

if breakp mode (W3FB) is set to a value > 0 then the micramachine

will do:

repeat

exec one instruction

value := value - 1

until value = 0

It is also possible to set breakp base, breakp disp to point at

an address by using W3F8, W3F9 fram the control microprocessor;

then:

if breakpmode < 0 then

repeat

exec one instruction

until instruction pointer base = breakp base AND

breakp dispinstruction pointer disp

In this case it is possible:

1) either to reset breakpoint mode by resetting breakp mode

2) or to execute one or more instructions by means of the "s

command:

then

repeat

exec one instruction

breakp base AND

breakp disp

until instruction pointer base

instruction pointer disp

The tested instruction pointer base and instruction pointer disp

is the instruction pointer at the level that is currently

running.

3.6.2.5

3.7

34

Data Formats and Structures

3.7.1 Basic Formats and Structures

The RC3502 has a mimber of basic data formats with corresponding

data structures on which the instructions operate.

Fundamental to all structures are the quantities 8-bit byte,

16-bit word, and 32-bit double.

Byte n Byte n+ 1

0 7{0 7

WORD

fo 15}

DOUBLE

io 34

Figure 7: Byte, Word, and Double.

3.7

3.7.1

35

3.7.1.1 Addressing 3.7.1.1

Addressing of the memory is done by means of byte addresses,

which can be regarded as being muimbered in succession fram zero.

An address occupies two 16-bit words, starting at an even address

(a physical word address) and with the following structure:

Address:

012 789 10 14 15

base |j------ 1 0

displace-

ment

memory module

number: 0..31

Internal/external

memory: 0.1

Unused

Nil_bit: 0.1

Lock_bit: 0.1

Word

Figure 8: Memory Address.

3.7.1.2

36

Nil_bit and lock bit are status bits, used by same of the in-

structions to ensure data security.

Data structures are addressed by the byte with the lowest ad-

dress, except the following data structures (system types), which

are allocated in the memory to start at an even byte address:

- Incarnation descriptors are addressed by odd byte addresses

(see subsection 3.7.3.1).

- Activation records are addressed by odd byte addresses (see

subsection 3.7.4).

Chain and Queue Structures

In the RC3502 there are two fundamental chain structures. In con-

nection with queue semaphores and active queues a mimber of ad-

dresses with the following structure are used:

head last first second +—> -------

Figure 9: Chain Structure.

Elements are inserted and removed as in a queue (FIFO).

A chain has the following states:

- Empty: Nil-bit in the head has the value 1;

- Chain of messages: Even byte address and nil-bit = 0;

- Chain of incarnations: Odd byte address and nil-bit = 0;

3.7.72

3.7.1.3

37

Also used is a single chained linear list of elements containing

a pointer field. The offset to the pointer field is chain de-

pendent.

head _ UA —_. / see eeeeee

Figure 10: Single Chained Linear List.

Additional Structures

3.7.2

Additional data structures derived fram the following functional

characteristics of the implementation of Real-Time Pascal on the

RC3502:

- Cammmnication

- Dynamic process structure

- Stack oriented execution

- Process execution

- Range testing and indexing

The following gives a short description of the additional struc-

tures known by the microprogram (i.e. firmware and hardware).

Communication Structures

3.7.2.1

Process incarnations caommmicate by means of message passing sup-

ported by queue semaphores.

Messages

A message consists of a message header and a data part (possibly

nil

3.7.1.3

3.7.2

3.7.2.1

empty). The format is shown below:

message header data part

chain

message kind

size : .

Start of data Size in

owner

answer an A

msg-chain

stack-chain

ul u2

u3 u4

Figure 11: A Message.

3.7.2.2

39

The format and meaning of the individual fields are explained by

the following Real-Time Pascal notation:

message header =

RECORD

chain: addr (* used for chaining the message into

semaphore queues *)

message _kind: word ; (* either a data message with allocated

size > 0 or a channel message *)

size: word ; (* size in words of the data part *)

start: addr ; (* data part address *)

owner: addr ; (* address of the owner semaphore *)

answer: addr ; (* address of the answer semaphore *)

message _chain: addr ; (* chain field for the chain of messages

allocated to a process incarnation *)

stack_chain: addr ; (* chain of stacked messages, maintained

by push and pop instructions *)

ul,u2,u3,u4: byte ; (* user parameters *)

END; (* message header *)

With messages as elements, a stack structure of messages can be

formed. (The stack_chain field is used). The instructions LPUSH

and LPOP are used to manipulate this stack (see section 11.12).

Semaphores

A semaphore is actually a chain head with the status:

- Passive: Empty queue head.

- Open: The chain is a queue of messages.

- Locked: The chain is a queue of waiting process incarna-

tions.

last first

message message

ghain chain Chain --— .c.sccees

Figure 12: A Semaphore (Open State).

3.7.3 The Process Incarnation Stack Descriptor

Several incarnations of a process can be executed. These incarna-

tions are fully dynamic and controlled by a mumber of data struc-

tures, of which the following are so fimdamental that single in-

structions operate on them.

3.7.3.1 Process Incarnation Stack

The execution of a process incarnation implies the existence of

an incarnation descriptor, which is a data structure explained in

Real-Time Pascal notation as follows:

incarnation_descriptor =

RECORD

chain: addr (* chain field for semaphores and

active queues *)

not used: byte

level: byte : (* current interruption level for the

incarnation *)

incstate: integer ; (* state may be start, stop *)

msg_waited: addr ; (* address of reference; defined only
when the incarnation is waiting

for a semaphore *)

3.7.3

3.7.3.1

activequeue: addr

chainhead: addr

exception mask: integer

exceptionpoint: addr

exic: addr

dumplm: word

dumpps: word

dumplu: word

dumpsf: word

entrypoint: addr

timer: integer

41

(*

(*

(*

(*

(*

(*

(*

(*

(*

(*

(*

address of active queue in which

an incarnation is chained when ac-

tive *)

address of the queue in which the

incarnation is currently chained *)

exception mode when a runtime ex-

ception occurs *)

address of the exception routine

to be called if an exception

occurs *)

instruction pointer base and dis-

placement stored here prior to en-

tering the exception routine *)

dump location for Im register *)

dump location for ps register *)

dump location for lu register *)

dump location for sf register *)

dump location for instruction

pointer *)

timeout counter used for timeout

interrupt service *)

maxstack: word ; (* maximum value of the lu register *)

END;

3.7.4 Structures Depending on Stack Oriented Execution 3.7.4

The RC3502 is a pure stack machine, in which processes are ex-

ecuted in connection with an evaluation stack for each incarna-

tion. This evaluation stack is, in fact, placed in continuation

of the incarnation descriptor. When a process incarnation is ac

tive, the current register set will contain three pointers to the

incarnation stack:

- Global frame pointer (odd address), which points out the

start of the incarnation descriptor.

- Local frame pointer (odd address), which points out the

start of the current frame (i.e. routine) in which expres-

sions are evaluated (activation record).

3.7.5

42

- last used pointer, which points out the last used byte on

the evaluation stack.

These structures are further described in chapters 4 and 7.

Structures Deriving from Process Execution

Each time an instruction has been executed (under certain cir-

cumstances, steps in an instruction), the next instruction to be

executed is selected. This may involve a switch to a new process

to be executed.

The scheduling of process incarnations is done by hardware in

three classes with mutual priority:

- Class I:

- Class II:

- Class III:

Scheduling by interrupt. The interruption levels

are with mutual priority. The incarnations are

executed on levels greater than 0.

Scheduling of incarnations with internal priority

and round robin for a given priority. Class II

incarnations are executed on interruption level =

0 (as coroutines).

Scheduling of incarnations with internal priority

and time-sliced round-robin for a given priority.

Class III incarnations are executed on interrup-

tion level 0.

Class I scheduling does not cause further data structures. Class

II and class III scheduling take place as a co-operation between

the SCHED instruction, the cammmication instructions (signal,

wait ...), the instruction fetch, and the contents of the monitor

register set.

3.7.5

Hex addr

0

1

1

|

3E0

3E1

3E2

3E3

3E4

355

3E6

3E7

3FF

43

Figure 13: Scheduling Structures.

k in the monitor register set defines that the array of

Weregister array Active quene

with minitor reg. set array (m.m.) of addr

+—+ queue

L_. queue

a ” |

c a |

|

atcq(0) base , ++ queue

atcq(0) disp

n |

m |

k |

|
nxt

Gummy ++ queue
loops counter

a ”

A aA

active

queues is to be scanned in the following sequence to find the

next incarnation:

nm, m1, m2, «00, O, kK, 1, 2, «oe, Kt], Kel, «ee, Mm

nxt is a variable used to point out where cme is in the

quence. nxt is reset to n before scheduling. By letting

ating system vary k after the expiration of each time-sl

iod, one obtains a time-sliced class III scheduling, whe

ity group i (m< i < 0) is qaranteed scheduling at leas

time-slice period.

Queue n, m1, ..., 0 is used in the class II scheduling

tines). Dummy looping takes place if n= -] or if nxt =

above se-

the oper-

ice per-

re prior-

t each 2"

(corou-

m1.

Durmy looping will imply incrementation of the dummy loop

counter, which should be regarded as an unsigned 32-bit

Consult chapter 11 for a description of the instruction

integer.

SCHED.

44

3.7.6 Structures Deriving from Range Testing and Indexing 3.7.6

In connection with subrange testing, array indexing, and qer-

ations on packed arrays (i.e. load, store), three data structures

have been defined:

- Range descriptor (INTRS)

- Dope vector (INDEX)

~ Packed dope vector (INPRS, INPSS)

These structures are described in chapter 12.

3.8 Number Representation 3.8

The RC3502 has signed, unsigned, and modulo 64K arithmetic on 16-

bit words. Used unsigned or modulo 64K, a word is regarded as an

integer in the range:

O < unsigned integer word < 65535

Used signed, a word is regarded as an integer in the range:

-32768 < integer word < 32767

Signed arithmetic is in twos complement form with bit O as the

sign bit, with 0 for positive integers and 1 for negative inte- —

gers.

Range violation as a consequence of signed or unsigned arithmetic

operations will result in an exception indicating arithmetic

overflow/underflow.

Modulo 64K arithmetic operations will not cause such an excep-

tion.

45

BASE INSTRUCTION SET 4.

4.1

As described in section 2.3, the Base Instruction Set, or BIS,

specifies the functionality of the instruction set for the

RC3502. The BIS contains redundancy in the sense that a sequence

of instructions may have a single instruction as its substitute.

Runtime Environment 4.1

The execution of an RC3502 machine instruction presupposes a cer-

tain environment. An important part of this environment is a num

ber of stacks, one for each process incarnation. The stack for a

process incarnation is allocated as a consecutive mimber of bytes

within a single memory module.

A stack contains one stack frame for each uncampleted routine

call. A stack frame is a number of consecutive storage locations.

The stack frame contains the parameters and the local variables

for the routine call.

A stack frame includes the following areas:

1) Actual parameters

This area contains the values or the addresses of the actual

parameters for the routine call.

2) Anonymous parameters

This area contains the information needed to access non-local

Objects from the body of the routine (static link) and to

return fram the routine call to the point of call (dynamic

link and return address).

3. Local objects

This area contains the storage locations of the objects (e.g.

variables) declared in the body of the routine.

46

To facilitate access to objects in the stack, the register sets

of all process incarnations include the following three regis-

ters:

- Global frame pointer (GF)

This pointer contains the address of the second byte of the

stack frame at the bottom of the stack (i.e. the stack frame

which belongs to the outermost block level of the process).

The first part of this stack frame is the incarnation descrip-

tor.

Local frame pointer (LF)

This pointer contains the address of the second byte of the

anonymous parameters in the stack frame at the top of the

stack (i.e. the stack frame which belongs to the latest uncan-

pleted routine call of the process).

Last used byte pointer (LP)

This pointer contains the address of the last used byte in the

stack.

Expressions are evaluated on top of the stack of frames.

The stack for a process incarnation may be illustrated as fol-

lows:

GLOBAL FRAME (GF)

INCREASING

ADDRESSES

LOCAL FRAME

(LF)

—
—

47

T

|

INCARNATION

DESCRIPTOR

|

ns

|

|
DECLARED

OBJECTS

>

OPERANDS OF

THE EXPRESSION

UNDER EVALUA-

TION

STACK FRAME FOR THE

OUTERMOST BLOCK LEVEL

STACK FRAMES FOR IN-

TERMEDIATE ROUTINE CALLS

STACK FRAME FOR THE

LATEST ROUTINE CALL

Figure 14: Process Incarnation Stack.

4.2 Terminology 4.2

4.2.1 Operation and Parameter 4.2.1

An instruction consists of an operation (an 8-bit byte) and zero,

one, or more parameters. A parameter may follow the qperation

code or be placed elsewhere, e.g. on the top of the stack.

4.2.2 Operand and Result 4.2.2

The operation works on operands, and when the instruction is ex-

ecuted, a result may be produced.

4.2.3 Effective Address 4.2.3

Operands may be retrieved in several different ways, but funda-

mental to them all is the obtaining of an effective address to

point out the operand.

4.2.4 Address 4.2.4

An address, or ADDR, is a byte address, which is defined in Real-

Time Pascal notation by

TYPE

bit = 0..1;

word = 0..65535;

addr = RECORD

base : basetype;

disp : word;

END;

basetype = PACKED RECORD

lockbit : bit;

nilbit : bit;

unused : 0..63;

onebit : bit; (* always one *)

memkind : bit; (* 0 for external memory *)

(* 1 for internal memory *)

module : 0..31;

nullbit : bit; (* always zero *)

END;

4.2.5

4.2.6

49

Size 4.2.5

The size of an operand (or a result) may be one of the following:

BYTE, which occupies one byte (eight bits).

WORD, which occupies two bytes. A WORD is addressed by the

byte with the smallest address. The first byte need not have

an even address.

DOUBLE, which occupies four bytes. A DOUBLE is addressed by

the first byte in its first word (i.e. the word with the

smallest address). The first byte need not have an even ad-

dress.

FIELD, which occupies a number of bits within a word. A FIELD

is specified by a parameter of one byte, which follows the

parameters used to describe the access path for the operand

(or the result). This byte is interpreted as two 4-bit quan-

tities, specifying, respectively, the first and the last bit

occupied by the field.

Addressing 4.2.6

Several different schemes are used to obtain the effective ad-

dress in order to retrieve an operand (or store a result).

Direct operand

The operand is placed immediately after the operation code,

and the effective address is obtained by means of the instruc-

tion pointer (IP).

50

Operand on top of the stack

The operand is placed on the top of the stack, and the effec-

tive address is obtained by means of the last used byte

pointer (LP).

Direct address

The effective address is formed by the four bytes following

the operation code, interpreted as an ADDR.

Relative to the instruction pointer

The two bytes following the operation code are interpreted as

an unsigned integer. The effective address is obtained by add-

ing this integer to the displacement field (ip.disp) of the

instruction pointer (IP). A carry is not transferred to the

base field (ip.base), but a 16-bit wraparound is used.

Relative to the local frame

A mumber (i) of bytes (e.g. two) following the operation code

are interpreted as an unsigned integer. The effective address

is obtained by adding this integer to the displacement field

(1£.disp) of the local frame pointer (LF). A carry is ignored.

Relative to the global frame

A mimber (i) of bytes (e.g. two) following the qperation code

are interpreted as an unsigned integer. The effective address

is obtained by adding this integer to the displacement field

(gf.disp) of the global frame pointer (GF). A carry is ignor-

ed.

Relative to an intermediate frame

The byte that follows the operation code is interpreted as a

level difference, i.e. the difference between the static level

of the routine which is executing the instruction and the

static level of the routine in which the qperand is declared

as an object. This difference is used to retrieve a value,

called the intermediate frame pointer, which is a pointer to

the stack frame in which the object is allocated.

4.3

51

A mimber (i) of succeeding bytes (e.g. two) are interpreted as

an unsigned integer. The effective address is obtained by add-

ing this integer to the displacement field (if.disp) of the

intermediate frame pointer (IF). A carry is ignored.

If the level difference is zero, the intermediate frame

pointer (IF) will have the same contents as the local frame

pointer (LF).

- Relative to an address on top of the stack

The four bytes on the top of the stack are removed and inter-

preted as an ADDR.

A muimber (i) of bytes (e.g. two) following the operation code

are interpreted as an unsigned integer. The effective address

is obtained by adding this integer to the displacement field

(addr.disp) of the address removed fram the stack. A carry is

ignored.

Functional Description 4.3

4.3.1 Structure 4.3.1

Chapters 5 to 13 contain a functional description of the Base In-

struction Set. Each of these chapters is divided into one or nore

groups of instructions with uniform basic functions. For each

such group the following information is given:

- The basic function of the instructions in the group.

- A verbal description of the instructions in the group.

- A diagrammatic description of each instruction and its func

tion.

- An algorithmic description on the macro level of each instruc-

tion and its function.

4.3.2 Notation

Diagrammatic Descriptions

Abbreviations are used for most of the addressing schemes ex-

plained in subsection 4.2.6, and certain letters are used in the

symbolic names of the instructions to indicate how the effective

address of the operand is obtained.

52

Addressing Scheme Diagram | Fourth Letter of Name

direct operand: (none) H

operand on top of stack | (none) P

direct address: DA; A

relative to

instruction pointer: IP; R

relative to .
local frame: LF; L

relative to

global frame: i G

relative to

intermediate frame: Fy I

relative to

address on top of stack:| SA; Ss

address of top of stack:} (none) xX

Algorithmic Descriptions

The addresses which are fundamental to the instructions are ab-

breviated as follows:

ip : addr; (* instruction pointer *)

lp : addr; (* last used byte pointer *)

1f£ : addr; (* local frame pointer *)

gf:

ms

addr;

: addr;

(* global frame pointer *)

(* maxstack (last byte in allocated stack) *)

4.3.2

53

Arithmetic

Operations on byte pointers (i.e. ADDR's) are performed as if

they were 32-bit integers, but the operations are performed mod-

ulo 64K, i.e. only the lower 16 bits (the displacement fields)

are involved.

In the algorithms, the memory is accessed in three different

ways:

1) Accessed as bytes

The symbolic name "membyte" is used with the interpretation

membyte = ARRAY (addr) OF byte

2) Accessed as words

The symbolic name "memword" is used with the interpretation

memword = ARRAY (addr) OF word

when the memory is accessed in word mode and the address of the

first byte takes either an even or an odd value.

The symbolic name "mem" is used with the interpretation

mem = ARRAY (addr) OF word

when the memory is accessed in word mode, but the address of the

first byte is always oven.

The process incarnation stack is a part of memory, starting at an

even byte address and always occupying an even number of bytes

during evaluation on top of the stack. To facilitate the reading

of the notation,

stack (lp - 1)

is used as a pseudonym for

mem (lp - 1).

Note that the stack pointers are always odd, and the qperands on

top of the stack are always accessed in "mem" mode by the micro-

program.

54

3) Accessed as doubles

The symbolic name “memaddr" is used with the interpretation a

memaddr = ARRAY (addr) OF addr

when the memory is accessed in double word mode, and the address

of the first byte in the first word takes aither an even or an

odd value.

When an operand of size BYTE is moved to a destination of size

WORD, the operand is converted to size WORD with ZERO extension.

In the algorithms, the operator "word" is used to indicate the

conversion.

we

4.3.3 Routines 4.3.3

In the following chapters some cammon routines are used in the

algorithmetic description.

4.3.3.1 Exception Routine . 4.3.3.1

This routine performs an unconditional jump to the program point

defined in the exception point field of the incarnation descrip-

tor. Before the jump, the multiple-wait flags are cleared in the

ps register of the register set and the maxstack pointer reset to —

the value defined in the incarnation descriptor.

PROCEDURE exception(cause: integer);

BEGIN

mem(gftexception_mask) := cause;

memaddr(gft+exic):= ip;

ip:= memaddr(gftexception_point);

ms.disp:= mem(gftmaxstack);

ps.wait:= 0;

GOTO fetch

END; (* exception *)

55

4.3.3.2 Get Intermediate Frame Routine 4.3.3.2

This routine is used to retrieve the address of the intermediate

frame. The level difference between the static levels is used.

FUNCTION get_if(level: byte): addr;

VAR

res: addr;

BEGIN

res:= 1f;

WHILE level > 0 DO

BEGIN

res:= memaddr(res-1);

level:= level-1;

END;

get_if:= res

END; (* get_if *) ‘

56

RETRIEVALOF A VALUE

5.] Push Nonsense (Reserve Stack Space)

5.1.1

The operand is retrieved, and a result which occupies <operand>

bytes is pushed on the stack. The contents of the result are w-

defined.

RENPB

Value: BE nex

REtrieve Nonsense via P(ush Down List) Bytes

IP +

STACK BEFORE: STACK AFTER:

LP Ph— regu lt? <operand> bytes

tp ——_____

(* RENPB *)

VAR

operand : word;

BEGIN

operand := stack(lp-1);

IF odd(operand) THEN exception(odd operand);

IF lp

lp:

ip:

END;

- 2> ms - operand THEN exception(stack overflow);

lp - 2 + operand;

ip +1

(* RENPB *)

57

5.1.2 RENHB 5.1.2

REtrieve Nonsense H(ere) Byte Value: 8Fiyay

Ip > [RENHB [parayeter|

STACK BEFORE: STACK AFTER:

i
1

1
‘

4

1p—_____| R—resgul | <parameter> bytes
}

(* RENHB *) °

VAR

parameter : word;

BEGIN

parameter := memword(iptl);

IF odd(parameter) THEN exception(odd parameter);

IF lp > ms — parameter THEN exception(stack overflow);

lp := lp + parameter;

ip := ip + 3

END; (* RENHB *)

58

5.2 Push Constant 5.2

The operand is retrieved and pushed on the stack as the result.

5.2.1 RECHW 5.2.1

REtrieve Constant H(ere) Word Value: AB.oy

mp > [RECHW | parameter]

STACK BEFORE: STACK AFTER:

Hi Hi
|

‘

1 1

t |
i result

LP |
LP

(* RECHW *)

BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

stack(lp+1) := memword(ipt+t]);

lp :=lp+2

ip = ip +3

END; (* RECHW *)

5.2.2

59

RECHD or REAAD 5.2.2

REtrieve Constant H(ere) Double Value: EB ex

REtrieve Address A(bsolute) Double

(Two names for the same instruction)

iP + [ReEcHD [p alr a mle t e[r |

STACK BEFORE: STACK AFTER:

T

| |

1’

5

I

i
Lp P— regult-—

(* RECHD or REAAD *)

BEGIN

IF lp > ms - 4 THEN exception(stack overflow);

stack(lp+1) := memword(iptl);

stack(1lpt3) := memword(ip+3);

lp := lp + 4;

ip = ip+5

END; (* RECHD or REAAD *)

5.3 Push Address

5.3.1

The operand is an address, which is pushed on the stack as the

result.

REAXD

REtrieve Address X (path) Double Value: FD.

mt > [REAXD]

STACK BEFORE: STACK AFTER:

-
-
-
-
+
-
-
4

t h~-resgult-

(* REAXD *)

BEGIN

IF lp > ms — 4 THEN exception(stack overflow);
stack(lp+1) := lp.base;

stack(lpt3) := lp.disp;

lp := lp + 4;

ip :=ip+ 1

END; (* REAXD *)

5.3

5.361

5.3.2

61

REARD 5.3.2

REtrieve Address R(elative) Double Value: FOsgy

Ip + { REARD [__paranpter |

STACK BEFORE: STACK AFTER:

H j address

H ' expression

{ H used: IP,
I f

1p —______} rF— resjult—

ip—____!

The result is the address denoted by IP + parameter.

(* REARD *)

VAR

param : word;

BEGIN

IF lp > ms - 4 THEN exception(stack overflow);

param := memword(iptl);

stack(lp+1) := ip.base;

stack(lp+3) := ip.disp + param;

lp := lp + 4;

ip := ip +3

END; (* REARD *)

62

5.3.3 REALD 5.3.3

REtrieve Address L(ocal) Double Value: E4joy

Ip + [_REALD| parameter |

STACK BEFORE: STACK AFTER:

address

expression

used: LF,

-
-
-
-
-
-
4

Ip h——-ressult—-

ip —__!

(* REALD *)

VAR

param : word;

BEGIN

IF lp > ms - 4 THEN exception(stack overflow);

param := memword(ipt]);

stack(lp+1) := 1f.base;

stack(lp+3) := 1f.disp + param;

lp := lp + 4;

ip := ip + 3

END; (* REALD *)

5.3.4

63

REAGD 5.3.4

REtrieve Address G(lobal) Double Value: EQ...

Ip + [{ REAGD | parameter |

STACK BEFORE: STACK AFTER:

H H address

H | | expression
‘ | f used: GF 2
f i

t — 4LP regult

(* REAGD *)

VAR

param : word;

BEGIN

IF lp > ms - 4 THEN exception(stack overflow);

param := memword(ipt1);
stack(lp+1) := gf.base;

stack(lp+3) := gf.disp + param;

lp := Ip +4;

ip := ip+3

END; (* REAGD *)

64

5.3.5 REAID 5.3.5

Value: E2nex

REtrieve Address I(ntermediate) Double

IT > f{ REATD [param1[paramdter2]

STACK BEFORE: STACK AFTER:

H | address
' expression
{

\ used: IF

?
LP Ph— result-~

ip —__}

(* REAID *)

VAR

param] : byte;

param2 : word;

FUNCTION get_if (level : byte) : addr;

EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN

IF lp >ms - 4 THEN exception(stack overflow);

param] := menmbyte(ip+1);

param2 := memword(ipt2);

stack(1pt1) := get if(paraml).base;

stack(1p+3) := get_if(paraml).disp + param2;

lp := lp + 4;

ip =ip+4

END; (* REAID *)

65

5.3.6 REASD or UADHW 5.3.6

REtrieve Address via S(tack) Double Value: E6jo,

Unsigned Abd H(ere) Word

Ip + [ReEasD | parameter |

STACK BEFORE: STACK AFTER:

H H address
' 1 expression
‘ f used: SA

2

} ADDR P—result-—-y

(* REASD or UADHW *)

VAR

param : word;

BEGIN

param := memword(ip+]);

stack(lp-1) := stack(lp-1) + param;

ip := ip + 3;

END; (* REASD or UADHW *)

66

5.4 Push Operand 5.4

The value of the operand is retrieved and pushed on the stack as

the result.

5.4.1 REVPW 5.4.1

REtrieve Value P(ush Down List) Word Value: AF
Hex

IP +

STACK BEFORE: STACK AFTER:

1 Hi
4 | H

'

i { The WORD on
operand | __| the top of

respit the stack is
t doubled.

LP

(* REVPW *)

BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

stack(lp+1) := stack(lp-1);

lp := lp + 2;

ip :=ip+1

END; (* REVPW *)

5.4.2 REVPD

REtrieve Value P(ush Down List) Double Value: EFyoy

rFopeyand-

(* REVPD *)

BEGIN

67

STACK AFTER:

|

Pp—-reshlt-——

ip—___]

IF lp > ms - 4 THEN exception(stack overflow);

stack(lp+1) :

stack(1pt3) :

lp := lp + 4;

ip = ip+1] .

END; (* REVPD *)

W
e
i stack(lp-3);

stack(lp-1);

5.4.2

The DOUBLE on

the top of

the stack is

doubled.

68

5.4.3 REVAB 5.4.3

REtrieve Value A(bsolute) Byte Value: 9Bay

IP + [RevaB | parametadr |

STACK BEFORE: STACK AFTER:

i | address

| ! H expression
| ! H used: DA,

I t
t resblt } WORD with

LP zero extension,

LP —__]} right justified

(* REVAB *) —

VAR

param : addr;

BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

param.base := memword(iptl);

param.disp := memword(ipt3);

stack(lpt+1) := word(membyte(param));

lp := lp + 2;

ip :=ip+5

END; (* REVAB *)

69

5.4.4 REVAW 5.4.4

REtrieve Value A(bsolute) Word Value: BB,

Ip > [REvaw | parametadr

STACK BEFORE: STACK AFTER:

H I address
H | i expression
! H used: DA,

\
t respbit } WORD

“ eeLP

(* REVAW *)

VAR

param : addr;

BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

param.base := memword(ipt1);

param.disp := memword(ipt3);

stack(lp+1) := memword(param);

lp := lp + 2;

ip :=ip+5

END; (* REVAW *)

70

5.4.5 REVAD 5.4.5

REtrieve Value A(bsolute) Double Value: FByoy

mp + [REvaD | parametadr |

STACK BEFORE: STACK AFTER:

H H address

\ expression
! ! used: DA,

4 | '

LP F-resbhlt— } DOUBLE

(* REVAD *)

VAR

param : addr;

BEGIN

IF lp > ms - 4 THEN exception(stack overflow);
param.base := memword(iptl);

param.disp := memword(ip+3);

stack(lptl) := memword(param);

stack(lp+3) := memword(param+2);

lp := lp + 4;

ip :=ip+5

END; (* REVAD *)

5.4.6

7

REVAF 5.4.6

REtrieve Value A(bsolute) Field Value: DByoy

Ip + [Reva | p alr a mle t e[r 1 [param2]

STACK BEFORE: STACK AFTER:

i } address

H H expression
' ! used: DA,
| i

t reshit } WORD with

LP -—-_-__--_-_—-_—- t zero extension,

LP right justified

(* REVAF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

paraml : addr;

param2 : fieldtype;

BEGIN

param2 :=membyte(ipt5);

IF lp > ms — 2 THEN exception(stack overflow);

IF param2.firstbit > param2.lastbit THEN exception(field error);

param] .base := memword(ipt1);

param] .disp := memword(ip+3);

stack(lpt+1) := (memword(paraml) DIV (2**(15-param2.lastbit)))

MOD (2**(param2.lastbit-param2.firstbit+1));

lp lp + 2;

i ip +6

END; (* REVAF *)

e
e

o
e

72

5.4.7 REVLB 5.4.7

REtrieve Value L(ocal) Byte Value: O7 eyex

Ip + [REVLB | _parangbter]

STACK BEFORE: STACK AFTER:

iH } address
' ! expression

1 used: LF.
Uy

t resfult } WORD with

LP ft zero extension,

LP right justified

(* REVLB *)

VAR

param : word;

BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

param := memword(iptl);

stack(lp+1) := word(membyte(1f+param));

lp := lp + 2;

ip := ip +3

END; (* REVLB *)

73

5.4.8 REVLW 5.4.8

REtrieve Value L(ocal) Word Value: B7yex

Ip + [REVIW | parangter]

STACK BEFORE: STACK AFTER:

1 ' address
\ expression

' ‘ used: LF.

2
reshlt } WORD

——__] i

(* REVLW *)

VAR

param : word;

BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

param := memword(iptl);

stack(lp+1) := memword(1ftparam);

lp := lp + 2;

ip = ip+3

END; (* REVLW *)

74

5.4.9 REVLD 5.4.9

REtrieve Value L(ocal) Double Value: Flex

Ip + [_REVID [__paraneter]

STACK BEFORE: STACK AFTER:

1 ' address
1 \ expression

| i used: LF

?
LP tre shi t—{} rooms

ip ——__]

(* REVLD *)

VAR

param : word;

BEGIN

IF lp > ms - 4 THEN exception(stack overflow);

param := memword(ip+l);

stack(lp+1) := memword(1f+param);

stack(lp+3) := memword(1f+param+2);

lp := 1p + 4;

ip := ip +3

END; (* REVLD *)

5.4.10

75

REVLF 5.4.10

REtrieve Value L(ocal) Field Value: Diiey

Ip + { REVLF [| parameter 1 | param 2 |

STACK BEFORE: STACK AFTER:

Fg

K oO n e
t
e

-
-
-
-
-
4

r
a
y

c
t

(* REVLF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

param] : word;

param2 : fieldtype;

BEGIN

param2 := membyte(ipt3);
IF lp > ms - 2 THEN exception(stack overflow);

address

expression

used: LF,

} WORD with

zero extension,

right justified

IF param2.firstbit > param2.lastbit THEN exception(field error);

param] := memword(ipt1);
stack(lp+1) := (memword(1ftparam]) DIV (2**(15-param2.lastbit))

MOD (2**(param2.lastbit—param2.firstbit+1));

lp lp + 2;

ip ip+4

END; (* REVLF *)

76

5.4.11 REVGB 5.4.11

REtrieve Value G(lobal) Byte Value: 934,

Ip + [_REVGB | _ paranbter |

STACK BEFORE: STACK AFTER:

address

expression

used: CFS
¥

T T

! {

t 1
t reshblt } WORD with

LP t zero extension,

LP right justified

(* REVGB *)

VAR

param : word;

BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

param := memword(ipt+]);

stack(lp+1) := word(membyte(gf+param));

lp := lp + 2;

ip := ip +3

END; ‘(* REVGB *)

77

5.4.12 REVGW 5.4.12

REtrieve Value G(lobal) Word Value: B3yey

Ip + [_REVGN| paranbter]

STACK BEFORE: STACK AFTER:

4 H address

' | H expression
! | H used: GF,
| i

{ reshlt } WORD

ne etLP

(* REVGW *)

VAR

param : word;

BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

param := memword(iptl);
stack(lp+1) := memword(gf+param);

lp := 1p + 2;

ip :=ip+3

END; (* REVGW *)

78

5.4.13 REVGD 5.4.13

REtrieve Value G(lobal) Double Value: F3ie,

Ip + [{ REV@ | parameter |

STACK BEFORE: STACK AFTER:

H address
; expression

H \ used: GF.

°
LP re sf1it—} rome

ip ——_]

(* REVGD *)

VAR

param ;: word;

BEGIN

IF lp > ms - 4 THEN exception(stack overflow);

param := memword(ip+]);

stack(lp+]) := memword(gf+param);

stack(lp+3) := memword(gf+paramt+2) ;

lp := lp + 4;

ip :=ip+3

END; (* REVGD *)

79

REVGF 5.4.14

REtrieve Value G(lobal) Field Value: D3,

Ip > [REVGF[| __parareter1 | param2]

STACK BEFORE: STACK AFTER:

H i address
H ' expression

| ‘ used: GF,
| ‘

t resbilt } WORD with

LP t zero extension,

LP right justified

(* REVGF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

param] : word;

param2 : fieldtype;

BEGIN

param2 := membyte(ipt3);

IF lp > ms — 2 THEN exception(stack overflow);

IF param2.firstbit > param2.lastbit THEN exception(field error);

param] := memword(ipt]);

stack(lp+1) := (memword(gftparaml) DIV (2**(15-param2.lastbit)))

MOD (2**(param2.lastbit-param2.firstbit+]));

lp := lp + 2;

ip :=ip+4

END; (* REVGF *)

80

5.4.15 REVIB 5.4.15

Retrieve Value I(ntermediate) Byte Value: ra

TP + [REVIB [param1[parameter2 |

STACK BEFORE: STACK AFTER:

address

expression

used: IF,

T
H

‘

i reshblt } WORD with

LP t zero extension,

LP right justified

(* REVIB *) ~—

VAR

paraml : byte;

param2 : word;

FUNCTION get_if(level : byte) : addr;

EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

paraml := membyte(iptl);

param2 := memword(ipt2);

stack(lp+1) := word(membyte(get if(paraml)+param2));

lp := lp + 2; ~

ip :=ip+4

END; (* REVIB *)

81

5.4.16 REVIW 5.4.16

REtrieve Value I(ntermediate) Word Value: Borex

Ip + [REVIW [param 1[parameter2 |

STACK BEFORE: STACK AFTER:

address

expression

used: IF,

i
1

'

4

i

i}

{ reshlt } WORD
LP i

LP

(* REVIW *)

VAR

param] : byte;

param2 : word;

FUNCTION get_if(level : byte) : addr;

EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN

IF lp > ms - 2 THEN exception(stack overflow);

param] := membyte(ipt+]);

param2 := memword(ip+2);

stack(lpt1) := memword(get_if(param])+param2);

lp := 1p + 2;

ip :=ip+4

END; (* REVIW *)

82

5.4.17 REVID 5.4.17

REtrieve Value I(ntermediate) Double Value: Fopex

IP > [{ REVID [param1[parameter2 |

STACK BEFORE: STACK AFTER:

address

expression

used: IF
2

Lp Hr esh1t—t} rome

|

(* REVID *)

VAR

param] : byte;

param2 : word;

FUNCTION get if(level : byte) : addr;

EXTERNAL; —(* to retrieve address of intermediate frame *)

BEGIN

IF lp > ms - 4 THEN exception(stack overflow);

param] := membyte(ipt1);

param2 := memword(ipt2);

stack(lp+]) := memword(get_if(param])+param2);

stack(1p+3) := memword(get_if(paraml)+param2+2);

lp := lp + 4;

ip :=ip+4

END; (* REVID *)

5.4.18

83

REVIF 5.4.18

REtrieve Value I(ntermediate) Field Value: D5tex

rp + { REvVIF [param1[parameter2. [param3 |

STACK BEFORE: STACK AFTER:

i i address

| H expression
' \ H used: IF,
I '

t result } WORD with
LP t zero extension,

LP right justified

(* REVIF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

paraml : byte;

param2 : word;

param3 : fieldtype;

FUNCTION get if(level : byte) : addr;

EXTERNAL; —~(* to retrieve address of intermediate frame *)
BEGIN

param3 := membyte(ipt4);
IF lp > ms - 2 THEN exception(stack overflow);

IF param3.firstbit > param3.lastbit THEN exception(field error);

param] := membyte(ipt]);

param2 := memword(ipt2);

stack(lpt+1) := (memword(get_if(paraml])+param2) DIV (2**(15-param3.lastbit)))

MOD (2**(param3.lastbit-param3.firstbit+]));

5.4.19 REVSB 5.4.19

REtrieve Value S(tack) Byte Value: 99,04

Ip + [REVSB | paramdter1 |

STACK BEFORE: STACK AFTER:

} i address

y H expression

' ' used: SA,
' +

IK— operand } acor resbit } WORD with
t zero extension,

LP - right justified

(* REVSB *) wa

VAR

param] : word;

operand : addr;

BEGIN

param] := memword(iptl);

operand.base := stack(1p-3);

operand.disp := stack(lp-1);

IF operand.base.nilbit THEN exception(nil exception);

stack(1p-3) := word(membyte(operandtparaml));

lp := lp - 2;

ip := ip +3

END; (* REVSB *)

4

5.4.20 REVSW

85

5.4.20

Retrieve Value S(tack) Word Value: Bey

Ip + [REvSW [parameter 1 |

STACK BEFORE: STACK AFTER:

| H address
' H expression
' \ used: SA,

i

| opedtand } anor reshit } WORD

1p—_____|

(* REVSW *)

VAR

param] : word;

operand : addr;

BEGIN

param] := memword(ipt]);

operand.base := stack(lp-3);

Operand.disp := stack(lp-1);

IF operand.base.nilbit THEN exception (nil exception);

stack(lp-3) := memword(operand+param]);

1p

ip
END;

2= lp- 2;

:= ip + 3

(* REVSW *)

5.4.21

86

REVSD 5.4.21

REtrieve Value S(tack) Double Value: Fray

‘Ip + [REVSD| parameter1]

STACK BEFORE: STACK AFTER:

H H address
' H expression
' ' used:

a
f[— operand —|} avor H—resfi1t—f} ome

—

(* REVSD *)

VAR

param] : word;

Operand : addr;

BEGIN

param] := memword(iptl);

operand.base := stack(1p-3);

operand.disp := stack(lp-1);

IF operand.base.nilbit THEN exception (nil exception);

stack(1lp-3) := memword(operand+paraml);

stack(lp-1) := memword(operand+param] +2);

ip := ip +3

END; (* REVSD *)

87

REVSF 5.4.22

REtrieve Value S(tack) Field Value: Day

rp + [REVSF | parameter 1 [param 2 |

STACK BEFORE: STACK AFTER:

H H address

| H expression

! ' used: SA.

i 2

l resbhlt } WORD with

f- opezand = — } ADDR t zero extension,
right justified

»—t = ®

(* REVSF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

param] : word;

param2 : fieldtype;

operand : addr;

BEGIN

param2 := membyte(ipt3); ;

IF param2.firstbit > param2.lastbit THEN exception(field error);

param] := memword(iptl);

operand.base := stack(lp-3);

operand.disp := stack(lp-1);

IF operand.base.nilbit THEN exception (nil exception);

stack(lp-3) := (memword(operand)+paraml) DIV (2**(15-param2.lastbit)))
MOD (2**(param2.lastbit—param2.firstbit+1));

=I1p- 2;

=ip+4

END; (* REVSF *)

lp
ip

5.4.23 READB

READ Byte Value: 9036,

IP >

STACK BEFORE: STACK AFTER:

1 t
\ t

1 1

' '

i \

! H
resfult

q —| > ADDR[— operg }

we ——___] iP

5.4.23

address

expression

used: SA,

}WORD with

zero extension

right justified

If no module is selected, the instruction will return a zero as

the result. If a parity error occurs, the standard parity error

procedure is suppressed. The actual result of the reading is

delivered, besides the value of 'operand' in the dummy register

set. The processing unit continues in run mode.

(* READB *)

VAR

operand : addr;

result : word

BEGIN

operand.base := stack(lp-3);

operand.disp := stack(lp-1);

result := 0;

result := word(menbyte(operand));

IF ‘parity error' THEN

WITH dummy regset.parity error address DO

BEGIN — ~ ~

base := operand.base;

disp := operand.disp

END;

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* READB *)

89

5.4.24 READW 5.4.24

READ Word Value: BOyex

1? > [READ]

STACK BEFORE: STACK AFTER:

address
\

1 expression

H used: SA)
1

i

4 re sfu Tt } WORD with
r— operan — >? ADDR zero extension,

St right justified
~ ——__] *

If no module is selected, the instruction will return a zero as

the result. If a parity error occurs, the standard parity error

procedure is suppressed. The actual result of the reading is

delivered, besides the value of ‘operand' in the dummy register

set. The processing unit continues in run mode.

(* READW *)

VAR

operand : addr;

result : word;

BEGIN

operand.base := stack(lp-3);

operand.disp := stack(lp-1) AND (-2);

result := 0;

result := memword(operand);

IF 'parity error' THEN

BEGIN

IF ‘right parity error’ THEN

operand.disp := operand.disp + 1;

WITH dummy regset.parity error_address DO

BEGIN

base := operand.base;

disp := operand.disp

END

END;

stack(lp-3) :/ result;

lp := 1p - 2;

ip :=ip+1

END; (* READW *)

90

6. STORAGE OF A VALUE 6.

6.1 Pop Garbage 6.1

The operand is retrieved, and <operand> bytes are removed fran

the stack. No result is stored.

6.1.1 STNHB 6.1.1

STore Nonsense H(ere) Byte Value: 8C;.,

Ip + [_STNHB [| paranfeter |

STACK BEFORE: STACK AFTER: ~

! 4
' H

[
' IP <parameter>

H bytes removed

f from the stack

tp —______|

MEMORY:

No result

is stored.

(* STNHB *)

VAR

parameter : word;

BEGIN

parameter := memword(iptl);

IF odd(parameter) THEN exception(odd parameter)

lp := lp - parameter;

ip := ip + 3

END; (* STNHB *)

91

6.2 Pop Result 6.2

The operand is removed from the stack and stored as the result in

the memory location defined by the effective address.

6.2.1 STVAB 6.2.1

STore Value A(bsolute) Byte Value: Qa,

Ip > [_stvaB | paranmntetadqr]

STACK BEFORE: STACK AFTER:

u T

, 1

4 ‘

' i
4

H
opefand . : i

____t ”LP

MEMORY:

access path: DA,

| re-

sult

(* STVAB*)

VAR

param : addr;

BEGIN

param.base := memword(ip+])

param.disp := memword(ipt+3);

membyte(param) := stack(lp-1) AND 255;

lp := lp - 2;

ip := ip + 5;

END; (* STVAB *)

‘|+ effective address

the 8 low order

bits of the ope-

rand are stored

6.2.2

92

STVAW 6.2.2

STore Value A(bsolute) Word Value: BAjoy

ip + [{ stvaw [paranmnmetadr |

STACK BEFORE: STACK AFTER:

operand

MEMORY:

(* STVAW *)

VAR

param : addr;

BEGIN

param.base := memword(ip+]);

param.disp := memword(ipt3);

memword(param) := stack(1p-1);

lp := lp - 2;

ip := ip + 5;

END; (* STVAW *)

access path: DA 4

re=

[sult |< effective address

6.2.3

93

STVAD 6.2.3

STore Value A(bsolute) Double Value: FAyey

Ip + [{ stva [parametdere |

STACK BEFORE: STACK AFTER:

ir-opefrand~+

MEMORY:

access path: DA4

- re-

is “|< effective address
sult

(* STVAD *)

VAR

param : addr;

BEGIN

param.base := memword(iptl)

param.disp := memword(ip+3);

memword (param) := stack(1lp-3);

memword(param+2) := stack(lp-1);

lp lp - 4;

ip ip + 5;

END; (* STVAD *)

6.2.4 STVAF 6.2.4

STore Value A(bsolute) Field Value: TAney

IP > Lstvar [p alr a mle t e[r 1 [param2]

STACK BEFORE: STACK AFTER:

ope fe and t
LP

MEMORY:

access path: DA,

re- J

sult + effective address

The 8 low order

bits are stored.

95

(* STVAF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

paraml : addr;

param2 : fieldtype;

operand : word;

result : word;

mask : word;

BEGIN

param] .base := memword(ipt+1);

param] .disp := memword(ip+3);

param2 := membyte(ipt5);

WITH param2 DO

BEGIN

IF firstbit > lastbit THEN

exception(field error)?

operand := stack(lp-1);

mask := 1 shift(lastbit+]-firstbit)-1;

IF. mask < operand THEN (* unsigned *)

exception(field overflow);

mask := mask shift(15-lastbit);

operand := operand shift(15-lastbit)

END;

result := memword(paraml);

result := result AND (NOT mask)

memword(param]) := result OR operand;

lp := lp - 2;

ip := ip+6é

END; (* STVAF *)

6.2.5

96

STVLB

STore Value L(ocal) Byte Value: 965...

IP > [STVIB [__parangter]

STACK BEFORE: STACK AFTER:

T

'

‘
'

4

'

H
opefand t

LP

MEMORY:

result

(* STVLB *)

VAR

param : word;

BEGIN

param := memword(iptl);

membyte(1f+param) := stack(1p-1) AND 255;

lp := lp - 2;

ip = ip +3

END; (* STVLB *)

access path: LF

The 8 low order

bits are stored.

2

+ effective address

6.2.5

97

6.2.6 STVLW 6.2.6

STore Value L(ocal) Word Value: B6yex

mp + [Stviw | paraneter |

STACK BEFORE: STACK AFTER:

U

’
1

|

4

|
4

operand t

et ~LP

MEMORY :

access path: LF,

Ye- |

sult + effective address

(* STVLW *)

VAR

param : word;

BEGIN

param := memword(ipt]);

memword(1lftparam) := stack(lp-1);

lp := lp - 2;

ip := ip + 3

END; (* STVLW *)

6.2.7

98

STVLD 6.2.7

STore Value L(ocal) Double Value: FE so,

iP + [{ stvip | parameter |

STACK BEFORE: STACK AFTER:

T T

\ !
t i)

t I

f—-operands LP

ip ——__

MEMORY: ~

access path: LF,

| te- “|+ effective address

L sult

(* STVLD *)

VAR

param : word;

BEGIN

param := memword(iptl);

memword(lftparam) := stack(lp-3);

memword(1f+paramt2) := stack(lp-1);

lp = lp - 4;

ip = ip+3

END; (* STVLD *)

99

_ 6.2.8 STVLF , 6.2.8

STore Value L(ocal) Field Value: Dé;ex

Ip > [{ stviF | parameter 1 [| param 2 |

STACK BEFORE: STACK AFTER:

T ¥

| | !
4 '

iy i
j \

{
opekrFand t

| alLP

MEMORY:

access path: LFS

re- |

sult, « effective address

100

(* STVLF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

param] : word;

param2 : fieldtype;

operand : word;

result : word;

mask : word;

BEGIN

param] := memword(ipt]);

param2 := membyte(ipt3);

WITH param2 DO

BEGIN

IF firstbit > lastbit THEN

exception(field error) ;

operand := stack(lp-1);

mask := 1 shift(lastbit+]-firstbit)-1;

IF mask < operand THEN (* unsigned *)

exception(field overflow);

mask := mask shift(15-lastbit);

operand := operand shift(15—lastbit)

END;

result := memword(1f+paraml);

result := result AND (NOT mask);

memword(1f+paraml) := result OR operand;

lp := lp - 2;

ip ip+4

END; (* STVLF *)

6.2.9

101

STVGB 6.2.9

STore Value G(lobal) Byte Value: 92:,,

rip > [stvcs | paranter |

STACK BEFORE: STACK AFTER:

T T

operand i

—__| neLP

MEMORY:

access path: Fy

(* STVGB *)

VAR

param : word;

BEGIN

param := memword(iptl);

result |+ effective address

The 8 low order

bits are stored.

membyte(gftparam) := stack(lp-1) AND 255;

lp := 1p - 2;

ip := ip + 3;

END; (* STVGB *)

6.2.10

102

STVGW 6.2.10

—

STore Value G(lobal) Word Value: Baaex

Ip + [stvGw | _paraneter |

STACK BEFORE: STACK AFTER:

1
1 '

4 ‘
! 1

' {
operand i

| ”LP

MEMORY:
—

access path: GF

re= |

[sult + effective address

(* sTVGW *)

VAR

param : word;

BEGIN

param := memword(ipt]);

menword(gftparam) := stack(lp-1);

lp := lp - 2;

ip := ip + 3;

END; (* STVGW *)

6.2.11

103

STVGD

STore Value G(lobal) Double Value: F2y.,

mp + [stv@D [paranfter J

STACK BEFORE: STACK AFTER:

Moperands

MEMORY:

access path: F,

re- ‘|« effective address

+ sult +

(* STVGD *)

VAR

param : word;

BEGIN

param := memword(iptl);

memword(gf+param) := stack(1p-3);

memword(gftparam+2) := stack(lp-1);

lp := lp - 4;

ip := ip + 3;

END; (* STVGD *)

6.2.11

104

6.2.12 STVGF 6.2.12

STore Value G(lobal) Field Value: D2pyey

Ip + [_stvcF [| parameter 7 [param 2]

STACK BEFORE: STACK AFTER:

H
‘

'

UJ

'

'
operand {

LP

MEMORY:

access path: GF,

re-

sult |< effective address

105

(* STVGF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

: word;

param2 : fieldtype;

operand : word;

result : word;

mask : word;

BEGIN

param] := memword(ip+]);

param2 := membyte(ip+3);

WITH param2 DO

BEGIN

IF firstbit > lastbit THEN

exception(field error);

operand := stack(lp-1);

mask := 1 shift(lastbit+]-firstbit)-1;

IF mask < operand THEN (* unsigned *)
exception(field overflow) ;

mask := mask shift(15-lastbit);

operand := operand shift(15-lastbit)

END;

result := memword(gftparam]);

result := result AND (NOT mask);

memword(gf+param]l) := result OR operand;

lp := lp - 2;

ip = ip+4

END; (* STVGF *)

6.2.13

106

STVIB 6.2.13

STore Value I(ntermediate) Byte Value: 9474,

Ip + [stvip [param1[parameter2 |

STACK BEFORE: STACK AFTER:

H H

H {
i '

1

1

operand t

| weLP

MEMORY:
—

access path: IF,

result |+ effective address

The 8 low order

bits are stored.

(* STVIB *)

VAR

param] : byte;

param2 : word;

FUNCTION get_if(level : byte) : addr;

EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN

param] := membyte(ipt]); ~

param2 := memword(ip+t2);

membyte(get_if(param])+param2) := stack(lp-1) AND 255;

lp := 1p - 2;

ip = ip + 4;

END; (* STVIB *)

6.2.14

107

STVIW 6.2.14

STore Value I(ntermadiate) Word Value: Bajo,

Ip + [{ stviw [param 1[parameter 2 |

STACK BEFORE: STACK AFTER:

|

operand t

i ——____! *

MEMORY:

access path: IF,

re-

sult + effective address

(* STVIW *)

VAR

param] : byte;

param2 : word;

FUNCTION get_if(level : byte) : addr;

EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN

param] := membyte(ip+]);

param2 := memword(ip+2);

memword(get_if(param])+param2) := stack(lp-1);

lp := lp - 2;

ip := ip + 4;

END; (* STVIW *)

108

6.2.15 STVID 6.2.15

STore Value I(ntermediate) Double Value: Faiey

mp + [stviD [param1| parameter2]

STACK BEFORE: STACK AFTER:

Pm-operand- LP

MEMORY: —

access path: IF,

i rer 7 + effective address
| sult |

(* STVID *)

VAR

param] : byte;

param2 : word;

FUNCTION get_if(level : byte) : addr;

EXTERNAL; (* to retrieve address of intermediate frame *) Se

BEGIN

param] := membyte(ip+]);

param2 := memword(ip+2);

memword(get_if(param])+param2) := stack(lp-3);

memword(get_if(param])+param2+2) := stack(lp-1);

lp := lp - 4;

ip := ip + 4;

END; (* STVID *)

6.2.16

109

STVIF 6.2.16

STore Value I(ntermediate) Field Value: D4oy

rip + [stvi [param1[parameter2 [param3 |

STACK BEFORE: STACK AFTER:

operand t

access path: IF,

| re-

“sult + effective address

110

(* STVIF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

paraml : byte;

param2 : word;

param3 : fieldtype;

operand : word;

result : word;

mask : word;

FUNCTION get if(level : byte) : addr;

EXTERNAL; (* to retrieve address of intermediate frame *)
BEGIN

:= membyte(ipt]);
param2 := memword(ipt2);

:= membyte(ip+4);

WITH param3 DO

BEGIN

IF firstbit > lastbit THEN

exception(field error);

Operand := stack(lp-1);

mask := 1 shift(lastbit+1-firstbit)-1;

IF mask < operand THEN (* unsigned *)

exception(field overflow);

mask := mask shift(15-lastbit);

operand := operand shift(15-lastbit)

END;

result := memword(get_if(param])t+param2);

result := result AND (NOT mask);

menword(get if(paraml])+param2) := result OR operand;

Ip := lp - 2;

ip :=ip+5

END; (* STVIF *)

6.2.17

11

6.2.17STVSB

STore Value S(tack) Byte Value: 8,65

Ip + [{ stvsB | parameter 1 J

STACK BEFORE: STACK AFTER:

i i
‘ '

q

F— operand 2 |} ADDR IP
operand

1p—_____

MEMORY:

access path: SA,

result |+ effective address

The 8 low order

bits are stored.

(* STVsB *)

VAR

param] :

Operand2 :

BEGIN

param] := memword(ipt1);

Operand2.base := stack(lp-5);

operand2.disp := stack(lp-3);

IF operand2.base.nilbit THEN

exception(nil exception);

word;

addr;

menbyte(operand2+paraml]) := stack(lp-1) AND 255;

lp := lp - 6;

ip := ip +3

END; (* STVSB *)

112

6.2.18 STVSW 6.2.18

STore Value S(tack) Word Value: B8soy

m + ({_stvsw| paramdtter 1 |

STACK BEFORE: STACK AFTER:

|
f— operand 2 —+ } ADDR tp
operand

ip ——_|

MEMORY:

* access path: SA,

sult + effective address

(* STVSW *)

VAR

param] : word;

operand2 : addr;

BEGIN

param] := memword(iptl); wy

operand2.base := stack(lp-5);

operand2.disp := stack(1p-3);

IF operand2.base.nilbit THEN

exception(nil exception);

memword(operand2+paraml) := stack(lp-1);

lp := lp - 6;

ip := ip + 3

END; (* STVSW *)

113

6.2.19 STVSD 6.2.19

STore Value S(tack) Double Value: Fea,

tp + { stvsD | parameter 1 |

STACK BEFORE: STACK AFTER:

T

\

{

'

' .

T

f— operand 2—-—4 } ADDR LP

P—-operand-

tp —__|

MEMORY :

access path: SA,

re- |+ effective address

+ sult 4

(* STVSD *)

VAR

param] : word;

param2 : addr;

BEGIN

param] := memword(ip+]);

operand2.base := stack(1lp-7);

operand2.disp := stack(lp-5);

IF operand2.base.nilbit THEN

exception (nil exception);

memword(operand2+paraml) := stack(lp~3);

memword(operand2+paraml+2) := stack(lp-1);

lp lp - 8;

ip ip +3

END; (* STVSD *)

114

6.2.20 STVSF 6.2.20

STore Value S(tack) Field Value: D8sa,

ip + [stvsF| parameter1 | param2 |

STACK BEFORE: STACK AFTER:

|
h- Operand 2 —+ } ADDR Lp
operand

{

MEMORY :

access path: SA,

re-

sult “|< effective address

115

(* STVSF *)

TYPE

fieldtype = PACKED RECORD

firstbit : 0..15;

lastbit : 0..15;

END;

VAR

param] : word;

param2 : fieldtype;

operand2 : addr;

operand] : word;

result : word;

mask : word;

memword(ipt1)

param2 := membyte(ip+3)

operand2.base := stack(lp-5);

operand2.disp := stack(lp-3);

IF operand2.base.nilbit THEN

exception(nil exception);

WITH param2 DO

BEGIN

IF firstbit > lastbit THEN

exception(field error);

operand] := stack(lp-1);

mask := 1 shift(lastbit+1-firstbit)-1;

IF mask < operand] THEN (* unsigned *)

exception(field overflow);

mask := mask shift(15-lastbit);

Operand] := operand] shift(15-lastbit)

END;

result := memword(operand2+paraml);

result := result AND (NOT mask);

memword(operand2+paraml) := result OR operand];

lp := lp - 6;

ip :=ip+4

END; (* STVSF *)

116

6.3 Manipulation of Storage Areas 6.3

6.3.1 Move a Storage Area 6.3.1

Parameter 1 is retrieved, and parameter 1 bytes fran the operand

(which is assumed to be a storage area of at least parameter 1

bytes) are moved to the result (which is assumed to be a storage

area of at least parameter 1 bytes).

If parameter 1 is a large value, there will be one or more pauses

in the execution of the instruction to permit interrupts.

6.3.1.1 MOVEG 6.3.1

MOVE General Value: AEA,

IP +

STACK BEFORE: STACK AFTER:

} i4

|
1 1

h— parameter 3 —— } ADDR LP {

h— parameter 2 ——| + ADDR

parameter 1

access

MEMORY: paths: MEMORY:

SA, | Ope-

ope- | —4 rand__|
| rand

re-
SA r sult 1° <param1> bytes

c 3 { from the operand

117

(* MOVEG *)

VAR

param] : word;

param2 : addr; (* source *)

param3 : addr; (* destination *)
BEGIN

param] := stack(1p-1);

param2.base := stack(lp-5);

param2.disp := stack(lp-3);

param3.base := stack(lp-9);

param3.disp := stack(lp-7);

IF param2.base.nilbit OR param3.base.nilbit THEN exception(nil exception);

IF odd(paraml) THEN

BEGIN

membyte(param3) := membyte(param2);

param3 := param3+1;

param2 := param2+1;

param] := param]-]

END;

WHILE param] > 0 DO (* unsigned campare *)

BEGIN

memword(param3) := memword(param2);

param3 := param3 + 2;

param2 := param2 + 2;

param] := param] — 2;

IF curlevel < nextlevel THEN

BEGIN

stack(1p-7) :=

stack(lp-3) := param2.disp;

stack(lp-1) :=

GOTO fetch

END

END;

lp := lp - 10;

ip :=ip+1]

END; (* MOVEG *)

118

6.3.1.2 _MOVEB 6.3.1.2

MOVE Bytes Value: ACuex

IP +

STACK BEFORE: STACK AFTER:

H H
‘ ‘

U 1

U ‘

t I

t— parameter 3 ——j } ADDR LP t

h—- parameter 2 —— > ADDR

|
paramejter 1

ip ——____

access

MEMORY: paths: MEMORY:

SA, | Ope~ |
|ope- sj + rand
rand

SA, | a cult 4 | <param1> bytes
& 3 from the operand

119

(* MOVEB *)

VAR

param] : word;

param2 : addr; (* source *)

param3 : addr; (* destination *)

BEGIN

param] := stack(lp-1);

param2.base stack(1p-5);

param2.disp stack(1p-3);

param3 .base stack(lp-9);

param3.disp := stack(lp-7);

IF param2.base.nilbit OR param3.base.nilbit THEN exception(nil exception);
WHILE param] > O DO (* unsigned compare *)

BEGIN

membyte(param3) := membyte(param2);

param3 := param3 + 1;

param2 := param2 + 1;

param] := param] - 1;

IF curlevel < nextlevel THEN

gh. BEGIN

stack(lp-7) :

stack(1p-3) :

stack(1p-1) :

GOTO fetch

param2.disp;

param] ;

o~

120

6.3.2 Exchange Two Storage Addresses

Two addresses are exchanged indivisibly.

6.3.2.1 _CEXCH

Control EXCHange

me + [cExcH|

STACK BEFORE:

P— parameter 2 -——4

f— parameter 1-4

MEMORY:

rand 1

T rand 27

The displacement in SA
0

Value: FEyex

STACK AFTER:

j

|

ADDR iP t

ADDR

access

paths:

Lre- -

SA

—U | sult 1]

SAy | a

_ | re- |

- sult 27

must be even.

6.3.2

6.3.2.1

four bytes

from operand 2

four bytes

from operand 1 —

121

(* CEXCH *)

VAR

param] : addr;

param2 : addr;

work] : addr;

work2 : addr;

BEGIN

param] .base := stack(1p-3);
param].disp := stack(lp-1);

param2.base := stack(lp-7);

param2.disp := stack(lp-5);

IF param] .base.nilbit OR param2.base.nilbit THEN

exception(nil exception);

IF odd(param].disp) OR odd(param2.disp) THEN

exception(odd displacement);

work].base := mem(param]);

work].disp := mem(param]+2);

work2.base := mem(param2);

work2.disp := mem(param+2);

IF work] .base.lockbit OR work2.base.lockbit THEN

exception(lock exception);

mem(param]) := work2.base;

mem(param]l+2) := work2.disp;

mem(param2) := work].base;

mem(param2+2) := work].disp;

lp :=1p - 8;

ip :=ip+1

END; (* CEXCH *)

122

6.3.3 Compare Two Storage Areas 6.3.3

Parameter 1 is retrieved, and parameter 1 bytes from operand 1

(which is assumed to be a storage area of at least parameter 1

bytes) are compared with parameter 1 bytes from operand 2 (which

is assumed to be a storage area of at least parameter 1 bytes).

If parameter 1 is a large value, there will be one or more pauses

in the execution of the instruction to permit interrupts.

The operands are compared byte for byte. The result is true (= 1)

if all the bytes are pairwise equal; otherwise the result is

false (= 0).

6.3.3.1 STCEA 6.3.3.1

STorage Compare Equal Area Value: EE ox

te + (SICEA_]

STACK BEFORE: STACK AFTER:

' H

' /

t ‘

1 ft

L— parameter 3 —4 } ADDR result fo

H— parameter 2 ——j ; ADDR uP
parameter 1

t Relation

LP
The <parameter 1> first bytes of

MEMORY: operand 1 equal, byte for byte,

RY: oaths: the <parameter 1> first bytes of
pacns: operand 2.

L ope~ 4

| rand 14 “o
Ze eA

SA
b Opes 70
r rand 2-1

123

(* STCEA*)

word;

addr;

addr;

equal : boolean := true;

BEGIN

param] := stack(lp-1);

param2.base := stack(1lp-5);

param2.disp := stack(lp-3);

param3.base := stack(1p-9);

param3.disp := stack(lp-7);

IF param2.base.nilbit OR param3.base.nilbit THEN exception(nil exception);

WHILE param] > 0 DO (* unsigned compare *)
BEGIN

IF membyte(param2) < membyte(param3) THEN

BEGIN

equal := false;

GOTO finis

END;

param] := param] - 1;

param2 := param2 + 1;

param3 := param3 + 1;

IF curlevel < nextlevel THEN

BEGIN

stack(lp-1) := paraml;

stack(lp-3) := param2.disp;

stack(lp-7) := param3.disp;

GOTO fetch

END

END;

finis: stack(lp-9) := word(equal);

lp := lp - 8;

ip :=ip+1

END; (* STCEA *)

6.3.4 Push a Storage Area 6.3.4

—

Parameter 1 is retrieved, and parameter 1 bytes fram the operand

(which is assumed to be a storage area of at least parameter 1

bytes) are pushed on the stack.

If parameter 1 is a large value, there will be one or more pauses

in the execution of the instruction to permit interrupts.

6.3.4.1 REVSM 6.3.46]

REtrieve Value Stack Multiple Value: Ciey

wr + [REVSN]

STACK BEFORE:

f—- parameter 2 —

parameter 1

Lp —_—_—————

MEMORY:

ope-

- rand +

} ADDR

access

path:

SA,
——

124

STACK AFTER

result |
<param1> bytes

from the operand

125

(* REVSM*)

VAR

param] : word;

param2 : addr;

BEGIN

param] := stack(lp-1);

IF lp > ms - param] - 4 (* room for parameters in case of interrupt *)
THEN exception(stack overflow);

IF odd(param]) THEN

exception(odd operand);

param2.base := stack(1p-5);

param2.disp := stack(lp-3);

IF param2.base.nilbit THEN

exception(nil exception);

lp := lp - 6;

WHILE param] > O Do (* unsigned compare *)

BEGIN

lp := lp + 2;

stack(lp-1) := memword(param2);

param2 := param2 + 2;

param] := param] - 2;

IF curlevel < nextlevel THEN

BEGIN

lp := lp + 6;

stack(1p-1) :

stack(1p-3) :

stack(1p-5) :

GOTO fetch

END

END;

ip :=ip+1

END; (* REVSM *)

6.3.5 Pop a Storage Area 6.3.5

Parameter 1 is retrieved, and parameter 1 bytes are removed fran

the stack and stored as the result (which is assumed to be a

storage area of at least parameter 1 bytes).

If parameter 1 is a large value, there will be one or more pauses

in the execution of the instruction to permit interrupts.

6.3.5.1 SETST 6.3.5.1

SET STore Value: EC.

IP +

STACK BEFORE: STACK AFTER:

operand

parameter 1

tp—___|

access

path:

— parameter 2 -——~ } ADDR_

126

MEMORY:

re-

sult

|
<param1> bytes

removed from

the stack

<paraml> bytes

127

(* SETST *)

VAR

param] : word;

startl,param2 : addr;

i: integer;

BEGIN

= true;

param] := stack(lp-1);

start] := lp-] - paraml;

param2.base := stack(lp-l-param|-4);

param2.disp := stack(lp-1-paraml-2);

IF odd(paraml) THEN exception(odd operand);

IF param2.base.nilbit THEN exception(nil exception);

FOR i := 0 TO param! DIV2-1 DO

BEGIN

membyte(param2-i*2) := stack(startl+i*2);

IF interrupt condition THEN

instruction_fetch

END;

resume := false;

lp := start] - 5;

ip :=ip+1

END; (* SETST *)

128

Te PROCEDURE CALL AND EXIT 7.

7.1 Enter a Routine 7.1

The execution of this instruction initiates a routine call. It

assumes that the actual parameters have been calculated on the

top of the stack.

(tegning 7.1)

STACK BEFORE EXECUTION OF THE INSTRUCTION

(ACTUAL
PARAMETERS

+—LF

STACK FRAME ANONYMOUS [
OF THE CAL- PARAMETERS

LING ROUTINE a

LOCAL

OBJECTS

X

ACTUAL

PARAMETERS

—
—

4

—

—

J

S
Y

Lap
STACK AFTER EXECUTION OF THE INSTRUCTION

|
+

|
|

|

|
|
|

|

|

|
q

|

|

|

ACTUAL

STACK FRAME PARAMETERS

OF THE
+—LF

ANONYMOUS
ROUTINE CALLED | SaDammrnns

129

The instruction has three parameters:

- Parameter1

the value of which specifies the difference between the static

level of the calling routine and the static level of the

routine to be called.

- Parameter 2

the value of which specifies the entry point in the routine to

be called.

The execution of the instruction has the following effect:

- An area for the anonymous parameters is reserved and the con-

tents are defined.

- The local frame pointer, LF, is set to address the second byte

of the first anonymous parameter.

- The value of parameter 2 (an ADDR) is assigned to the instruc-

tion pointer, IP.

The anonymous parameters are:

Static link pointer

Dynamic link pointer, i.e. old LF

Return point

130

7.1.1 PCALS

Procedure CAL] Static Value: Tex

Ip + [PCALS farami[p a xoaomje t er 2

STACK BEFORE: STACK AFTER:

’ s
4 e
i rT

actual i actual
' para- ' para-
{ meters | meters

—__]LP j anonymous
' para-

| meters

(* PCALS *)

VAR

param] : byte;
param2 : addr;

FUNCTION get_if(level : byte) : addr;

EXTERNAL; (* to retrieve address of intermediate frame *)

BEGIN

IF lp > ms — 12 THEN exception(stack overflow)

param] := membyte(iptl);

param2.base := memword(ipt2);

param2.disp := memword(ipt4);

stack(1pt+1) := get_if(paraml).base; (* static link *)

stack(lpt+3) := get_if(paraml).disp;

stack(Ipt5) := 1f.base; (* dynamic link *)

stack(1p+7) := 1f£.disp;

stack(lp+9) := ip.base; (* return point *)

stack(lp+11) := ip.disp + 6;

lf := lp + 2;

ip := param2;

lp = lp + 12

END; (* PCALS *)

7.1.2 PCALD

131

Procedure CAL1 Dynamic

m ~ [PCA]

STACK BEFORE:

r— parameter 2-——

r— parameter 1-4

tp__]

Parameter 1 specifies

which the static link

(* PCALD *)

VAR

entry point : addr;

BEGIN

IF lp > ms — 4 THEN

entrypoint.base :=

entry point.disp :=

stack(1p-5) :

stack(lp-3) :

Value: 7955 ex

STACK AFTER:

'

'

actual H actual

para- ! para-

meters meters

entry P = — '
anonymous

static = —j § para-

meters

T | ¥

explicitly the ADDR of the stack frame to

is to be connected.

exception(stack overflow)

stack(1p-7);

stack(1lp-5);

stack(1p-7) := stack(1lp-3);

stack(1p-1);
1f.base;

stack(lp-1) := 1f.disp;

1f := lp -6;

stack(lp+1) := ip.base;

stack(1p+3) := ip.disp + 1;

ip := entry point;

lp: lp + 4

END; (* PCALD *)

(*static link *)

(* dynamic link *)

(* return point *)

132

7.2 Exit from a Routine 7.2

The execution of this instruction terminates the current routine

call by returning to the point of call. The stack frame at the

top of the stack is removed.

7.2.1 PEXIT 7.2.1

Procedure EXIT Value: 7Bioy

iP + [{ PExrT | parameter |

STACK BEFORE: STACK AFTER:

stack frame

containing

the point

of call

Ip _ parameters
bytes

)

—— stack frame

of the

current

procedure

LP

(* PEXIT *)

BEGIN

lp := 1f - memword(ipt1);

ip.base := stack(1f+7);

ip.disp := stack(1f+9);

lf.disp := stack(1f+5)

END; (* PEXIT *)

8.1

133

JUMPS 8.

Unconditional Jumps 8.1

8.1.1

The operand is retrieved, and a result, which is interpreted as

an ADDR, is calculated and assigned to the instruction pointer,

IP.

JMPHC 8.1.1

JuMP H (path) local Context Value: 6%,,

m > [ompxc [p alr awWqeitfer]

STACK BEFORE: STACK AFTER:

—

ip := result;

(* JMPHC *)

VAR

param : addr;

BEGIN

param.base := memword(iptl);
param.disp := memword(ipt3);

ip.base := param.base;

ip.disp := param.disp

END; (* JMPHC *)

8.1.2

134

JMPPD 8.1.2

JuMPP (path) Direct Value: 6Ayoy

I >

STACK BEFORE: STACK AFTER:

T T

' i
4 ‘

‘ i

PMm-operandy LP

ip ——___|

ip := result;

(* JMPPD *)

BEGIN

ip.base := stack(lp-3);

ip.disp := stack(lp~1);

lp :=1lp-4

END; (* JMPPD *)

8.1.3

135

JMPRW 8.1.3

JuMP Relative Word Value: 67.45

rm + [gmprw | paranleter]

STACK BEFORE: STACK AFTER:

im-operand-

ip——____|

ip := result;

The parameter is interpreted as a signed integer (relative ad-

dress) and added to the displacement field of the instruction

pointer (ip.disp). A carry is not transferred to the base field

(ip.base), but a 16-bit wrap-around is used.

(* JMPRW *)

VAR

param : word;

BEGIN

param := memword(iptl);

ip := ip + param

END; (* JMPRW *)

136

8.2 Case Jump 8.2

The operand is interpreted as the start address (ADDR) of a table

consisting of a range descriptor and program points (ADDR's). The

parameter is interpreted as an index to this table. The program

point selected by the index is assigned to the instruction

pointer, IP.

8.2.1 JMCHT 8.2.1

JuMp Case H (path) Table Value: SBiox

mp > { omcetT [pp a[r a wie tfeir

STACK BEFORE: STACK AFTER:

[

1p ——_____
PARAMETER———>

4 x (max. value

min. value + 1)

bytes

CASE JUMPTABLE:

min. Value

max. Yalue

otherwise -

ADDR
it

rase min. value

ADER

|

|
|

|

Case max. valu

ADDR

137

_ (* JMCHT *)

VAR

param : addr;

operand : word;

BEGIN

param.base := memword(ipt1);
param.disp := menword(ipt3);

operand := stack(lp-1);

IF (operand < memword(param))

OR (operand -> memword(param+2)) THEN

BEGIN

ip.base := memword(param+4);
ip.disp := memword(param+6)

END

ELSE

BEGIN

operand := operand - memword(param);

ip.base := memword(param+8+toperand*4);

ip.disp := memword(param+l0+operand*4)

gm, END;
lp := 1p - 2

END; (* JMCHT *)

-—

138

8.3 Conditional Jumps with One Operand 8.3

The value of the operand is tested according to a relation (e.g.

operand = 0). If the relation holds, a result is calculated and

assigned to the instruction pointer, IP. The result, which is in-

terpreted as an ADDR, is calculated as

result := IP + parameter

8.3.1 JMZEQ 8.3.1

JuMp Zero EQual Value: 61 Hex

IP > [{ oMzEQ | parameter]

STACK BEFORE: STACK AFTER:

iopefand

tp__—___!

relation: operand = 0

(* JMZEQ *)

VAR

param : word;

operand : integer;

BEGIN

param := memword(ipt+l);

operand := stack(lp-1);

IF operand = 0 THEN

ip := ip + param

ELSE

ip :=ip+ 3;

lp := lp - 2

END; (* JMZEQ *)

8.3.2

139

JMZNE

JuMp Zero Not Equal Value: 62),,

m + { omznE [| _paranbter |

STACK BEFORE: STACK AFTER:

“
_
—
—
—
—

operand

»—____ TM

relation: operand <> 0

(* JMZNE*)

VAR

param : word;

operand : integer;

BEGIN

param := memword(ipt+]);

operand := stack(lp-1);

IF operand > 0 THEN

ip := ip + param;

ELSE

ip := ip + 3;

lp :=1lp- 2

END; (* IMZNE *)

8.3.2

8.3.3

140

JMZLT

JuMp Zero Less Than Value: 635ex

me + [{_omztT [| parankter |

STACK BEFORE: STACK AFTER:

a
|

opekand i

i ——___| “=

relation: operand < 0

The operand is interpreted as a signed integer.

(* IMZLT *)

VAR

param : word;

operand : integer;

BEGIN

param := memword(iptl);

operand := stack(lp-1);

IF operand < 0 THEN

ip := ip + param

ELSE

ip := ip + 3;

lp :=1lp- 2

END; (* OMZLT *)

8.3.3

8.3.4

141

JMZGT

JuMp Zero Greater Than Value: 644%

tm + [{ omzct [parankter |

STACK BEFORE: STACK AFTER:

operand t

ip —___] ~

relation: operand > 0

The operand is interpreted as a signed integer.

(* IMZLT *)

VAR

param : word;

operand : integer;

BEGIN

param := memword(ip+1);

operand := stack(lp-1);

IF operand > O THEN

ip := ip + param

ELSE

ip:= ip + 3;

lp :=1p- 2

END; (* oMzcT *)

8.3.4

142

8.3.5 JMZLE 8.3.5

JuMp Zero Less Than or Equal Value: Oa ex

me + {_omzte[_paraneter |

STACK BEFORE: STACK AFTER:

Tt

'

4

1

'

f

4

operand {

LP

relation: operand <= 0 —

The operand is interpreted as a signed integer.

(* JMZLE *)

VAR

param : word;

operand : integer;

BEGIN

param := memword(ip+l);

operand := stack(l1p-1);

IF operand <= 0 THEN

ip := ip + param

ELSE

ip := ip+ 3;

lp :=1lp- 2

END; (* JMZLE *)

8.3.6

143

JMZGE

JuMp Zero Greater Than or Equal Value: 66 ex

m > [_gmzce [_ paranbter]

STACK BEFORE: STACK AFTER:

operand {

ip ——____ “

relation: operand >= 0

The operand is interpreted as a signed integer.

(* JMZGE *)

VAR

param : word;

operand : integer;

BEGIN

param := memword(ipt1);

operand := stack(l1p-1);

IF operand >= 0 THEN

ip := ip + param;

ELSE

ip := ip+ 3;

lp :=1p- 2

END; (* JMZGE *)

8.3.6

144

OPERATORS

9.1 Monadic Operators

9.1 1

A single operand is retrieved, and a result is produced from this

operand in accordance with the operator.

NEG

NEGate Value: 504;ex

STACK BEFORE: STACK AFTER:

'

t

i)

1

'

1

operand regult

tp —___!

operator: negative (monadic minus)

The operand is interpreted as a signed integer.

The result is the twos complement of the operand.

(* NEG *)

VAR

result : integer;

BEGIN

result := -stack(lp-1);

IF (overflow bit=1) AND (ps.suppr_overflow=0) THEN

exception (overflow) ;
stack(lp-1) := result;

ip :=ip+1]

END; (* NEG *)

9.1

9.1 el

9.1.

145

NOT

Not Value: 3D ye

mt > {_nor_]

STACK BEFORE: STACK AFTER:

T

4
4
1

1

'

4
4

operand regult

1p ———__! 1p——____

Operator: not

The operand is interpreted as a boolean value.

The result is true (if the operand is false) or false (if the

operand is true).

(* NOT *)

BEGIN

IF stack(lp-1) = 1 THEN

stack(lp-1) := false

ELSE

stack(lp-1) := true;

ip :=ip+1]

END; (* NoT *)

9.1.

9.1.3

146

ABS

ABSsolute Value Value: Slitex

tp > [ass]

STACK BEFORE: STACK AFTER:

operand result

operator: absolute value

The operand is interpreted as a signed integer.

The result is the absolute value of the operand.

(* ABS *)

VAR

operand : integer;

BEGIN

operand := stack(1p-1);

IF operand < 0 THEN

BEGIN

operand := -operand;

IF (overflow _bit=1) AND (ps.suppr_overflow=0) THEN

exception (overflow) ;

stack(lp-1) := operand

END;

ip :=ip+1

END; (* ABS *)

9.1.3

9.1.4

147

COMPL 9.1.4

COMPLement. Value: 5 2hex

IP >

STACK BEFORE: STACK AFTER:

|
' ‘

‘ | H
' + !

opekand regult

Operator: ones camplement

The operand is interpreted as a signed integer.

The result is the ones complement of the operand.

(* COMPL *)

TYPE

bitword = PACKED ARRAY(0..15) OF bit;

VAR

i: integer;

operand : bitword;

BEGIN

operand := stack(lp-1);

FOR i := 0 TO 15 DO

operand(i) := 1 - operand(i);

stack(lp-1) := operand;

ip :=ip+1

END; (* COMPL *)

148

9.1.5 TNILL

Test NILL address Value: 396,

tp + [@NILE

STACK BEFORE: STACK AFTER:

T T
1 1

1 !

| !
' |

' |

1 1

| parameter— \ appr reguit

LP

LP

access

MEMORY: path:

SAp

loperan d-j«—

The operand must start on a word boundary.

The operand is retrieved, and the result true (= 1) is delivered

if the nilbit is set; otherwise false (= 0).

Warning: The parameter mist be a valid address, not nil; other-

wise the result of executing TNILL is wpredictable.

(* TNILL *)

VAR

parameter : addr;

operand 3 addr;

result : word;

BEGIN

‘parameter.base := stack(1p-3);

parameter.disp := stack(lp-1);

operand := memaddr (parameter);

result := operand.base.nilbit;

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* TNILL *)

9.1.6

149

TOPEN

Test OPEN Semaphore Value: sAgex

tp + [TOPEN

STACK BEFORE: STACK AFTER:

T 1
1 !
| 1
1 1

1 i

i} '
aL. 4

| parameter] } apr regudlit
LP

LP

access

MEMORY: path:

SA
0

+ semaphore +4 +——

The operand must start on a word boundary.

The operand, which is interpreted as a semaphore, is retrieved,

and the result true (= 1) is delivered if the semaphore is qpen;

otherwise false (= 0).

Warning: The parameter must be a valid address, not nil; other-

wise the result of executing TOPEN is unpredictable.

(* TOPEN *)

VAR

parameter : addr;

semaphore : addr;

result : word;

BEGIN

parameter.base := stack(lp-3);

parameter.disp := stack(lp-1);

semaphore := memaddr(parameter);

IF semaphore.base.nilbit = 1 THEN

result := 0

ELSE

result := 1 - semaphore.disp AND 1;

stack(lp-3) := result;

lp := lp - 2;

ip := ip+1

END; (* TOPEN *)

9.1.6

150

9.1.7 TLOCK

Test LOCKed Semaphore Value: 3Biex

Ip + TLOCK

STACK BEFORE: STACK AFTER:

H f.
)

H
a
d

—
—
—
—
 —
—
—
—
-
4

G = c
t

1 «ssparameter— } appr
LP

LP

access

MEMORY: path:

SA,

+ semaphore -

The operand mist start on a word boundary.

The operand, which is interpreted as a semaphore, is retrieved,

and the result true (= 1) is delivered if the semaphore is lock-

ed; otherwise false (= 0).

Warning: The parameter must be a valid address, not nil; other-

wise the result of executing TLOCK is unpredictable.

(* TLOCK *)

VAR

parameter : addr;

semaphore : addr;

result 3 word;

BEGIN

parameter.base := stack(1p-3);

parameter.disp := stack(lp-1);

semaphore := memaddr(parameter);

IF semaphore.base.nilbit = 1 THEN

result := 0

ELSE

result := semaphore.disp AND 1;

stack(lp-3) := result;
lp := lp - 2;

ip := ip+1

END; (* TLOCK *)

9.2

151

Dyadic Operators 9.2

9.2.1

Operands 1 and 2 are retrieved, and a result is produced fran

these operands in accordance with the operator.

ADD 9.2.1

ADD Value: 44,0,

STACK BEFORE: STACK AFTER:

Operator: add

Operands 1 and 2 are interpreted as signed integers.

(* ADD *)

VAR

operand], operand2, result : integer;

BEGIN

operand] := stack(lp-3);

operand2 := stack(lp-1);

result := operand] + operand2;

IF (overflow bit=1) AND (ps.suppr_overflow-0) THEN

exception (overflow) ;
stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* ADD *)

9.2.2

152

SUBtract Value: 4555,ex

STACK BEFORE: STACK AFTER:

opergand

operpand

tp——_—___l

.

2 —__]LP

Operator: subtract

Operands 1 and 2 are interpreted as signed integers.

Operand 2 is subtracted fram operand 1.

(* SUB *)

VAR

operand], operand2, result : integer;

BEGIN

operand] := stack(lp-3);

operand2 := stack(lp-1);

result := operand] - operand2;

IF (overflow bit=1) AND (ps.suppr_overflow=0) THEN

exception(overflow) ; ~

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* SUB *)

9.2.2

9.2.3

153

MUL 9.2.3

MULtiply Value: 49j,,

IP +

STACK BEFORE: STACK AFTER:

|
|

restult

1p ——_____fe
n
fe
r

r
o
}ope

ope

1p——___|

xr

xr D
r
y

3
1
5

operator: multiply

Operands 1 and 2 are interpreted as signed integers.

The result contains the 16 least significant bits of the product.

(* MUL *)

VAR

operand], operand2, result : integer;

BEGIN

operand] := stack(1p-3);

operand2 := stack(lp-1);

result := operand] * qperand2;

IF (overflow bit=1) AND (ps.suppr_overflow=0) THEN

exception (overflow) ;

stack(lp-3) := result;

lp := lp - 2;

ip = ip+1

END; (* MUL *)

154

9.2.4 DIV 9.2.4

DIVide Value: dex

IP +

STACK BEFORE: STACK AFTER:

H i
' é

H ‘

' i
! H

operfnd 1 regult
operpnd 2 i

LP

operator: divide

Operands 1 and 2 are interpreted as signed integers.

Operand 1 is the dividend and operand 2 the divisor.

(* DIv *)

VAR

operand], operand2, result : integer;

BEGIN

operand] := stack(lp-3);

operand2 := stack(lp-1);

IF (operand2=0) AND (ps.suppr_overflow=0) THEN

exception (overflow) ;

result := operand] DIV operand2; (* integer division *)

IF (overflow bit=1) AND (ps.suppr_overflow-0) THEN

exception (overflow) ;

stack(1p-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* DIV *)

9.2.5

155

MOD 9.2.5

MODulus Value: 4B,ex

STACK BEFORE: STACK AFTER:
a

|

operfpnd

operpnd

Operator: modulus

Operands 1 and 2 are interpreted as signed integers.

The result is the remainder fram the operator divide (see above).

The result has the sign of the first operand.

(* MOD *)

VAR

operand], operand2, result : integer;

BEGIN

operand] := stack(lp-3);

Operand2 := stack(lp-1);

IF (operand2=0) AND (ps.suppr overflow=0) THEN

exception(overflow) ; ~

result := operand] - ((operand] DIV operand2) * operand2);

IF (overflow bit=1) AND (ps.suppr overflow=0) THEN

exception (overflow) ; ~
stack(lp-3) := result;

lp := lp - 2;

ip = ip+1

END; (* MOD *)

156

9.2.6 AND 9.2.6

AND Value: 4Cy¢x

m + [aw]

STACK BEFORE: STACK AFTER:

T T

{ '

1 1

‘ i)

‘ 4

4 4

4 i)

operpnd 1 regdult

operpand 2 t

LP

Operator: AND

°

Operands 1. and 2 are interpreted as ordered sets of 16 logical

values, true (=1) or false (= 0).

The logical operator AND operates bit for bit on the operands to
produce the 16 bits of the result.

(* AND*)

TYPE

bitword = PACKED ARRAY(0..15) OF bit;

VAR

operand], operand2, result : bitword;

i: integer;

BEGIN

operand] := stack(1p-3);

Operand2 := stack(lp-1);

FOR i := 0 TO 15 Do

CASE operand1(i) + operand2(i) OF

O : result(i) := 0;

1: result(i) := 0;

2 : result(i) := 1

END;

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* AND *)

9.2.7

157

OR 9.2.7

OR Value: 4DiQ,

m+ {oor|

STACK BEFORE: STACK AFTER:

T T

4 1
, '
4 t
'

'

Ooperpnd 1 regult

operpnd 2 i

LP

Operator: OR

Operands 1 and 2 are interpreted as ordered sets of 16 logical

values, true (=1) or false (= 0).

The logical operator OR operates bit for bit on the qperands to

produce the 16 bits of the result.

(* OR *)

TYPE

bitword = PACKED ARRAY(0..15) OF bit;

VAR

operand], operand2, result : bitword;

i: integer;

BEGIN

operand] := stack(lp-3);

Operand2 := stack(lp-1);

FOR i := 0 TO 15 Do

CASE operand1(i) + operand2(i) OF

O : result(i) :=

1 : result(i) :=

2 : result(i) :=

END;

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* OR *)

9.2.8

158

SHC 9.2.8

SHift Cyclic Value: 5350,

IP + SHC

STACK BEFORE: STACK AFTER:

! s

s 1
i ‘

4 '

U

operfnd 1 redult

operpnd 2 {

LP
ip—______

—

operator: cyclic shift

Operands 1 is interpreted as an ordered set of 16 logical values,

true (=1) or false (= 0).

Operand 2 is interpreted as a signed integer. The 16 bits of

operand 1 are shifted cyclically the mmber of positions specifi-

ed by operand 2. If operand 2 is positive, the shift is to the

left; otherwise the shift is to the right.

159

(* SHC *)

TYPE

bitword = PACKED ARRAY(0..15) OF bit;

VAR

operand], result : bitword;

operand2 : integer;

i: integer;

j : integer;

b : bit;

BEGIN

operand] := stack(1p-3);
operand2 := stack(1p-1);

operand2 := operand2 MOD 16;

IF operand2 < 0 THEN

FORi :=- 1 DOWNTO operand2 DO

BEGIN

b := operand!(15);

FOR j := 15 DOWNTO 1 DO

operand! (j) := operand! (j-1);

operand!(0) :=b

END

ELSE

FOR i := 1 TO operand2 DO‘

BEGIN

b := operand! (0);

FOR j := 1 TO 15 DO

operand] (j-1) := operand1(j);

operand](15) :=.b

END;

stack(lp-3) := operand1;

lp := lp - 2;

ip := ip+1

END; (* SHC *)

160

9.2.9 ULT 9.2.9

Unsigned Less Than Value? 3] pax

IP >

rT T

'
' 4

' i

operkbnd 1 regult
operpand 2 t

LP

Operator: operand 1 < operand 2

Operands 1 and 2 are compared according to the relation Less

THAN. The result is true (= 1), if the relation holds; otherwise

the result is false (= 0).

Operand 1 and 2 are interpreted as unsigned integers (i.e.

numbers in the range 0..65535).

(* ULT *)

VAR SS

operand], operand2: word;

BEGIN

operand] := stack(1lp-3);

Operand2 := stack(lp-1);

IF operand] < operand2 THEN

stack(lp-3) := true

ELSE

stack(lp-3) := false;

lp := lp - 2;

ip :=ip+1

END; (* ULT *)

— 9.2.10

161

EQ

EQual Value: 32a

m+ (2)

STACK BEFORE:

K (0
)

H
o
.
.
.

fo
]

a c
t

fo
)

t
o © K w 3 a n
o

fs

operator: operand 1 operand 2

Operands 1 and 2 are compared according to the relation EQual.

The result is true (= 1), if the relation holds; otherwise the

result is false (= 0).

(* EQ *)

VAR

operand], operand2: integer;

BEGIN

operand] := stack(l1p-3);

Operand2 := stack(lp-1);

IF operand] = operand2 THEN

stack(lp-3) := true

ELSE

stack(lp-3) := false;

lp = lp - 2;

ip :=ip+1

END; (* EQ *)

9.2.10

162

9.2.11 NE 9.2.11

Not Equal Value: 3336,

wr + [t]

STACK BEFORE: STACK AFTER:

T T

‘ i

' 4

1 '

' 4

operpnd 1 regdult
operBnd 2 f

LP

1p——_____1

operator: operand 1 < operand 2

Operands 1 and 2 are compared according to the relation Not

Equal. The result is true (= 1), if the relation holds; otherwise

the result is false (= 0).

(* NE *)

VAR

operand], operand2: integer;

BEGIN

operand] := stack(lp-3);

operand2 := stack(lp-1);

IF operand] = operand2 THEN

stack(lp-3) := false

ELSE

stack(l1p-3) := true;

lp := lp - 2;

ip :=ip+1

END; (* NE *)

163

9.2.12 LT 9.2.12

Less Than Value: 343.,

IP +

STACK BEFORE: STACK AFTER:

H Hl
\ ‘
'

1
' 4

|
operpnd 1 regult

operpnd 2 t

LP

operator: operand 1 < operand 2

Operands 1 and 2 are compared according to the relation Less

Than. The result is true (= 1), if the relation holds; otherwise

the result is false (= 0).

Operands 1 and 2 are interpreted as signed integers.

(* LT *)

VAR

operand], operand2 : integer;

BEGIN

operand] := stack(lp-3);

Operand2 := stack(lp-1);

IF operand] < operand2 THEN

stack(1p-3) := true

ELSE

stack(lp-3) := false;

lp := lp - 2;

ip :=ip+1

END; (* LT *)

164

9.2.13 GT 9.2.13

Greater Than Value: 35x

I +

STACK BEFORE: STACK AFTER:

T T

‘ ‘

4 J

'
operfnd 1 redgult

operpnd 2 t

LP
1p —____l

—

operator: operand 1 > operand 2

Operands 1 and 2 are compared according to the relation Greater

Than. The result is true (= 1), if the relation holds; otherwise

the result is false (= 0).

Operands 1 and 2 are interpreted as signed integers.

(* GT *)

VAR

operand], operand2 : integer; ion

BEGIN

operand! := stack(lp-3);

operand2 := stack(lp-1);

IF operand] > operand2 THEN

stack(1p-3) := true

ELSE

stack(lp-3) := false;

lp lp - 2;

ip ip+1]

END; (* GT *)

165

9.2.14 LE 9.2.14

Less Than or Equal Value: 366,

IP +

STACK BEFORE: STACK AFTER:

' 1
1 4

‘ 1

\ t
operpBnd 1 reguit
operfnd 2 t

LP

operator: operand 1 <= operand 2

Operands 1 and 2 are compared according to the relation Less

Than or Equal. The result is true (= 1), if the relation holds;

otherwise the result is false (= 0).

Operands 1 and 2 are interpreted as signed integers.

(* LE *)

VAR

operand], operand2 : integer;

BEGIN

operand] := stack(lp-3);

Operand2 := stack(lp-1);

IF operand] <= operand2 THEN

stack(lp-3) := true

ELSE

stack(lp-3) := false;

lp := lp - 2;

ip :=ip+1

END; (* LE *)

166

9.2.15 GE

Greater Than or Equal Value: 3Tex

~m+(Le_]

STACK BEFORE: STACK AFTER:

w
e
e

e
e
d

result

1p—__!

e

e D
i
y

B
j
5

fo
n
fe
n

n
e
)oper

oper

1p—____l

operator: operand 1 >= operand 2

Operands 1 and 2 are compared according to the relation Greater

Than or Equal. The result is true (= 1), if the relation holds;

otherwise the result is false (= 0).

Operands 1 and 2 are interpreted as signed integers.

(* GE *)

VAR

operand], operand2 : integer;

BEGIN

operand] := stack(l1p-3);

operand2 := stack(lp-1);

IF operand] >= operand2 THEN

stack(lp-3) := true;

ELSE

stack(lp-3) := false;

lp := lp - 2;

ip :=ip+1

END; (* GE *)

9.2.15

—

9.2.16

167

XOR

EXclusive OR Value: SE ox

IP +

STACK BEFORE: STACK AFTER:

T T

4 ‘

' 1
4 4

operbnd 2 (op)YI (op2)

operfnd i.

result := (operand] operand2) (operand operand2)

(* XOR *)

TYPE

bitword = PACKED ARRAY(0..15) OF bit;

VAR

Operand], operand2, result : bitword;

i: integer;

BEGIN

operand] := stack(1p-3);

operand2 := stack(lp-1);

FOR i := 0 TO 15 DO

CASE operand1!(i) + operand2(i) oF

O: result(i) := 0;

1: result(i) 3

2: result(i) := 0

END;

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* XOR *)

9.2.16

168

9.2.17 UADD 9.2.17

Unsigned ADD Value: 4250,

IP +

STACK BEFORE: STACK AFTER:

T T

' i

t 1
1 4

operpBnd 2 (op1)YI (op2)
operpnd 1

1p —___|

operator: unsigned add

Operands 1 and 2 are interpreted as msigned integers (i.e. num

bers in the range 0..65535).

(* UADD *)

VAR

operand], operand2, result : word;

BEGIN

Operand] := stack(1p-3);

operand2 := stack(1p-1);

result := operand] + operand2;

IF (carry bit=1) AND (ps.suppr overflow=0) THEN eS

exception(overflow) ; ~

stack(lp-3) := result;

lp = lp - 2;

ip := ip+1

END; (* UADD *)

9.2.18 USUB

Unsigned SUBtract

wm > [osu]

9° per

fe)

B

perp

Operator: unsigned subtract

169

9.2.18

Value: 43,5ex

STACK AFTER:

e
e

|

(op1) Mf (op2)

1p—____l

Operands 1 and 2 are interpreted as unsigned integers (i.e. mm-

bers in the range 0..65535).

(* UADD *)

VAR

Operand], operand2, result : word;

BEGIN

operand] := stack(lp-3);

Operand2 := stack(l1p-1);

result := operand] - operand2;

IF (carry bit=0) AND (ps.suppr_overflow-0) THEN

exception (overflow) ;

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* UADD *)

170

9.2.19 UMUL 9.2.19

Unsigned MULtiply Value: 46...

IP >

STACK BEFORE: STACK AFTER:

H T

4

i | i
' ‘

operpnd 2 (op)Mf (op2)
operBbnd 1

ip —___l

operator: unsigned multiply

Operands 1 and 2 are interpreted as unsigned integers (i.e. mum

bers in the range 0..65535).

(* UMUL*)

VAR

operand], operand2, result : word;

BEGIN

operand] := stack(1lp-3);

operand2 := stack(lp-1);

result := operand] * operand2;

IF (carry bit=1) AND (ps.suppr_overflow=0) THEN Nast

exception(overflow) ;

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* UMUL *)

9.2.20

71

UDIV 9.2.20

Unsigned DIVide Value: 4764

IP +

STACK BEFORE: STACK AFTER:

T T

i ‘

\ f

' 1

operBnd 2 (op1) M (op2)

operpnd 1

1» ———_ 2 ——

operator: unsigned divide

Operands 1 and 2 are interpreted as unsigned integers (i.e. num

bers in the range 0..65535).

(* UDIV *)

VAR

operand], operand2, result : word;

BEGIN

operand] := stack(1lp-3);

operand2 := stack(lp-1);

IF (operand2=0) AND (ps.suppr_overflow=0) THEN

exception (overflow) ;

result := operand] DIV operand2; (* integer division *)

stack(lp-3) := result;

lp = lp - 2;

ip :=ip+1

END; (* UDIV *)

172

9.2.21 UMOD 9.2.21

Unsigned MODulus Value: 48305

IP +

STACK BEFORE: STACK AFTER:

T T

1 ‘
1 j
1

r

|
operpnd 2 (opt)YI (op2)

operpBnd 1
rp ——__!

operator: unsigned modulus

Operands 1 and 2 are interpreted as unsigned integers (i.e. num-

bers in the range 0..65535).

(* UMOD *)

VAR

operand], operand2, result : word;

BEGIN

operand! := stack(lp-3);

Ooperand2 := stack(lp-1);

IF (operand2=0) AND (ps.suppr_ overflow=0) THEN

exception (overflow) ; ~ —

result := operand] - (operand] DIV operand2) * operand2;

stack(1p-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* UMOD *)

9.2.22

173

MADD 9.2.22

Modulo ADD Value: 40 tex

Ip + MADD

STACK BEFORE: STACK AFTER:

T T

1 | ‘

' {
' 4

operpnd 2 (op1)YI (op2)
operfpnd 1

tp——____|

operator: addition modulo 64K

The operands are interpreted as unsigned integers (i.e. munbers

in the range 0..65535) and the result is modulo 64K, i.e. over-

flow will not occur.

(* MADD *)

VAR

operand], operand2, result : word;

BEGIN

operand] := stack(lp-3);

operand2 := stack(lp-1);

result := operand] + operand2;

stack(lp-3) := result;

lp := lp - 2;

ip :=ip+1

END; (* MADD *)

174

9.2.23 MSUB 9.2.23

Modulo SUBtract Value: Alex

IP +

STACK BEFORE: STACK AFTER:

T T

1 ‘

' 4
' '

operpBnd 2 (op1) YI (op2)

operpnd 1

as 2» ——_

Operator: subtraction modulo 64K

The operands are interpreted as unsigned integers (i.e. mumbers

in the range 0..65535) and the result is modulo 64K, i.e. over-

flow will not occur.

(* MSUB *)

VAR

operand], operand2, result : word;

BEGIN

operand] := stack(1lp-3);

operand2 := stack(lp-1);

result := operand] - operand2; —

stack(1p-3) := result;

lp = lp - 2;

ip :=ip+1]

END; (* MSUB *)

9.2.24

175

CRC16 9.2.24

Cyclic Redundancy Check Value: 4Fioy

I >

STACK BEFORE: STACK AFTER:

oT T
i ‘

‘ i

' 4

operBbnd 2 (op1)Vf (op2)

operpnd 1

operator: crcl6

- Operand] represents the polynanium

14£ (x) says x1? + ayy x t+ .ee tay xtay

where a; = operand] .bit ;"

Note that bity is the most significant bit.

- Operand2 represents the polynanium

g (x) =x'© to, xl +b, xl4 tioee td) x + sole)

where by = operand2 bit ,.

Note that x16 by convention is implicitly given.

176

The instruction delivers the remainder by the division

(£ (x) * ®)/g (x)

(* CRCI6 *)

VAR

Operand], operand2 : integer;

i: integer;

BEGIN

operand! := stack(lp-3);

operand2 := stack(lp-1);

FOR i := 1 TO 8 DO

IF (operand] AND 1) = 1 THEN

operand] := (operand! SHIFT (-1)) XOR operand2

ELSE

operand] := operand] SHIFT (-1);

stack(lp-3) := operand];

lp := lp - 2;

ip = ipt+1

END; (* CRCI6E *)

9.3

177

Operations on Sets

The representation of a set on the stack occupies a number of

words. These words are regarded as a consecutive array of bits

numbered from 0 on, the most significant being the rightmost bit

in the last used byte in the set representation. The set (.oper-

and 1 .. operand 2.) is represented by setting all bits from

operand 1 to operand 2 to one in the consecutive array of bits.

Note that the sets (.a..b.) and (.0..b.) occupy the same space on

the stack, where "a" and "b" are greater than zero.

The size (in bytes) of the resulting set is defined in the fol-

lowing word.

STACK

size bytes

size

Figure 15: Stack Representation of the Set (.a..b.), 0 <= a <=b,

size = (1 + b DIV 16) * 2.

9.3

178

Set operations may be interrupted during execution, and then re-

sumed after interrupt handling at a higher level. Set operations

may therefore be activated in two modes, namely, the normal mode

and the resumption mode. The mode is detected by means of the

resume bit in the ps register of the register set. Execution in

the normal mode starts with the setting of the resume bit and

testing against stack overflow in the event of an interrupt.

During the execution of a set operation, the interrupt situation

is tested within the looping parts of the operation. If an in-

terrupt with higher priority occurs, the contents of the neces-

sary working registers (7 words) are dumped on the top of the

stack and the instruction is terminated without updating the in-

struction pointer. When the operation is resumed, the register

contents are reestablished and the operation continues. In the ~

algorithms below, this dump-exit-resume sequence is indicated by

smeans of a procedure call (instruction_fetch).

9.3.1 Construct a Set from a Subrange 9.3.1

Operands 1 and 2 are retrieved, and a set is constructed and

pushed on the stack as the result. The set is initialized to con-

tain the integers in the subrange (operand 1 .. operand 2). Oper-

and 1 must be greater than or equal to zero. If operand 2 is less

than operand 1, the set will be empty.

179

9.3.1.1 SETCR 9.3.1.6]

SET CReate Value: 5Onax

STACK BEFORE: STACK AFTER:

l
o
n

 f
e
)

[o
O
f
o

O
1
0

R
I
K

P—result-—?; size of result

1p——_____|

size of result: if operand2 >= operand] then:

(1 + operand2 DIv 16) * 2 + 2,

otherwise: 2

Operands 1 and 2 are interpreted as the ordinal numbers of the

first and last elements to be included in the set. The smallest

ordinal number of an element in a set is 0.

180

(* SETCR *)

TYPE

bit = 0..1;

setareatype = PACKED ARRAY(0..n) OF bit;

settype = PACKED RECORD

setarea : setareatype;

size : integer

END;

wordarray = (0..(n DIV 16)) OF word;

VAR

i: integer;

result : settype;

resultwords : wordarray;

operand], operand2 : word;

PROCEDURE change(VAR s : settype; VAR w : wordarray); EXTERNAL;

BEGIN

operand] := stack(lp-3);

operand2 := stack(lp-1);

IF operand! > operand2 THEN

result.size := 0

ELSE

result.size := (1 + operand2 DIV 16) * 2;

IF operand] < 0 THEN operand] := 0; °

IF lp > ms - (result.size + 2) - 14 THEN exception(stack overflow)

ELSE

BEGIN

resume := true;

FORi := O TO operand] - 1 1

result.setarea(i) := 0;

FOR i := operand] TO operand2 DO

result.setarea(i) := 1;

FOR i := operand2 + 1 TO 8 * result.size DO

result.setarea(i) := 0;

change(result, resultwords);

FOR i := 0 TO result.size DIV 2 DO

BEGIN

stack(lp-3+2*i) := resultwords(i);
IF interrupt condition THEN instruction_fetch

END;

resume := false;

lp := lp - 4 + result.size + 2;

ip :=ip+]

END

END; (* SETCR *)

181

9.3.1.2 _SETAD 9.3.1.2

SET ADjust Value: 5Fu.y

rm - (SETAD_]

STACK BEFORE: STACK AFTER:

fo
n
f
e
)

f
o

F
O

o
O
}

R
I
K

w
y
y

j
s

Q
u
]Q
a

r
o
]

P—result-—} size of result

1p—_____|

size of result: operand2+2

Operand] is interpreted as a set, which is truncated or enlarged

to a new set of size operand2 bytes. If the set is truncated, it

is tested that only words containing O-bits are truncated.

182

(* SETAD *)

TYPE

sizel, size2 : word;

set word 3: word;

io” : integer;
BEGIN

resume := true;

size2 := stack(lp-1);

IF odd(size2) THEN

exception(odd operand);

sizel := stack(lp-3);

IF sizel < size2 THEN (* unsigned compare *)

BEGIN (* enlarge *)

IF lp > ms - (size2-sizel) - 14 THEN

exception(stack overflow);

FOR i := 1 TO (size2-sizel) DIV 2 Do

BEGIN

stack(1p-3+(i-1)*2) := 0;

IF interrupt_condition THEN

instruction fetch

END; ~
END

ELSE

BEGIN (* sizel >= size2 *)

IF lp > ms - 14 THEN

exception(stack overflow);

FOR i := 1 TO (sizel-size2) DIV 2 DO

BEGIN

set_word := stack(lp-3 - 2*i);

IF set_word <> 0 THEN

exception(setadjust truncation error);

IF interrupt condition THEN

instruction_fetch

END

END;

resume := false;

lp := lp - 2 + (size2-sizel);

stack (lp-1) := size2;

ip :=ip+1

END; (* SETAD *)

183

9.3.2 Operations on Sets Giving a Set as the Result 9.3.2

Operands 1 and 2, both of which are sets, are retrieved, and a

result, which is also a set, is produced fram these operands in

accordance with the operator.

The size (in bytes) of operands 1 and 2 and the result is defined

in the following word of each.

9.3.2.1 SETUN 9.3.2.1

SET UNion Value: 5CHex

IP +

STACK BEFORE: STACK AFTER:*

! 1

1 '

h— 0} di— i = __| | size oferan: | sae regult result
sige I

fh operand 2-—— \ size 2 LP
sige 2

1p —___|

operator: union

size of result: max (sizel, size2) + 2

184

(* SETUN *)

VAR

start], start2 : addr;

sizel, size2 : word;

i: integer;

FUNCTION min(a, b

FUNCTION max(a, b

BEGIN

resume := true;

IF lp > ms - 14 THEN exception(stack overflow);

size2 := stack(lp-1);

sizel := stack(lp-size2-3);

start2 := lp-size2-1;

start] := start2~sizel-2;

FOR i := 0 TO min(sizel, size2) DIV 2 - 1 DO

BEGIN

stack(start]+2*i) := stack(start]+2*i) OR stack(start2+2*i);

IF interrupt_condition THEN instruction_fetch

word) : word; EXTERNAL;

word) : word; EXTERNAL;

END;

IF size2 = max(sizel, size2) THEN

BEGIN

FOR i := 0 TO (size2-sizel) DIV 2-1 DO

BEGIN

stack(start]l+sizel+2*i) := stack(start2+sizel+2*i);

IF interrupt_condition THEN instruction_fetch

END;

stack(startl+size2) := size2

END;

lp := lp - min(sizel, size2) - 2;

resume := false;

ip = ip+1

END; (* SETUN *)

9.3.2.2 . SETIN

SET INtersection

me > [SETIN|

STACK BEFORE:

r— operand 1-—— size 1

sige 1

h—— operand 2-——+4 \ size 2
sige 2

ip —___|

operator: intersection

185

Value: 5D;ex

STACK AFTER:

size of
Ph—-regult-—- result

t
Lt -—_——_—

size of result: max (sizel, size2) + 2

9.3.2.2

186

(* SETIN *)

VAR

start], start2 : addr;

sizel, size2, minlength, resultlength : word;

i: integer;

BEGIN

resume := true;

IF lp > ms - 14 THEN exception(stack overflow);

size2 := stack(lp-1);

start2 := lp - size2-1;

sizel := stack(lp-1 - size2-2);

start] := start2 - sizel - 2;

IF sizel >= size2 THEN

BEGIN

minlength := size2;

resultlength := sizel

END

ELSE

BEGIN

minlength := sizel;

resultlength := size2

END;

FORi := 0 TO minlengthDIV 2 - 1 DO

BEGIN

stack(start] + 2*i) := stack(start] + 2*i) AND stack(start2 + 2*i);

IF interrupt_condition THEN instruction_fetch

END;

FOR i := 0 TO (resultlength - minlength) DIV 2 - 1 DO

BEGIN

stack(start] + minlength + 2*i) := 0;

IF interrupt condition THEN instruction fetch

END;

stack(start] + resultlength) := resultlength;

resume := false;

lp := lp - minlength - 2;

ip := ip+1

END; (* SETIN *)

187

9.3.2.3 SETDI 9.3.2.3

SET Difference Value: SEyex

IP >

STACK BEFORE: STACK AFTER:

1 t

' 1

f— operand Ei P— regult-y size of
size 1

h— operand 2 —— \ size 2 uP
sige 2

1p——___|

operator: difference

size of result: max (sizel, size2) + 2

188

(* SETDI *)

VAR

start], start2 : addr;

sizel, size2, minlength, resultlength : word;

i: integer;

BEGIN

resume := true;

IF lp > ms - 14 THEN exception(stack overflow);

size2 := stack(lp-1);

start2 := lp - size2-1;

sizel := stack(lp-1 - size2-2);

start] := start2 - sizel-2;

IF sizel >= size2 THEN

BEGIN

minlength := size2;

resultlength := sizel

END

ELSE

BEGIN

minlength := sizel;

resultlength := size2

END;

FORi := 0 TO minlengthDIV 2 - 1 DO

BEGIN

stack(start] + 2*i) := stack(start] + 2*i) AND

COMPL (stack(start2 + 2*i));

IF interrupt_condition THEN instruction fetch

END;

IF sizel = minlength THEN

FOR i := 0 TO (resultlength - minlength) DIV 2 - 1 Do

BEGIN

stack(start] + minlength + 2*i) := 0;

IF interrupt condition THEN instruction fetch

END;

stack(startl] + resultlength) := resultlength;

resume := false;

lp := lp - minlength - 2;

ip :=ip+1

END; (* SETDI *)

189

9.3.3 Comparison of Sets 9.3.3

Operands 1 and 2, both of which are sets, are compared according

to a relation. The result is true (= 1), if the relation holds;

otherwise the result is false (= 0).

The size (in bytes) of operands 1 and 2 is defined in the follow

ing word of each.

9.3.3.1 SETEQ 9.3.3.1

SET EQual Value: 596,

STACK BEFORE: STACK AFTER:

T

'
'

'

'

4

'
regult

f-—— operand 1-—— (size1 LP

sige 1

operand 2 } size 2
siqe 2

1p——____!

relation : equal

190

(* SETEQ *)

LABEL exittest;

VAR

i: integer;

start], start2 : addr;

result : boolean := true;

sizel, size2 : word;

FUNCTION min(a, b : word) : word; EXTERNAL;

BEGIN

resume := true;

IF lp > ms - 14 THEN exception(stack overflow);

size2 := stack(lp-1);

start2 := lp - size2-1;

sizel := stack(lp-size2-3);

start] := start2-sizel-2;

FOR i := 0 TO min(sizel, size2) DIV 2 - 1 DO

BEGIN

IF stack(startl+i*2) <> stack(start2+i*2) THEN

BEGIN

result := false;

GOTO exittest

END;

IF interrupt_condition THEN instruction fetch

END;

IF sizel < size2 THEN

BEGIN

FOR i := 0 TO (sizel-size2) DIV 2-1 Do

BEGIN

IF stack(start2+sizel+i*2) <> 0 THEN

BEGIN

result := false;

GOTO exittest

END;

IF interrupt condition THEN instruction fetch

END ~ ~
END

ELSE

FOR i := 0 TO (size2-sizel) DIV 2-1 Do

BEGIN

IF stack(start+size2+2*i) <0 Do

BEGIN

result := false;

GOTO exittest

END;

IF interrupt_condition THEN instruction_fetch

END;

exittest: stack(start]) := result;

lp := start 1 + 1;

resume := false;

ip :=ip+1

END; (* SETEQ *)

9.3.3.2 SETSB

SET SuBset

m > (_sersB|

STACK BEFORE:

r— operand 1 -——

sige 1

h— operand 2 ——4

\ size 1

; size 2
sige 2

1p——___l

relation : subset

191

Value: SAyex

STACK AFTER:

ia
l

(0
)

e
r

|

9.3.3.2

192

(* SETSB *)

LABEL exittest;

VAR

i: integer;

start], start2 : addr;

result : boolean := true;

sizel, size2 : word;

FUNCTION min(a, b : word) : word; EXTERNAL;

BEGIN

resume := true;

IF lp > ms — 14 THEN exception(stack overflow);

size2 := stack(lp-1);

start2 := lp - size2-1;

sizel := stack(lp-1 - size2-2);

start] := start2 - sizel-2;

FOR i := 0 TO min(sizel, size2) DIV 2 - 1 DO

BEGIN

IF stack(start2+2*i) AND stack(start]1+2*i)

<> stack(startl+i*2) THEN

BEGIN

result := false;

GOTO exittest

END;

IF interrupt condition THEN instruction fetch

END;

IF sizel > size2 THEN

FOR i := 0 TO (sizel-size2) DIV 2 - 1 Do

BEGIN

IF stack(start]l+size2+i*2) < 0 THEN

BEGIN

result := false;

GOTO exittest

END;

IF interrupt_condition THEN instruction_fetch

END;

exittest: stack(start]) := result;

lp := startl+];

resume := false;

ip :=ip+1

END; (* SETSB *)

193

9.3.3.3 _ SETSP 9.3.3.3

SET SuPerset Value: SBuex

Ip + SETSP

STACK BEFORE: STACK AFTER:
a

T

'
‘

{

j
‘
'

regult

r—— operand 1——j | size1 LP

side 7

h—— operand 2 =| size 2
sige 2

ip ——-___]

relation : superset

194

(* SETSP *)

LABEL exittest;

VAR

i: integer;

start], start2 : addr;

result : boolean := true;

sizel, size2 : word;

FUNCTION min(a, b : word) : word; EXTERNAL;

BEGIN

resume ;= true;

IF lp > ms - 14 THEN exception(stack overflow);

size2 := stack(lp-1);

start2 := lp - size2-1;

sizel := stack(lp-1 - size2-2);

start] := start2 - sizel-2;

FOR i := 0 TO min(sizel, size2) DIV 2 - 1 DO

BEGIN

IF stack(start]l+i*2) AND stack(start2+i*2)

<> stack(start2+i*2) THEN

BEGIN

result := false;

GOTO exittest

END;

IF interrupt condition THEN instruction fetch

END; ~
IF size2 > sizel THEN

FOR i := 0 TO (size2-sizel) DIV 2 - 1 DO

BEGIN

IF stack(start2 + sizel + 2*i) <> 0 THEN

BEGIN

result := false;

GOTO exittest

END;

IF interrupt_condition THEN instruction_fetch

END;

exittest: stack(start]) := result;

lp := start] + 1;

resume := false;

ip = ip+1

END; (* SETSP *)

9.3.3.4 TEQAD

Test EQual ADdresses

tm + (TEQAD_]

STACK BEFORE:

P—-addr2-~

(* TEQAD*)

VAR

addrl, addr2 : addr;

result : boolean;

BEGIN :

addrl.base := stack(lp-3);

addr1.disp := stack(lp-1);

addr2.base := stack(lp-7);

addr2.disp := stack(lp-5);

result := (nil(addr1) AND nil(addr2)) OR (addrl = addr2);

stack(lp-7) := result;

lp = lp - 6;

ip :=ip+1

END; (*TEQAD *)

195

Value: 3Cyey

9.3.3.4

196

9.3.4 Test for Membership of a Set 9.3.4

Operands 1 is interpreted as a set. Operand2 is interpreted as

the ordinal number (umsigned integer) of an element in the set

Operand 1. The result is true (= 1), if the operand 1 contains

the element with the ordinal number cperand 2; otherwise the re-

sult is false (= 0).

The size (in bytes) of the set is defined in the following word.

9.3.4.1 SETIM 9.3.4.1

SET Test Membership Value: 57a.

—

IP +

STACK BEFORE: STACK AFTER:

r T

' 4

! !
| \

operand 2 regult

r—— operand 1—— _ size LP

ip ——___!
—

The smallest ordinal number of an element in a set is 0, and it

is represented by the most significant bit of the first word

(smallest address).

197

(* SETIM *)

VAR

size : word;

operand : word;

work : word;

boo : boolean;

BEGIN

boo := false;

size := stack(lp-1);

operand := stack(lp-1-size-2);

IF operand < size*8 THEN

BEGIN

work := stack(lp-l-size+(operand DIV 16) * 2);

work := work shift(operand AND 15);

boo := work < 0;

END;

stack(lp-1-size-2) := boo;

lp := lp - size - 2;

ip :=ip+1

END; (*SETIM *)

9.3.3.4

10.

198

INPUT/OUTPUT

The execution of an I/O instruction, like that of any RC3502 ma-

chine instruction, presupposes a process incarnation environment,

with a register set that points out an incarnation stack (see

subsection 3.6.1 and section 4.1).

I/o instructions can operate on devices and process incarnation

environments (either the incarnation that executes the I/O in-

struction or other process incarnations). I/O instructions can

also perform functions on devices.

A device is regarded as a set of registers:

function

control

status in

status out

data in

data out

eoi

interrupt

A given device may be a subset of the above register set. The

structure of the individual registers is device dependent.

Algorithmetic Descriptions

It is assumed that field type is either a byte bit type ora

word_bit type, where

bit = 0..17

bit_byte = PACKED ARRAY(0..7) OF bit;

bit_word = PACKED ARRAY(0..15) OF bit:

10.

199

The following constants and types are used in conjunction with

the device concept:

read data = #n000;

write data = #h040;

read status = #h080;

write control = #h0CO;

function_type = read data .. write control;

device type = RECORD

function : function_type;

control : field type;

status in: field type;

status out : field type;
data_in : field type;

data_out : field type;

eoi : bit; (* end of information *)

interrupt bit

END;

The run-time environment which the I/O instructions presuppose

and on which they operate is expressed by the following vari-

ables:

device : ARRAY(0..123) OF device type;

reg set : ARRAY(0..123) OF register_set type;

incarnation_descriptor : incarnation _descriptor_type;

The type message is defined in subsection 3.7.2.1.

The register _set_type is defined in subsection 3.6.1.1, and the

incarnation_descriptor_type in subsection 3.7.3.1.

The block instructions interpret the memory as being of type

buffer = ARRAY(0..32767) OF byte;

The buffer is described by a mimber of indices which satisfy the

relation

first < last < top (* signed comparison *)

10.1 Write Control

10.1.1

200

The parameter is interpreted as a device mmber. The value of the

operand is transferred to the control register of the device.

IOWC

Input/Output Write Control

mp > [Tow |

STACK BEFORE:

control value

dey no

(* Iowc *)

VAR

devno : integer;

BEGIN

devno := stack (lp-1);

device(devno).function :

Value: 2liex

STACK AFTER:

~p ——____—_!

devices (devno) :

control value

= write control;

device(devno).control := stack(Ip-3);

lp :=1lp- 4;

ip = ip+1

END; (* Iowc *)

10.1

10.161

201

10.2 Write Word 10.2

The parameter is interpreted as a device mimber. The value of the

operand is transferred to the data out register of the device. On

end of information, the value of the eoi register is transferred

to the eoi field of the ps register.

10.2.1 IOWW 10.2.1

Input/Output Write Word Value: 24,

IP +

STACK BEFORE: STACK AFTER:

-
—
—
—

<
—
—

devices (devno) :

data

202

(* IOww *)

VAR

devno : integer;

BEGIN

devno := stack (lp-1);

device(devno).function := write data;

IF device(devno).data out := stack(lp-3);

IF device(devno).eoi = 1 THEN ps.eoi := 1;

lp = lp- 4;

ip :=ip+1

END; (* IOWW *)

203

10.3 General Output 10.3

This instruction, which is used for device testing and minten-

ance, permits the execution of special, device-dependent func-

tions not provided by the other I/O instructions.

Operand 1 is interpreted as a device mmber. The function defined

by operand 2 is performed on the device. The word operand 3 is

transferred, according to the fimction, to the data_out,

status_out, or control register of the device.

On end of information, the value of the eoi register is transfer-

red to the eoi field of the ps register.

10.3.1 I0GO 10.3.1

Input/Output General Output Value: 25,

IP +

STACK BEFORE: STACK AFTER:

r
h

& 3
 {
Q
u

Q
 |
p

f
o
d
 (
a
d

D
a
do
o

fe
)

fo
] fg i.

devices (devno) :

write control + data

read_status > data

write data > data

204

(* IoGo *)

VAR

devno : integer;

function : function_type;

data : word;

BEGIN

devno := stack(lp-1);

function := stack(1p-3);

data := stack(lp-5);

device(devno).function := function

device(devno).status out := data

IF device(devno).eoi= 1 THEN ps.eoi := 1;

lp := lp - 6;

ip :=ip+1

END; (* IOGO *)

205

10.4 Read Status 10.4

The first operand is interpreted as a device munber. The result

is the status information selected by the second qperand fram the

device. First the second operand is transferred to the status_out

register of the device, and then the contents of the status_in

register are transferred as the result.

10.4.1 IORS 10.4.1

Input/Output Read Status Value: 226,

IP +

STACK BEFORE: STACK AFTER:

<
—
—
.

T

\

1

'

!

s

select] value staltus

dewno t

devices (devno) :

206

(* IORS *)

VAR

devno : integer;

BEGIN

devno := stack (l1p-1);

device(devno).function := read status;

device(devno).status_out := stack(lp-3);

stack(lp-3) := device(devno).status_in;

lp := lp - 2;

ip = ip+1

END; (* IORS *)

207

Read Word 10.510.5

10.5.1

The operand is interpreted as a device mimber. The result is the

contents of the data_in register of the device. On end of infor-

mation, the value of the eoi register is transferred to the eoi

field of the ps register.

IORW 10.5.1

Input/Output Read Word Value: 2364

IP >

STACK BEFORE: STACK AFTER:

devices (devno) :

(data)

208

(* IORW *)

VAR

devno : integer;

BEGIN

devno := stack (lp-1);

device(devno).function := read data;

IF device(devno).eoi = 1 THEN ps.eoi := 1;

stack(Ip-1) := device(devno).data_in;

ip = ip+1

END; ,(* IORW *)

209

10.6 General Input 10.6

This instruction, which is used for device testing and minten-

ance, permits the execution of special, device-dependent func-

tions not provided by the other I/O instructions.

Parameter 1 is interpreted as a device number. The function de-

fined by parameter 2 is performed on the device. The word par-

ameter 3 is tramsferred to the status out register of the device,

and the resulting word is obtained, according to the fimction,

fram the data_in or status_in register.

On end of information, the value of the eoi register is trans-

ferred to the eoi field of the ps register.

10.6.1 IOGI 10.6.1

Input/Output General Input Value: 26,0,

IP > IOGI

STACK BEFORE: STACK AFTER:

< <
—
—
—

devices (devno) :

Kread_status > (c
t

O

{
Q
u
o

Q
M

1
H

f
o
m
 (
a
g
t
e
)

R
i
m

t
e

c
tread_data > (K

210

(* IOGI *)

VAR

devno : integer;

function : function_type;

data : word; ~
BEGIN

devno := stack (lp-1);

function := stack(lp-3);

data := stack(lp-5);

device(devno).function := function;

device(devno).status out := data;

IF device(devno).eoi= 1 THEN ps.eoi := 1;

stack(lp-5) := device(devno).status_in

lp lp - 4;

ip :=ip+1

END; (* IOGI *)

10.7

211

Clear Current Interrupt

10.7.1

If in the current register set the timeout field of the ps

register has the value 0, the interrupt register of the device

with the level defined in the incarnation descriptor as its

device number is assigned the value = 0.

Ioccl

Input/Output Clear Current Interrupt Value: 22 Hex

Ip > Toccr

incarnation descriptor:

r chain 4

level ——-> devices (level) :

‘

‘

1
{

interrupt=false

(* Ioccl *)

VAR

devno: byte;

BEGIN

devno := membyte(gft+level);

IF ps.to = 0 THEN

device(devno).interrupt := 0;

ip :=ip+1

END; (* IOCCI *)

10.7

10.7.1

212

10.8 Execute Next Instruction After Clearing Interrupt

If in the current register set the timeout field of the ps regis-

ter has the value 0, the interrupt register of the device with

the level defined in the incarnation descriptor as its device

number is assigned the value 0, whereupon the next instruction on

this level is executed.

10.8.1 IONCI

Input/Output Execute Next Value: 27iHey

Instruction After Clearing Interrupt

rm + { Ioncr [next |

incarnation descriptor:

r chain 4

levyel —— devices (level):
'

Uj

4

J

1

interrupt=false

(* IONCI *)

VAR

devno : byte;

BEGIN

devno := membyte(gf+level);

IF ps.to = 0 THEN

device(devno).interrupt := 0;

ip :=ip+ 1;

GOTO execute_next (* next instruction on same level *)

END; (* IONCI *)

10.8

10.8.1

10.9

213

Get Current Device Address 10.9

10.9.1

aes

The parameter is interpreted as the address of a reference. The

reference must be the address of a message of the kind 'channel

message'. The result is the device address (device muimber)

contained in the message. No input/output is performed.

IOCDA 10.9.1

Input /Output Get Current Device Address Value: 2Auex

IP +

STACK BEFORE: STACK AFTER:

° T T

| |
| \

\| | !
refenence deWwno
fFaddwness|

(* IOCDA *)

VAR

ref_addr : addr; (* address of reference *)

ref : addr; (* address of message *)

kind : integer;

devno : integer;
BEGIN

ref_addr := memaddr (1p-3);

ref 3s= memaddr (ref addr);

IF ref.base.nilbit = 1 THEN exception(nil)
kind := mem(ref+messagekind);

IF kind < 0 THEN

BEGIN

devno := kind AND 127;

stack(lp-3) := devno;

lp := lp-2;

ip = ip+1]

END;

ELSE exception(not channel message)

END; (* IOCDA *)

214

10.10 Initialize Block Transfer 10.10

This instruction is used to initialize the contents of the stack

preparatory to the execution of a read/write block instruction.

10.10.1 IOIBX 10.10.1

Input/output Initialize Block Xfer Value: 2Buoy

Ip > IOIBX

STACK BEFORE: STACK AFTER:

] y T
i 1 —

i || |
'

|
finst tap

lagpt count

Irefeyence| | start
addtess adduness|

p——__| p_—__]

215

(* IOIBX *)

VAR

first : word;

ref_addr 3 addr;

top : word;

count : word;

start addr : addr;

ref — : addr;
kind : integer;

m_size : word;

BEGIN

ref_addr := memaddr(l1p-3);

ref := memaddr(ref addr);
IF ref.base.nilbit = 1 THEN

exception(nil)

top := stack(lp-5)+1; (* last+1 *)

first := stack(lp-7);

kind := mem(ref+tmessagekind);

IF kind < 0 THEN

exception(not data message)

m_size := mem(ref+size);

IF m_size < ((top+])DIV2) THEN (* unsigned *)

exception(size too small)

IF first < top THEN (* unsigned *)

BEGIN

count := top-first;

start_addr := memaddr(ref+start);

start_addr.disp := start _addr.disp + first;

memaddr(lp-3) := start addr;

stack(lp-5) := count; _
stack(lp-7) := top;

ip := iptl

END;

ELSE

exception(last < first)

END; (* IOIBX *)

216

10.11 Write Block of Bytes 10.11

A block of bytes is transferred fram a buffer, one byte ata

time, to the data_out register of the device with the current

interrupt level as its device mmber, until the buffer is empty

or a timeout occurs or the eoi register of the device contains

the value 1.

The buffer is defined by the qperand and parameter 1: the former

is the address (ADDR) of the first byte of the buffer, and the

latter the number of bytes in the buffer.

Finally, the residual count is subtracted fran the 'top' par-

ameter to produce the result 'next', which is the index of the

byte following the last byte written. —

For each byte transferred the instruction code and the stack par-

ameters remain in the register set. The next instruction to be

executed is selected in accordance with the interrupt condition.

217

10.11.4110.11.1 IOWBB

Input/Output Write Block of Bytes Value: 73,

IP > IOWBB

STACK BEFORE: STACK AFTER:

T —T

‘ | 1
1 1

1 1

! 1

tdp \ {
count next

start jI4 t

| addyess LP|

MEMORY:

bytes to

be out put

device (current level):

output byte

interrupt=true

(* IOWBB

CONST

, single step *)

lowbb = #h8373;

VAR

next :

count

addr;

: integer;

top : word;

PROCEDURE dumpregisters(level :

EXTERNAL;

LABEL

218

integer);

lioblockfinis, ioblocktimeout;

BEGIN

IF ip.base <> iowbb THEN

BEGIN (* first step *)

IF curlevel = 0 THEN

exception(block i/o level 0)
ps

dumpregisters(curlevel) ;

-eol := 0;

(* change mode *)

stack (lp-7); (* top = last+] *)
ib := iowbb; (* ip.base *)

im :=

ic := stack(lp-5); (* count *)

sf := stack(lp-3); (* next_address.base *)

lu := stack(1p-1)-1; (* next_address.disp-1 *)

GOTO fetch]

END

ELSE

BEGLN

WITH device(curlevel) Do

BEGIN

IF ps.to = 1 THEN GOTO ioblocktimeout;

interrupt := 0; (* clear interrupt *)

next.base := sf;

next.disp := lu;

count := ic;

top := lm;

function := write data;

data_out := membyte(nextt+1);

next := nexttl;

IF eoi = 1 THEN

BEGIN

ps-eoi := 1;

GOTO ioblockfinis

END;

count := count-1;

IF count > O THEN

BEGIN

lu := next.disp;

ic := count;

GoTo fetch

END;

ioblockfinis:

interrupt := 1;

219

Lloblocktimeout:

lm := mem(gf+dumpln);

lu := mem(gf+dumplu)-6;

sf := mem(gf+dumpsf);

ib := mem(gf+dumpib);

ic := mem(gf+dumpic)+1;

stack(lp-1) := top-count

END (* WITH *)

END (* ELSE *)

END; (* IOWBB, single step *)

220

10.12 Write Block of Bytes and Clear 10.12

This instruction resembles the Write Block of Bytes instruction

except that the current interrupt level is cleared after the last

write function is performed.

10.12.1 IOWBBC 10.12.1

Input/Output Write Block of Bytes and Clear Value: 724...

IP + IOWBBC

STACK BEFORE: STACK AFTER:

T T

i 1

H 1
t_$ p nelxt

coant if

[| 2O0UscttartlhCUllC OH LP

add t ess
tp —_____

MEMORY :

bytes to

be output

device (current level):

Output byte

interrupt=true

221

(* IOWBBC, single step *)

CONST

iowbbe = #h8372;

VAR

next : addr;

count : integer;

top : word;

PROCEDURE dumpregisters(level : integer);

EXTERNAL;

LABEL

ioblockfinis;
BEGIN

IF ip.base <> iowbbc THEN

BEGIN (* first step *)

IF curlevel = O THEN

exception(block i/o level 0)

ps-eoi := 0;

dumpregisters(curlevel);

(* change mode *)

ib := iowbbc; (* ip.base *)

lm := stack(1p-7); (* top = last+] *)

:= stack(lp-5); (* count *)

sf := stack(lp-3); (* next address.base *)

lu := stack(lp-1)-1; (* next_address.disp-1 *)

GOTO fetch!

END

ELSE

BEGIN

WITH device(curlevel) DO

BEGIN

IF ps.to = 1 THEN GOTO ioblockfinis;

interrupt := 0; (* clear interrupt *)

next.base sf;

next.disp := lu;

count := ic;

top := lm;

function := write data;

data out := membyte(next+1);
next := next+];

IF eoi = 1 THEN

BEGIN

ps.eoi := 1

GOTO ioblockfinis

END;

count := count-1;

IF count > O THEN

BEGIN

lu := next.disp;

ic := count;

GoTo fetch

END;

222

loblockfinis:

Im := mem(gf+dumplm);
lu := mem(gf+dumplu)-6;

sf := mem(gf+dumpsf);

ib := mem(gf+dumpib);

ic := mem(gf+dumpic)+1;

stack(lp-1) := top-count

END (* WITH *)

END (* ELSE *)

END; (* IOWBBC, single step *)

223

10.13 Write Block of Words 10.13

This instruction resembles the Write Block of Bytes instruction

(section 10.11). A block of words is transferred, one word at a

time, to the data out register of the device fram the buffer.

10.13.1 IOWBW 10.13.1

Input/Output Write Block of Words Value: 7Trey

iP +

T T

H ‘

!
1

!
tdp

count ne t

| start Ilo {

addyess LP.

MEMORY:

words to

be output

device (current level):

output word

interrupt=true

224

(* IOWBW, single step *)

CONST

lowbw = #8377;

VAR

next : addr;

count : integer;

top : word;

PROCEDURE dumpregisters(level : integer);

EXTERNAL;

LABEL

loblockfinis, ioblocktimeout;

BEGIN

IF ip.base <> iowbw THEN

BEGIN (* first step *)

IF curlevel = 0 THEN

exception(block i/o level 0)

ps-eoi := 0;

dumpregisters(curlevel) ;

(* change mode *)

ib := iowbw; (* ip.base *)

lm := stack(lp-7); (* top = last+] *)

ic := stack(lp-5); (* count *)

sf := stack(lp-3); (* next address.base *)

lu := stack(lp-1)-1; (* nextaddress.disp-1 *)

GOTO fetch] ~

END

ELSE

BEGIN

WITH device(curlevel) DO

BEGIN

IF ps.to = 1 THEN GOTO ioblocktimeout;

interrupt := 0; (* clear interrupt *)

next.base := sf;

next.disp := lu;

count := ic;

top := lm;

IF count = 1 THEN

GOTO ioblockfinis;

function := write data;

data_out := membyte(next+1);

next := nextt2;

IF eoi = 1 THEN

BEGIN

ps.eoi := 1

GOTO ioblockfinis

END;

count := count-2;

IF count > 1 THEN

BEGIN

lu := next.disp;

ic := count;

GOTO fetch

END;

loblockfinis:

interrupt := 1;

225

ioblocktimeout:

Im := mem(gf+dumplm);

lu := mem(gf+dumplu)-6;

sf := mem(gf+tdumpsf);

ib := mem(gf+tdumpib);

ic := mem(gf+dumpic)+1;

stack(lp-1) := top-count

END (* WITH *)

END (* ELSE *)

END; (* IOWBW, single step *)

226

10.14 Write Block of Words and Clear 10.14

—

This instruction resembles the Write Block of Bytes instruction

except that the current interrupt level is cleared after the last

write function is performed.

10.14.1 —_ TOWBWC 10.14.1

Input/Output Write Block of Words and Clear Value: 76,,

IP + |IOWBWC

STACK BEFORE: STACK AFTER: oy

i i
' I

t I

|

top nelxt
copnt !

i start jo LP

add i ess
tp _—___]

MEMORY :

words to

Ibe catput]

device (current level):

output word

interrupt=true

227

(* IOWBWC, single step *)

CONST

lowbwc = #h8376;

VAR

next : addr;

count : integer;

top : word;

PROCEDURE dumpregisters(level : integer);

EXTERNAL;

LABEL

ioblockfinis;

BEGIN

IF ip.base <> iowbwc THEN

BEGIN (* first step *)

IF curlevel = 0 THEN

exception(block i/o level 0)

ps.eoi := 0;

dumpregisters(curlevel);

(* change mode *)

ib := iowowc; (* ip.base *)

lm := stack(lp-7); _ (* top = last+! *)

ic := stack(lp-5); = (* count *)
sf := stack(lp-3); (* next address.base *)

lu := stack(lp-1)-1; (* next_address.disp-1 *)

GOTO fetch]

END

ELSE

BEGIN

WITH device(curlevel) DO

BEGIN

IF ps.to = 1 THEN GOTO ioblockfinis;

interrupt := 0; (* clear interrupt *)

next.base sf;

next.disp := lu;

count := ic;

top := lm;

IF count = 1 THEN

GOTO ioblockfinis;

function := write data;

data out := memword(next+1);

next := next+2;
IF eoi = 1 THEN

BEGIN

ps-eoi := 1

GOTO ioblockfinis

END;

count := count~-2;

IF count > 1 THEN

BEGIN

lu := next.disp;

ic := count;

GoTO fetch

END;

228

loblockfinis:

Im := mem(gf+dump1m);

lu := mem(gf+dumplu)-6;

sf := mem(gf+dumpsf);

ib := mem(gf+dumpib);
ic := mem(gf+dumpic)+];

stack(lp-1) := top-count
END (* WITH *)

END (* ELSE *)

END; (* IOWBWC, single step *)

—
10.15

229

Read Block of Bytes 10.15

A block of bytes is transferred to a buffer, one byte at a time,

fram the data_in register of the device with the current inter-

rupt level as its device number, until the buffer is full ora

timeout occurs or the eoi register of the device contains the

value 1. This value is then transferred to the eoi field of the

ps register.

The buffer is defined by operand 1 and operand 2: the former is

the address (ADDR) of the first byte of the buffer, and the lat-

ter the number of bytes in the buffer.

Finally, the residual count is subtracted fran the ‘top’ par-

ameter to produce the result 'next', which is the index of the

byte following the last byte read.

For each byte transferred the instruction code and the stack par-

ameters remain in the register set. The next instruction to be

executed is selected in accordance with the interrupt condition.

230

10.151 IORBB 10.15.61

~~

Input/Output Read Block of Bytes Value: 7luey

IP + IORBB

STACK BEFORE: STACK AFTER:

—
—
—

_
—

t olp nek t

count

1 stajrt JI— Lp
addrijess

i ——___!

MEMORY:

resulting

|____, bytes
input

device (current level):

(input byte)

interrupt=true

231

(* IORBB, single step *)

CONST

iorbb = #h8371;

VAR

next : addr;

count : integer;

top : word;

data: word;

PROCEDURE dumpregisters(level : integer);

EXTERNAL;

LABEL

ioblockfinis, ioblocktimeout;
BEGIN

IF ip.base <> iorbb THEN

BEGIN (* first step *)

IF curlevel = 0 THEN

exception(block i/o level 0)

ps.eoi := 0;

dumpregisters(curlevel);
(* change mode *)

ib := iorbb; (* ip.base *)

lm := stack(lp-7); (* top = last+] *)
ic := stack(1p-5); (* count *)

sf := stack(lp-3); (* next_address.base *)

lu := stack(lp-1)-1; (* next address.disp-1 *)

GOTO fetch] ~

END

ELSE

BEGIN

WITH device(curlevel) Do

BEGIN

IF ps.to = 1 THEN GOTO ioblocktimeout;

interrupt := 0; (* clear interrupt *)

next.base := sf;

next.disp := lu;

count := ic;

top := lm;

function := read_data;

data := data_in;

IF eoi = 1 THEN

BEGIN

ps.eoi := 1;

GOTO ioblockfinis

END;

membyte(next+]) := data AND 255;

next := next+];

count := count-1;

IF count > O THEN

BEGIN

lu := next.disp;

ic := count;

GOTO fetch

END;

232

loblockfinis:

interrupt := 1;

iLoblocktimeout:

1m := mem(gf+dumpln);

lu := mem(gf+dumplu)-6;

sf := mem(gf+dumpsf);

ib := mem(gf+dumpib);

ic := mem(gf+dumpic)+1;

stack(lp-1) := top-count

END (* WITH *)

END (* ELSE *)

END; (* IORBB, single step *)

233

10.16 Read Block of Bytes and Clear 10.16

This instruction resembles the Read Block of Bytes instruction

except that the current interrupt level is cleared after the last

read function is performed.

10.16.1 IORBBC 10.16.1

Input/Output Read Block of Bytes and Clear Value: 0:

TP + [IORBBC|

STACK BEFORE: STACK AFTER:

H Hi
' '
' '

|

top nelxt
cognt 1

a st rt +74 LP

addftess

tp—___|

MEMORY:

————> resul-
ting by4

tes input

device (current level):

(input byte)

interrupt=type

234

(* IORBBC, single step *)

CONST

iorbbe = #h8370;

VAR

next : addr;
count 3: integer;

top : word;

data : word;

PROCEDURE dumpregisters(level : integer);

EXTERNAL;

LABEL

loblockfinis;

BEGIN

IF ip.base <> iorbbc THEN

BEGIN (* first step *)

IF curlevel = 0 THEN

exception(block i/o level 0)

ps.eoi := 0;

dumpregisters (curlevel);

(* change mode *)

ib := iorbbce; (* ip.base *)

lm := stack(lp-7); (* top = last+] *)

ic := stack(1p-5); (* count *)

sf := stack(lp-3); (* next address.base *)

lu := stack(1p-1)-1; (* next_address.disp-1 *)

GOTO fetch!

END

ELSE

BEGIN

WITH device(curlevel) Do

BEGIN

IF ps.to = 1 THEN GOTO ioblockfinis;

interrupt := 0; (* clear interrupt *)

next.base := sf;

next.disp := lu;

count := ic;

top := lm;

function := read data;

data := data_in;
IF eoi = 1 THEN

BEGIN

ps-eoi := 1; interrupt := 1; (* set interrupt *)

GOTO ioblockfinis

END;

membyte(next+1) := data AND 255;

next := nexttl;

count := count-1;

IF count > 0 THEN

BEGIN

lu := next.disp;

ic := count;

GoTO fetch

END;

235

ioblockfinis:

Im := mem(gf+dumplm);

lu := mem(gf+dumplu)-6;

sf := mem(gf+tdumpsf);

ib := mem(gf+dumpib);

ic := mem(gf+dumpic)+1;

stack(lp-1) := top-count

END (* WITH *)

END (* ELSE *)

END; (* IORBBC, single step *)

10.17

236

Read Block of Words

10.17.1

This instruction resembles the Read Block of Bytes instruction

(section 10.15). A block of words is transferred, one word at a

time, fram the data_in register of the device to the buffer.

IORBW

Input/Output Read Block of Words Value: 75.64

Ip +

STACK BEFORE: STACK AFTER:

T T

' '
' '

1 '

' '

tpe '

count next

| start Ilo t

addyess LP

rp——____!

MEMORY:

resul-

iting -
words inp

device (current level):

(input word)

interrupt=true

10.17

10.17.61

237

(* IORBW, single step *)

CONST

iorbw = #h8375;

VAR

next : addr;

count : integer;

top : word;

data: word;

PROCEDURE dumpregisters(level : integer);

EXTERNAL;

LABEL

ioblockfinis, ioblocktimeout;

BEGIN

IF ip.base <> iorbw THEN

BEGIN (* first step *)

IF curlevel = 0 THEN

exception(block i/o level 0)

ps.eoi := 0;

dumpregisters(curlevel);

(* change mode *)

ib := iorbw; (* ip.base *)

lm := stack(lp-7); * (* top = last+] *)

ic := stack(1p-5); (* count *)

sf := stack(1p-3); (* next_address.base *)

lu := stack(lp-1)-1; (* next_address.disp-1 *)

GOTO fetch]

END

ELSE

BEGIN

WITH device(curlevel) DO

BEGIN

IF ps.to = 1 THEN GOTO ioblocktimeout;

interrupt := 0; (* clear interrupt *)

next.base := sf;

next.disp := lu;

count := ic;

top := lm;

IF count = 1 THEN

GOTO ioblockfinis;

function := read_data;

data := data_in;

IF eoi = 1 THEN

BEGIN

ps.eoi := 1;

GOTO ioblockfinis

END;

memword(next+1) := data;

next := next+2;

count := count-2;

IF count > 0 THEN

BEGIN

lu := next.disp;

ic := count;

GOTO fetch

END;

238

loblockfinis:

interrupt := 1;

ioblocktimeout:

lm:= mem(gf+dumpIn);

lu mem(g£+dump1u)-6;

sf := mem(gf+dumpsf);

ib := mem(gf+dumpib);

ic := mem(gf+dumpic)+1;

stack(lp-1) := top-count

END (* WITH *)
END (* ELSE *)

END; (* IORBW, single step *)

239

10.18 Read Block of Words and Clear 10.18

This instruction resembles the Read Block of Bytes instruction

except that the current interrupt level is cleared after the last

read function is performed.

10.18.1 IORBWC 10.18.1

Input/Output Read Block of Words and Clear Value: 74...

IP +

STACK BEFORE: STACK AFTER:

<
_

<
_
—
—

top ne|xt

LP———_—__—_

R
o

i
c

O
R

|
S

Q

c
t
 i
c
t

MEMORY:

resulting

— words

input

device (current level):

(input word)

interrupt=true

(* IORBWC, single step *)

240

CONST

lorbwe = #h8374;

VAR

next : addr;

count : integer;

top : word;

data : word;
PROCEDURE dumpregisters(level : integer);

EXTERNAL;

LABEL

ioblockfinis;

BEGIN

IF ip.base <> iorbbc THEN

BEGIN (* first step *)

IF curlevel = 0 THEN

exception(block i/o level 0)

ps.eoi := 0;

dumpregisters(curlevel);

(* change mode *)

s= lorbwe;

:= stack(1p-7);

stack (lp-5);

sf stack (1p-3);

lu := stack(1lp-1)-1;

GOTO fetch]

END

ELSE

BEGIN

WITH device(curlevel)

BEGIN

IF ps.to

interrupt

next.base

next.disp

count :=

top := ln;

IF count = 1 THEN

ib

lm

ic:=

u THEN

(* ip.base *)

(* top = last+] *)

(* count *)

(* next_address.base *)

(* next_address.disp-1 *)

DO

GOTO ioblockfinis;

(* clear interrupt *)

GOTO ioblockfinis

function

data := data_in;_

IF eoi = 1 THEN

BEGIN

ps.eoi := 1; interrupt := 1

read data;

7

GOTO ioblockfinis

END;

membyte (next+1)

next := next+2;

count := count-2;

IF count > 1 THEN

BEGIN

lu := next.disp;

ic := count;

GOTO fetch

END;

= data;

7

24)

ioblockfinis:

Im := mem(gf+dumpln);

lu := mem(gf+dumplu)-6;

sf := mem(gf+dunpsf);

ib := mem(gf+dumpib);

ic mem(gf+dumpic)+1;

stack(lp-1) := top-count

END (* WITH *)

END (* ELSE *)

END; (* IORBWC, single step *)

242

MONITOR CONTROL AND SYNCHRONIZATION

The instructions described in this chapter support monitor con-

trol, synchronization, and message buffer manipulation.

The instructions operate on a number of structures, including the

following:

- register set (see subsection 3.6.1)

- incarnation stack (see subsection 3.7.3.1)

- chain structures (see subsection 3.7.1.2)

- scheduler type (see below)

- semaphores (see subsection 3.7.2.2)

- message headers (see subsection 3.7.2.1)

The algorithmic descriptions in this chapter employ a number of

data structures, common variables, functions, and procedures.

Those which have not been defined in previous chapters are de-

fined below.

Data Structures

TYPE

counter type = RECORD

high : word;

low : word

END;

scheduler_type = RECORD

active queueO : addr;

n, (*highest active queue index *)

m, (* lowest active queue index *)

k, (* current active_queue index *)

nxt : integer;

dummy counter : counter_type

END;

wait_cause_type = PACKED RECORD

~ ~ unused : 0..63;

intrpt,

sem,

tim,

writecntrl : boolean;

unused] : 0..15

END;

243

Common Global Variables

VAR

head_a, last_a, first_a,

head_b, last_b, next : addr; (* used in queue manipulation *)
sem addr, sem, refaddr, ref, msg : addr ;
reg: registersset |.type;
register sets : ARRAY(0..123) OF register_set_type;
cur level : 0..123;

weause : wait _cause type;

device : ... (* cf. chapter 10 *)

The term memaddr(a) is introduced to defined two consecutive

words in memory pointed out by the address a, for example:

memaddr(a) :=b; means

memword(a) := b.base; and memword(at2) := b.disp;

Routines

PROCEDURE get_two_addresses;

BEGIN

head_a := memaddr(1lp-3);

ref addr := memaddr(lp-7)

END; "(* get_two_addresses *)

PROCEDURE dumpregisters(VAR reg : register_set_type);

VAR

inc_desc_ptr : addr;

BEGIN

IF reg.ib > -1 THEN

BEGIN

inc_desc_ptr.base := reg.pb;

inc_desc_ptr.disp := reg.pr;

memword(inc desc> ptr+dumpib) reg.ib; (* entry point base *)

memword(inc“desc_ptr+dumpic) reg.ic; (* entry point disp *)

memword (inc «> desc_ptrt+dumpsf) := reg.sf;
menword (ine <desc_ptr+dumplu) := reg.lu;
memword(inc «> desc_ptr+dumplm) := reg.1m;
memword(inc desc_ptr+dumpps) := reg.ps;

reg.ib := -1

END

END; (* dump registers *)

244

PROCEDURE load_registers;

BEGIN (* entry requirement : next = incarnation descriptor *)

dump _registers (reg); —

reg.1m := memword(next+dumpIn);

reg.ps := memword(next+dumpps);

reg.lu := memword (next+dumplu) ;
reg.sf := memword(next+dumpsf);

reg.ib := memword(next+dumpib); (* entry point base *)

reg.ic := memword(nexttdumpic) (* entry poypoint disp *)

END; (* load registers *)

PROCEDURE get_message;

BEGIN

IF ref_addr.base.nilbit = 1 THEN

exception(pointer = nil);

ref := memaddr(ref addr);

IF ref.base.lockbit = 1 THEN exception(reference locked)

END; (* get_message *)

PROCEDURE reserve a;

BEGIN ~
IF head_a.base.nilbit= 1 THEN exception(pointer = nil);

last_a := memaddr(head_a)

END; {(* reserve_a *)

PROCEDURE reserve _b;

BEGIN

IF head_b.base.nilbit= 1 THEN exception(pointer = nil);

last b := memaddr(head b)

END; (* reserve b*) ~

PROCEDURE unchain;

BEGIN (* unlink next from last a with head head a *)

IF last a = next THEN (* chain goes empty *)

memaddr (head a).base.nilbit := 1 we
ELSE

BEGIN (* queue remains non-empty *)

first_a := memaddr(next);

memaddr(last a) := first a

END ~ ~
END; (* unchain *)

PROCEDURE chainfirst(start_monitor : boolean);

BEGIN (* put next into thechain of head b *)
IF last_b.base.nilbit = 1 THEN chain(start_monitor) (* see below *)

ELSE

BEGIN

memaddr (next) := memaddr(last_b);

memaddr(last b) := next

END ~
END; (* chain first *)

245

PROCEDURE put_elemptr;

BEGIN

memaddr(ref addr) := next

END; (* put_elemptr *)

PROCEDURE change_a_b;

BEGIN

head_b := head_a;

last b := last a

END; (* change ab *)

PROCEDURE set_pswait(wcause : wait_cause_type);

BEGIN

reg := register sets(level);

reg.ps.wait := reg.ps.wait OR weause
END; (* set_ps wait *)

PROCEDURE send_control;

VAR

oldlp : word;

BEGIN

oldlp := lp;

IF weause.sem THEN lp := lp — 8;

device(cur_level).function := write_control;

device(cur level).control := memword(lp-1);

lp := oldlp —
END; (* send_control *)

PROCEDURE set_ref message_waited;

VAR

inc, ref_addr : addr;

BEGIN

inc := memaddr(next);

ref_addr := memaddr(inctmsg_waited);

memaddr(ref_addr) := ref

END; (* set_ref message waited *)

PROCEDURE set_chain head;

VAR ~
inc : addr;

BEGIN

inc := memaddr(next);

memaddr(inct+chainhead) := head b

END; (* set_chain head *) ~

246

PROCEDURE chain(start_monitor : boolean);

(* put an incarnation/message (next) in an active/semaphore queue

(head_b) as the last element; schedule if start monitor and

the queue was empty *) ~

BEGIN

IF memaddr(head b).base.nilbit = O THEN

BEGIN (* non empty queue *)

memaddr(next) := memaddr(last_b);

memaddr(last_b) := next

END ~
ELSE

BEGIN (* queue empty *)

memaddr(next) := next;

IF start monitor THEN

set _interrupt(monitor level); (* see below *)
memaddr(head_b) := next

END

END; (* chain *)

247

PROCEDURE signal;

VAR

inc : addr;

BEGIN (* defined variables at entry:

head a is the address of the semaphore,

ref Is the address of the message,

ref addr is the address of ref *)

reserve a; (* last a := memaddr(head a), i.e. the last

~ element of the chain *)

IF (last_a.base.nilbit=0) AND

(last a.base.bit]5=1) THEN

BEGIN (* semaphore locked *)

next := memaddr(last_a); (* first incarnation in the

chain *)

(* now next is the address of an incarnation descriptor *)

inc := memaddr(next);

(* now inc is a global frame pointer *)

IF menbyte(inctlevel) = 0 THEN

BEGIN

head_b := memaddr(inctactivequeue) ;

reserve b;
set_ref message _waited; (* inc msg waited) := msg *)
set_chain head;

unchain; (* unlink incarnation from semaphore *)

chain(true)

END

ELSE

BEGIN (* level of receiving incarnation > 0 *)

set_ref message waited;

set interrupt(level); (* see below *)
memaddr(inctchainhead).base.nilbit := 1;

unchain

END (* level >0 *)

END (* semaphore locked *)

ELSE

BEGIN (* semaphore open or passive *)

change_a_b;

chain(false) (* chain the message to the queue of the

semaphore *)

END;

memaddr(ref addr).base.nilbit := 1

END; (* signal *)

PROCEDURE set_interrupt(level : integer);

BEGIN

set external (level);

IF Tevel <= 7 THEN

set_internal (level)

END; (* set_interrupt *)

248

PROCEDURE clear _interrupt(level : integer);

BEGIN

clear_external (level);

IF level <= 7 THEN

clear internal(level)

END; (* Clear interrupt *)

PROCEDURE wait(multiple : boolean; VAR effwait : boolean);

BEGIN (* defined variables at entry:

head_a is the address of the semaphore,

ref addr is the address of the ref to receive a mes-

sage *)
get_message;

IF ref.base.nilbit = 0 THEN

exception(wait : reference < nil);

reservea;

IF (last_a.base.nilbit=0) AND

(last_a.base.bit15=0) THEN
BEGIN (* semaphore open *)

next := memaddr(last_a);

unchain;

effwait := false;

put_elemptr .

END;

ELSE

BEGIN (* semaphore passive or locked *)

IF multiple AND (last a.base.bit15=1) THEN

exception(multiple wait on locked semaphore);

next := gf; (* current process *)

change_a_b;

memaddr(gftmsg waited) := ref_addr;

IF cur_level < 0 THEN

clear_interrupt

ELSE

BEGIN

head_a := memaddr(gf+chainhead);

deschedulelO (* see below *)
END;

effwait := true;

set_chain head;

chain(false)

END (* semaphore passive or locked *)

END; (* wait *)

249

PROCEDURE deschulel0;

BEGIN (* entry requirements: head_a

next

active queue,

process *)

reserve a;

unchain;

set_interrupt(monitor_level)
END; ~ (* deschedulelO *)

FUNCTION test_interrupt : boolean;

BEGIN

test_interrupt := cur_level <> next_level

END; (* test_interrupt*)

PROCEDURE deschedule;

BEGIN

IF cur_level < 0 THEN

clear_interrupt(cur_level)

ELSE

BEGIN

next := gf;

head_a := memaddr(gf+chainhead);

memaddr(gf+chainhead).base.nilbit := 1

END

END; (* deschedule *)

11.1 Signal 11.1

The instructions in this group signal a message to a semaphore.

If the semaphore is closed, a process incarnation is moved from

the semaphore to an active queue with a reference to the message.

If the semaphore is open or passive, the message is linked as the

last element in the semaphore queue.

11.1.1 CSIGN

Control SIGN

m + {_CSIGN]

STACK BEFORE:

|__. ref. addr —____

f— sem. Addr ——~

250

Value: 1 lex

STACK AFTER:

The state of the semaphore determines the chaining and unchaining

performed. These data structure modifications are not shown.

(* CSIGN *)

BEGIN

get_two addresses;

get_message;

IF ref.base.nilbit = 1 THEN exception(pointer

signal;

lp := lp - 8;

ip := ip+1

END; (* CSIGN *)

= nil);

11.1.1

—

11.1.2

251

CRELE

Control RELEase Message Value: 124,,

Ip > { CREE | parameter |

STACK BEFORE: STACK AFTER:

T

J

1

i

4

‘ [
F— ref. addr -—~4 IP

ip —_—_!
(* CRELE*)

VAR

semrel : word;

BEGIN

semrel := membyte(ip+]);

ref_addr := memaddr(lp-3);

get_message;

head_a.disp := ref.disp + semrel;

head_a.base := ref.base;

IF rel.base.nilbit = 1 THEN exception(pointer = nil);

reserve a;

signal;

lp := lp - 4;

ip :=ip+2

END; (* CRELE *)

11.1.2

11.2

11.2.1

Wa:

252

it

The instructions in this group wait for a message from a sema-—

phore. Depending on which of the instructions is used, the pro-

ce:ss incarnation executing the instruction will/will not be re-

moved from the active queue if the semaphore is closed or pas-

sive.

CSENS

Control SENSe Semaphore Value: Spex

Ip > CSENS

STACK BEFORE: . STACK AFTER:

_
—
—

tf ref.| addr. LP

KH sem.| addr ——

tp ——___!

(* CSENS *)

BEGIN

get_two_addresses;

get message;

IF ref.base.nilbit = 1 THEN exception(reference <> nil);
reserve_a; (* last_a := sem *)

IF (last_a.base.nilbit=1) OR (last_a.base.bit15=1) THEN

BEGIN (* not open *)
next := nil;

put_elemptr

END

ELSE

BEGIN

next := memaddr(last_a);

unchain; (* unlink message fran semaphore *)

put_elemptr

END;

lp := lp - 8;

ip = ip+1

END; (* CSENS *)

11.2

11.2.1

11.2.2 CWAIT

Control WAIT

we > Corr]

STACK BEFORE:

t— ref. addr ——-

b— sem. addr ——-

tp——____

(* CWAIT *)

VAR

dummy : boolean;

BEGIN

get_two_addresses;

wait(false, dummy);

ip :=ip+1

END; (* CWAIT *)

253

Value: 1 Onex

STACK AFTER:

-——- ref. Addr ——+

I sem. Bddr ——+

11.2.2

11.2.3 CWTAC

Control WaiT And Clear

TP + [Gwrac|

STACK BEFORE:

p— ref. addr ——

f— sem.: Addr -——

ip —__l

(* CWTAC *)

BEGIN

get_two_addresses;

ref := memaddr(ref_ addr);

IF ref.base.nilbit = 1 THEN

clear_interrupt(cur_level)

ELSE

BEGIN

lp :=

ip :=

END

END; (* CWTIAC *)

lp- 8

ip +1

254

Value: 1 Sex

STACK AFTER: unchanged or

|
|
ip ——___!

11.2.3

255

Link/Unlink 11.3

11.3.1

The instructions of this group manipulate elements of a chained

structure (see section 3.7).

CLLST 11.3.1

Control Link LasT Value: 13 ay

wr + [aIsT]

STACK BEFORE: STACK AFTER:

+

4

!

|

fF—- head -—~4 LP

elem

adr

tp—___!

The structure pointed out by elemaddr is linked as the last el-

ement in the chain pointed out by head.

(* CLLST*)

BEGIN

get_two_addresses; (* head_a := head; ref_addr := elem addr *)

head b := head a;

reserve_b; ~
get_message;

next := ref;

chain(false);

lp := 1p - 8;

ip := ip +1

END; (* CLLST *)

256

11.3.2 CSKIP 11.3.2

—

Control SKIP to Next Value: 4a

IP +

STACK BEFORE: STACK AFTER:

—
_
—
—

-+——head jaddr ——- LP

(* CSKIP *)

VAR

head addr, link : addr;

BEGIN —

head addr := memaddr(lp-3);
IF head_addr.base.nilbit = 1 THEN

exception(nil exception);

link := memaddr(head_addr);

IF link.base.nilbit = 0 THEN

memaddr (head_addr) := memaddr (link)
END; (* CSKIP *)

11.4 Select Level

11.4.1

This instruction is used to

register set as the current

CSELL

Control SELect Level

IP > CSELL

STACK BEFORE:

new ibvel

tp—___!

257

select a new level with corresponding

level for a process incarnation.

11.4.1

Value: 1 Agex

STACK AFTER:

T

|
1p—____

As a process incarnation executing on a level > 0 is scheduled by

interrupts, the different cambinations of level = 0, level > 0,

new level = 0, and new level > 0 will cause different actions to

be taken.

258

(* CSELL *)

VAR

new_level : integer;

BEGIN

new_level := stack(1p-1);

next := gf; (* global frame *)

head_a := memaddr(nexttactivequeue) ;

reserve a;

clear- interrupt(cur_|level);
IF new_level= 0 THEN

BEGIN

IF level > 0 THEN

BEGIN (* put current process into active queue *)

change_a_b;

set chain head;

chain first(false)

END

END

ELSE

BEGIN (* new_level > 0 *)

set_interrupt(new_level);

IF level = 0 THEN

BEGIN (* unlink own from active queue *)

head_b.base.nilbit := 1;

set. chain }head;
unchain;

set_interrupt(monitor_level)

END

END; (* new level > 0 *)

(* common select level action *)

membyte(next+level) := new_level;

dump_registers(reg);

load_registers;

reg := register_sets(new_level*8+7);

reg.ps.to := 0;_

level := new_level;

lp := lp - 2;

ip :=ip+1

END; (* CSELL *)

259

11.5 Stop 11.5

This instruction stops a process incarnation by removing it from

the chained structures. The contents of the register set will

have been dumped in the process incarnation descriptor after ex-

ecution. The instruction must be executed fram level 0.

11.5.1 CSTOP 11.5.1

Control STOP Value: 1Bye,

IP +

STACK BEFORE: STACK AFTER:

PR—-wonkp —

The instruction may be executed only on level 0.

260

(* CSTOP *)

VAR

reg : 0..123;

wpchain head, p, workp, pred, next : addr;

BEGIN

get_two_ addresses;

workp := head a;

p := ref_addr;

head_b := memaddr(ref_addr+chain_head);

IF head b.base.nilbit= 0 THEN
BEGIN. (* unlink p fram its chain *)

reserve_b;

IF workp.base.nilbit = 0 THEN

BEGIN (* continue after interrupt *)

wpchainhead := memaddr(workp + chainhead);

IF wpchainhead < head_b THEN head_a := last_b

END

ELSE

head_a := last_b; (* first loop *)

rep: pred := head a;

head_a := memaddr(pred);

IF head_a = p THEN GOTO found;
IF test_interrupt THEN
BEGIN

memaddr(1p-7) := head_a; (* rewrite workp *)

instruction fetch

END; ~
GOTO rep;

found: (* p = head_a, pred= preceding process,

head_b =:head of chain, last b = last of chain *)

IF p = pred THEN memaddr(head_b).base.nilbit := 1

ELSE

BEGIN

next := memaddr(head_a);

memaddr(pred) := next;

IF last_b = head_a THEN memaddr (head }b) := pred
END

END; (* unlink p fram its chain *)
reg := membyte(p+tlevel);

IF reg > O THEN dump registers(register_sets(reg));

ps := memword(ptdumpp);

memword(ptdumpp) := ps AND (NOT ps.wait); (* clear wait bit *)

lp := lp- 8;

ip :=ip+1

END; (* CSTOP *)

261

11.6 Multiple Wait 11.6

The instructions in this group form together a mltiple wait on

cambinations of three different events: a message fram a sema-

phore, an interrupt, and a timeout. This results in seven differ-

ent wait cambinations.

11.6.1 McIS 11.6.1

Multiple Control Interrupt and Semaphore Value: 58 ex

IP >

STACK BEFORE: STACK AFTER:

—
_
—
—
.

control control

[—— ref. addr — 7 f— ref. Bddr ——

f—— sem. addr —+ L—- sem. bddr ——

(* McIS *)

VAR

oldip : addr:

dummy result : boolean;

BEGIN

WITH weause DO

BEGIN

intrpt := true;

sem := true;

tim := false;

writecntrl := true

END;

set_pswait(wcause) ;

get two addresses;

wait(true, dummy result);

send_control;

ip :=ip+1

END; (* MIS *)

11.6.2 MCIT

262

Multiple Control Interrupt and Timer Value: 680%

ip + [|_mrT|

STACK BEFORE:

J

contkol

ip——__|

(* MCIT *)

BEGIN

WITH weause DO

BEGIN

intrpt := true;

sem := false;

tim := true;

writecntrl := true

END;

set_pswait(wcause);

STACK AFTER:

contkol

IF memword(gf+timer) > 0 THEN deschedule;

send_control;

ip :=ip+1

END; (* MCIT *)

11.6.2

263

_ 11.6.3 McIST 11.6.3

Multiple Control Interrupt, Semaphore, and Timer Value: 784,

IP + MCIST

STACK BEFORE: STACK AFTER:

1 H
‘ ‘
‘ 1

‘ 1

t '

control control

fP— ref. addr —— f[— ref. addr ——]

i ["— sem. addr —— [7 sem. Bddr ——7|

~p ———_| 1p——___l

(* MCIST *)

VAR

oldlp : addr;

dummy_result : boolean;

BEGIN

WITH weause DO

BEGIN

intrpt := true;

sem := true;

tim := true;

_ writecntrl := true

END;

set_pswait(wcause);

IF memword(gf+timer) > 0 THEN

BEGIN

get_two_addresses;

wait(true, dummy result)

END; ~
send_control;

ip = ip+1

END; (* MCIST *)

264

11.6.4 MWI 11.6.4

we

Multiple Wait Interrupt Value: 88 rox

IP >

STACK BEFORE: STACK AFTER:

|
The stack is not involved.

(* MWI*)

BEGIN (* suicide if executed on level 0 *)

WITH weause DO

BEGIN

intrpt := true;

sem := false;

tim := false;

writecntrl := false

END;

set_ps wait(wcause);

deschedule;

ip :=ip+1

END; (* MWI *)

265

11.6.5 Mwr 11.6.5

Multiple Wait Timer Value: 20x

IP +

STACK BEFORE: STACK AFTER:

|

|
wp ——___! i ——___]

The stack is not involved.

(* MwT *)

BEGIN

WITH weause DO

BEGIN

intrpt := false;

sem := false;

tim := true;

writecntrl := false

END;

set_pswait(wcause);

IF memword(gf+timer) > O THEN deschedule;

ip :=ip+1

END; (* MAT *)

266

11.6.6 MWIS 11.6.6

Multiple Wait Interrupt and Semaphore Value: 1834,

ip + [mas]

STACK BEFORE: STACK AFTER:

—

t—— ref. addr —— r—— ref.| addr ——

L— sem. khddr —— t— sem.| addr —

tp ——___| ip—___l

(* MWIS *)

VAR

oldlp : addr;

dummy_result : boolean;

BEGIN

WITH weause DO

BEGIN

intrpt := true;

sem := true;

tim := false;

writecntrl := false

END;

set_pswait(wcause);

get two addresses; —

wait(true, dummy result);

ip :=ip+1

END; (* MWIS *)

11.6.7

267

MWIT

Multiple Wait Interrupt and Timer Value: 28.5

IP +

STACK BEFORE: STACK AFTER:

|LP

The stack is not involved.

(* MWIT *)

BEGIN

WITH weause DO

BEGIN

intrpt := true;

sem := false;

tim := true;

writecntrl := false

END;

set_ps wait(wcause) ;

IF mem(gf+timer) > 0 THEN deschedule;

ip :=ip+1

END; (* MWIT *)

11.6.7

268

11.6.8 MwsT 11.6.8

Multiple Wait Semaphore and Timer Value: 30)...

I >

STACK BEFORE: STACK AFTER:

T T

I !

! |

| 1

l !

r— ref. addr ——~+ P—— ref.| addr —~+

r— sem. addr —— r—- sem.| addr ——

—

(* MWST *)

VAR

dummy result : boolean;

BEGIN —

WITH weause DO

BEGIN

intrpt := false;

sem := true;

tim := true;

writecntrl := false

END;

set_ps_wait(wcause);

IF mem(gf+timer) > O THEN

BEGIN —

get_two_addresses;

wait(true, dummy result)

END;

ip :=ip+1

END; (* MWST *)

269

11.6.9 MwWIST 11.6.9

Multiple Wait Interrupt, Semaphore, and Timer Value: 38ex

IP +

STACK BEFORE: STACK AFTER:

T T

t 1
1 \

1 t

! I

{

t— ref.| addr —4 -_-_ ref.j addr — 4

sem.| addr —— -— sem.} addr ——

1p ——_ w J

(* MWIST *)

VAR

dummy result : boolean;

BEGIN

WITH weause DO

BEGIN

intrpt := true;

sem := true;

tim := true;

writecntrl := false

END;

set_ps wait(wcause) ;

IF mem(gft+timer) > 0 THEN
BEGIN

get_two_addresses;

wait(true, dummy result);

END;

ip := ip+1

END; (* MWIST *)

270

11.6.10 | MWIAC

Multiple WaiT And Clear Value: 173,,

m+ CHS]

STACK BEFORE: STACK AFTER:

|_ ref. ladar cause [value

b—-sem. jaddr —~+

or:

STACK BEFORE: STACK AFTER:

p
f
—

—

i cause value

iP etLP

The stack before execution is shown in two situations, either

containing semaphore and reference addresses or being empty. Fur-

thermore the stack may contain a control word in both situations

(placed at the lowest stack address). In all situations the stack

is emptied (0, 2, 8 or 10 bytes are removed), and the cause value

is placed as the result.

The cause value may be one of the following: O for interrupt; 1

for message; or 2 for timer.

11.6.10

271

(* MWIAC *)

VAR

causeval : (interrupt, message, timer);
t : integer;

BEGIN

IF register sets(cur level).ps.wait.sem = false THEN GOTO testtimer;

ref_addr :=memaddr(Ip-7);

ref.base := mem(ref_addr);

IF ref.base.nilbit = 1 THEN GOTO testtimer;

causeval := message;

pfetch: IF register_sets(cur_level).ps.wait.sem THEN lp := lp - 8;

IF register_sets(cur_level).ps.wait.wrtcntrl THEN lp := lp - 2;
WITH weause DO

BEGIN

intrp := false;

sem := false;

tim := false;

writecntrl := false

END;

set ps wait(wcause);

mem(lp+1) := causeval;
lp := lp + 2;

ip = ip+1;

GOTO end _mwtac;

testtimer: (* if timeout, p is unlinked from semaphore

by MIIME instruction *)

IF register sets(cur level).ps.wait.tim = false THEN GOTO inttest;

t := mem(gfttimer); —

IF t > O THEN GOTO inttest;

causeval := timer;

GOTO pfetch;

inttest: IF register_sets(cur_level).ps.wait.intrpt = false THEN

GOTO repeatinst;

IF registers(curlevel).ps.wait.sem THEN

BEGIN (* unlink current process fran semaphore *)

next := gf;

get two addresses;

reserve_a;

unchain;

head_b.base.nilbit := 1;

set_chain head

END; (* unlink own from semaphore*)
causeval := interrupt;

GOTO pfetch;

repeatinst: deschedule; (* repeat instruction on next activation *)

end_mwtac:

END; (* MWTAC *)

272

11.7 Time 11.7

This instruction is used to provide timeout service for process

incarnations requesting it.

11.7.1 MTIME 11.7.1

Monitor function TIME count down Value: 1936,

tm > [MrINME|

STACK BEFORE: STACK AFTER:

T T

‘ 1

‘ 1

‘ ‘
4 it

| incarnation __| i

address LP

ip —___l

: This instruction must be executed on level 0!

273

(* MIME *)

VAR

p : addr;

t, 1 : integer;

ps : word;

BEGIN

p := memaddr(1lp-3);

rep:

IF p.base.nilbit = 1 THEN

BEGIN

lp := lp - 4;
ip ip +1;

GOTO end mtime

END; ~
t := mem(pttimer);
IF t <= 0 THEN GOTO nextp;

mem(pttimer) :=t - 1;

IFt - 1 < O THEN GOTO nextp;

(* time out *)

1 := membyte(ptlevel);

IF 1 <> O THEN

BEGIN (* driver timeout *)

IF register sets(1).ib = - 1 THEN GOTO already scheduled;

(* p is stopped *)

o
o

o
e

ps := register sets(1).ps;

register sets(I).ps := ps OR to; (* time aut *)

set_interrupt(1)

END

ELSE

ps := mem(ptdumpps);

IF ps.wait.tim = false THEN GOTO already scheduled;

head_a := memaddr(ptchainhead) ; ~

next := p;

IF (ps.wait.sem) AND (head_a.base.nilbit=0) AND

(head_a.base.bit15=0) THEN

BEGIN (* unlink process from semaphore *)

reserve a;

unchain;

memaddr(ptchainhead) .base.nilbit := 1;

head_a.base.nilbit := 1

END;

(* schedule p *)

IF 1 = 0 THEN (* level= 0 *)

BEGIN (* link p to active queue if and mly if not already

linked *)

IF (head_a.base.nilbit=0) AND (head_a.base.bit1]5=1) THEN

GOTO already scheduled;

head_b := memaddr(ptactive queue) ;

reserve b;

set_chain head;

chain(true)

END; (* else interrupt already set *)

already scheduled:

nextp:

p := memaddr(pttchain);

IF NOT test_interrupt THEN GOTO rep;

stack(lp-3) := paddr.base;

stack(lp-1) := paddr.disp;

end_mtime:

END; (* MTIME *)

274

Schedule Next Incarnation to Run

11.8.1

This instruction prepares the scheduling of the next process

carnation to run. The actual selection of the incarnation is

tegrated in the instruction fetch.

SCHEDule Value: 1 Dy ex

tp > [SCHED|

STACK BEFORE: STACK AFTER:

ip —_____l ip ——____l

The stack is not involved.

(* SCHED *)

VAR

scheduler data : scheduler type;

BEGIN ~ ~
scheduler _data.nxt := scheduler data.n;

dump_registers(register_sets(0));

clear interrupt(monitor level);

ip :=ip+1 ~

END; (* SCHED *)

in-

in-

11.8.1

11.9 Driver Activation

11.9.1

275

The instructions are used to start a driver on its associated

interrupt level, and to choose a new current lewel.

CSTDR

Control STart DRiver

tm > [{_csToR_|

STACK BEFORE:

w
+
+
+
-
+
4

in Ation

address

tp____

(* CSTDR *)

VAR

1: integer;

BEGIN

next := memaddr(lp-3);

load_registers;

1 := membyte(next+level);

set_interrupt(1);
lp := lp - 4;

ip = ip+1

END; (* CSTDR *)

11.8.1

Value: 1Cyoy

STACK AFTER:

—

11.9.2 CSLEV

Control Set LEVel

IP +

STACK BEFORE:

|

|
t- leviel —

(* CSLEV *)

VAR

level : integer;

BEGIN

level := memword(lp-1);

cur_level := level;

set_interrupt(level);

lp := lp - 2;

ip = ipt+l

END; (* CSLEV *)

276

Value: 1 Eyex

STACK AFTER:

<
—
—
—

11.9.2

_—~ 11.10

277

Register Array Operations 11.10

11.10.17

The instructions in this group are used to manipulate the re-

gister array (section 3.6) and the RAM memory of the control

microprocessor (section 3.3).

CRGET 11.10.21

Control Register GET Value: Nex

IP +

STACK BEFORE: STACK AFTER:

T T

i} !
1 t

1 1

(t

1 1

L t

operland reshblt

REGISTER ARRAY:

N
o

result ——

1023

(* CRGET *)

VAR

registers : ARRAY(0..1023) OF word;

BEGIN

stack(lp-1) := registers(stack(lp-1));

ip :=ip+1

END; (* CRGET *)

11.10.2

278

CRPUT

Control Register PUT Value: BI

IP > CRPUT

STACK BEFORE: STACK AFTER:

T T

|
\ \

| |
vallue

reg. nr. LP

ip OTT

or:

REGISTER ARRAY BEFORE: REGISTER ARRAY AFTER:

— =

reg. nr.> value

1023 1023

The stack is not involved.

(* CRPUT *)

VAR

registers : ARRAY(0..1023) OF word;

BEGIN

registers(memword(lp-1)}) := memword(1p-3);

lp := lp - 4;

ip = ip+1

END; (* CRPUT *)

10.2

_

11.10.3 CRRAM

Control Read RAM of Control Processor

Tm + [_CRRAM|

STACK BEFORE:

CONTROL

PROCESSOR RAM COPY:

0

result —

31

(* CRRAM*)

VAR

control byte addr : addr;

control _processor_ram copy : ARRAY(0..31) OF byte; (* placed as

first part

of the first

ram module *)

BEGIN

control_byte addr.base :

control byte addr.disp : o
u #nCO;

stack(lp - 1);

Value: Dj

STACK AFTER:

|
|

T

4

1

‘

'

4
4

resiult

ip ——__]

stack(1Ip - 1) := word(membyte(control_byte addr));
ip :=ip+1

END; (* CRRAM *)

11.10.3

280

11.10.4 | CWRAM 11.10.4

nd

Control Write RAM of Control Processor Value: FOnex

rp + CCWRAN]

STACK BEFORE: STACK AFTER:
S
t
e
a
t
e
a
n
e
t
a
e
t

|

_
—

<
<

value LP

CONTROL

PROCESSOR RAM COPY:

0

vatlue

31

(* CWRAM*)

VAR

control byte addr : addr;

value : byte;
BEGIN

control byte addr.base := #hCO;

value := stack(lp-1);

control_byte addr.disp := stack(lp - 3);

IF register sets(cam8085).cow = O THEN
(* 8085 debugger not busy *)

BEGIN

membyte(control_byte addr) := value;

send_interrupt_to_the_8085debugger

lp := 1p - 4;

ip :=ip+1

END; (* CWRAM*)

11.10.5 CGREG

Control Get REGister

28)

11.10.5

Value: 1 Fue x

IP > CGREG

STACK BEFORE: STACK AFTER:

| T T

I |

i |
\ !

i \
1 i| | |

rebno
LP rn

LPO

(* CGREG *)

BEGIN

IF lp > ms-2 THEN exception(stack overflow);

memword(lp+1) := cur_level * 8 + 7;

lp := lp + 2; ,

ip :=ip+1

END; (* CGREG *)

282

11.10.6 _MBTES 11.10.6

Miscellaneous Bits TESt in Status Register Value: DI Hex

1 + (ESTES

STACK BEFORE: STACK AFTER:

—

}
—
}
-

—
—

—
~
-

4

<
—
—

LP

(* MBTES *)

BEGIN

IF lp > ms — 2 THEN exception(stack overflow);

IF reg.ps AND memword(ip+1) = O THEN

memword(lpt1) := 0 (* false *)

ELSE

memword(lpt+1) := 1;

lp := lp + 2;

ip = ip + 3

END; (* MBTES *)

a
11.10.7

283

MBSET

Miscellaneous Bits SET or Clear in Status Register

Flitex

ip > (MBSET | m as kj

STACK BEFORE: STACK AFTER:

T T

|
1 1

{ |
s eft

Lp —______]
LP |

(* MBSET*)

VAR

set : boolean;

mask : word;

BEGIN

mask := memword(ip + 1);

set := memword(lp - 1);

reg.ps := reg.ps AND NOT mask; (* clear mask bit *)

IF set THEN

reg.ps := reg.ps OR mask;

lp := lp - 2;

ip := ip +3

END; (* MBSET *)

11.10.7

284

11.11 Push and Pop 11.11

The instructions in this group are used for manipulation of

message stacks, i.e. they support the language constructs push

and pop.

11.11.1 LPUSH 11.11.61

Language Support PUSH Value: Cex

rm > [ES05F_]

STACK BEFORE: STACK AFTER:
—

1 {

\ '

T

| referdnce 1 | t

address LPO

reference 2

address 7]

ip ——__]

—

285

(* LPUSH *)

CONST

headerkind = 0;

msgkind = 4; (* offset in message header *)
msgsize = 6; (* offset in message header *)

msgstart = 8; (* offset in message header *)

stackchain = 18; (* offset in message header *)

VAR

rla, r2a, rlstack, rl, r2, r2saddr : addr;

rekind, r2size : word;

BEGIN

get_two addresses; (* rla = ref_addr, r2a = head_a *)

get message; (* rl = ref *)

IF rl.base.nilbit = 1 THEN exception(push : nil rl);
ristack := memaddr(rl+stackchain) ;

IF rlstack.base.nilbit = 0 THEN exception(push : not empty rl);
x2 := memaddr(r2a);

IF rl = r2 THEN exception(push : identical arguments);

IF r2.base.lockbit = 1 THEN exception(push : locked r2);
memaddr(ria).base.nilbit := 1;

memaddr(r1l+stackchain) := r2;

memaddr(r2a) := rl;

rlkind := memword(r1+kind);

IF (r2.base.nilbit=0) AND (rlkind = headerkind) THEN

BEGIN (* copy buffer description *)

r2size := memword(r2+msgsize);

r2saddr := memaddr(r2+msgstart) ;

memaddr(ri+msgstart) := r2addr);

memword(ri+msgsize) := r2size

END;

lp := 1p- 8;

ip :=ip+1

END; (* LPUSH *)

11.11.2 LPOP

Language Support POP

IP >

STACK BEFORE:

_
—
—
—

LP

addxy

| reference

ess

reference

addyess

286

Value: TD sex

STACK AFTER:

|

11.11.2

287

(* LPOP *)

CONST

headerkind = 0;

msgkind = 4; (* offset in message header *)

msgsize = 6; (* offset in message header *)
msgstart = 8; (* offset in message header *)

stackchain = 18; (* offset in message header *)

VAR

rl, r2, ria, r2a, r2stack : addr;

r2kind : word;

BEGIN

get two addresses; (* rla = ref addr, r2a = head_a *)

rl := memaddr(rla);

IF rl.base.nilbit = 1 THEN exception(pop : rl] not nil);

r2 := memaddr(r2a);

IF r2.base.lockbit = 1 THEN exception(pop : locked r2);

IF r2.base.nilbit = 1 THEN exception(pop : nil r2);
memaddr(rla) := r2;

r2stack := memaddr(r2 + stackchain);

memaddr(r2+stackchain).base.nilbit := 1;

memaddr(r2a) := r2stack;

r2kind := memword(r2+msgkind);

IF r2kind = headerkind THEN

BEGIN (* copy buffer description of msg 1 *)

memword(r2+msgsize) := 0;

memword(r2+msgstart).base.nilbit := 1

END

lp
ip

END;

=1p- 8;

=ip+]

(* LPoP*)

288

11.12 Lock Support 11.12

The instructions in this group support the language construct: a

lock statement.

11.12.1 LLOCK 11.12.1

Language Support LOCK Type on Message Value: TEex

Ip 5 {uLocK | paraheter |

STACK BEFORE: STACK AFTER:

| T T

| | | | ~i) |
1 1

+ ! 4 \

reference _ | reference _

address address

mingize .

LP tf
LP —___}

(* LLOCK *)

CONST

msgkind = 4; (* offset in message header *)

msgsize = 6 (* offset in message header *)

msgstart = 8; (* offset in message header *)

VAR —

minsize, ldisp : word;

vef, ref addr : addr;

BEGIN ~
ldisp := memword(ip+]);

minsize := memword(lp-1);
ref_addr := memaddr(lp-5);

ref := memaddr(ref addr);

IF ref.base.nilbit’= 1 THEN exception(nil address);

IF ref.base.lockbit = 1 THEN exception(reference locked);

IF memword(reft+msgkind) < 0 THEN exception(lock : type error);
IF memword(reftmsgsize) < minsize THEN exception(lock : size error);
memaddr(lf+ldisp) := memaddr(ref+msgstart);

lp := 1p - 2;

ip := ip + 3

END; (* LLOCK *)

11.12.2

289

LRESE 11.12.2

Language Support RESErve Reference Value: 7Eiex

mp > [_RESE|

STACK BEFORE: STACK AFTER:

T

'

1

1

1

“
_
—

| reference _| | reference |

address address

tp ——___l tp ——_]

(* LRESE, reserve reference, i.e. set lockbit *)

BEGIN

ref_addr := memaddr(1p-3);

ref := memaddr(refaddr);

IF ref.base.nilbit = 1 THEN

exception(nil address);

IF ref.base.lockbit = 1 THEN

exception(reference locked);

ref.base.lockbit := 1;

ip = ip+1

END; (* LRESE *)

290

12. INDEXING AN ARRAY 12.

—

12.1 Range Test 12.1

This instruction has two operands. Operand 1 is a range descrip-

tor, which describes a subrange of integers. If the value of

operand 2 does not belong to the subrange described by operand 1,

an exception occurs.

12.1.1 INTRS 12.1.1

INdex Test Range via Stack Value: 6Cuex

IP +

STACK BEFORE: STACK AFTER:

T T

| | !H \
|
operpnd 2 operand2

-— paranfpter —|} anor resmit

—___] 7 ———LP

access

SAo
joperand 1|{-——~

range descriptor

A range descriptor is an object of type DOUBLE. The first WORD is

interpreted as a signed integer, and specifies the lower bound of

the range. The second WORD is also interpreted as a signed in-

teger, and specifies the upper bound of the range. The first byte

of a range descriptor mist be on a word boundary.

291

(* INTRS *)

VAR

range_descriptor : RECORD

lower : integer;

upper : integer

END;

index : integer;

address : addr;

BEGIN

index := stack(lp-5);

address.base := stack(lp-3);

address.disp := stack(1p-1);

WITH range descriptor DO

BEGIN

lower := mem(address);

upper := mem(address+2);

IF (index < lower) OR (upper < index) THEN

exception(subrange out of bounds)

END;

lp := 1p - 4;

ip :=ip+1

END; (* INTRS *)

12.2

292

Indexing an Array

This instruction has three operands:

Operand 1 is interpreted as the address (ADDR) of the first byte

of the first element of the array to be indexed.

Operand 2 is interpreted as a dope vector.

Operand 3 is interpreted as a signed integer. The value of this

operand is the index.

The result is the address (ADDR) of the first byte of the array

element selected by operand 3.

-_ 12.2.1

293

INDEX

INDEX Value: 6Diex

STACK BEFORE: STACK AFTER:

T T

! |
\

roperjandiq rr result —

operfjand3 t
—

r[- parameter 4+ ADDR WW

~~ ——__|

access

MEMORY: path:

SA
oO

;operand2|

dope

vector

A dope vector is an object which describes a one-dimensional ar-

ray. The object consists of a DOUBLE, which is a range descriptor

for the index type, followed by a WORD, which specifies the num

ber of bytes occupied by each element of the array. The first

byte in a dope vector must be on a word boundary.

12.2.1

294

(* INDEX *)

VAR

operand : addr;

dope_vector : RECORD

lower : integer;

upper : integer

size : integer

END;

address : addr;

index : integer;

BEGIN

index := stack(lp-5);

address.base := stack(1p-3)

address.disp := stack(1p-1)

WITH dope_vector DO

BEGIN

lower := mem(address);

upper := mem(address+2);

size := mem(address+4);

IF (index < lower) OR (upper < index) THEN

exception(index error);

operand.disp := stack(lp-7);

stack(lp-7) := operand.disp + size * (index - lower)

?

?

END

lp := lp - 6;

ip := ip+1

END (* INDEX *)

12.2

12.3

295

Push an Element of a Packed Array

This instruction pushes an element of a packed (one-dimensional)

array on the stack. The instruction has three operands:

Operand 1] is interpreted as the address (ADDR) of the first byte

of the first element of the array to be indexed.

Operand 2 is interpreted as a packed dope vector.

Operand 3 is interpreted as a signed integer. The value of this

operand is the index.

The result is a WORD. It is the value of the array element se—

lected by operand 3. The value is right justified with zero ex-

tension.

12.3

12.3.1

296

INPRS

INdex Packed Array Retrieve via Stack Value: 6EHex

tp > (ANPRS"]

STACK BEFORE: STACK AFTER:

H T

i i

i !

Poperiandic rF result —-

operjand3 {

- parameter 4 ADDR 1

~ ——__]

access

MEMORY: path:

SA
O41

Joperand2|

| packed dope 4

Vector

A packed dope vector is an object which describes a one-dimen-

sional packed array. The object consists of a DOUBLE, which is a

range descriptor for the index type, followed by two BYTEs; the

first is the mumber of array elements packed in a single WORD,

and the second is the size of one element in bits. The first byte

in a packed dope vector must be on a word boundary.

12.3.1

—

297

(* INPRS *)

VAR

packed_dope vector : RECORD

lower : integer;

upper : integer;

no : byte;

size : byte

END;

index : integer;

result : word;

addr] : addr;

addr2 : addr;

BEGIN

index := stack(lp-5);
addrl.base := stack(1p-3);

addr1.disp := stack(lp-1);

WITH packed_dope vector DO

BEGIN

lower := mem(addr1);

upper := mem(addr1+2);

no := membyte(addr1+4);

size := membyte(addr1+5);

IF (index < lower) OR (upper < index) THEN (* signed compare *)
exception(index error);

index := index - lower;

addr2.base := stack(1p-9);

addr2.disp := stack(lp-7) + (index DIV no) * 2;

result := memword(addr2);

result := result SHIFT ((index MOD no) * size);

result := result SHIFT size;

result := result AND (1 shift size - 1);

stack(lp-9) := result

END;

lp :=1p - 8;

ip :=ip+]

END; (* INPRS *)

298

12.4 Pop and Store a Value in an Element of a Packed Array 12.4

This instruction removes a value from the stack and stores the

value in an element of a packed (one-dimensional) array. The in-

struction has four operands:

Operand 1 is interpreted as the address (ADDR) of the first byte

of the first element of the array to be indexed.

Operand 2 is interpreted as a packed dope vector.

Operand 3 is interpreted as a signed integer. The value of this

operand is the index.

Operand 4 is the value to be stored in the array element selected

by operand 3. The value of this operand is truncated fram the

left (high-order bits) to fit the size of the ‘array element.

299

12.4.1 INPSS 12.4.1

INdex Packed Array Store via Stack Value: 6F Hex

Ip +

STACK BEFORE: STACK AFTER:

<
—
—
.

roperandic rFrestult 4

operjand 3 ij

I paraneter { ADDR LW?

MEMORY: path:

Loperand2|

| packed dope 4

vwector

For a description of a packed dope vector, see subsection

12.3.1.

300

(* INPSS *)

VAR

mask : ARRAY(0..15) OF bit;

packed_dope_vector : RECORD

lower : integer;

upper : integer;

no : byte;

size : byte

END;

index : integer;

addr] : addr;

addr2 : addr;

operand : word;

no ofshifts : integer;

BEGIN

index := stack(lp-7);

addr] .base := stack(lp-5);

addr1l.disp := stack(lp-3);

WITH packeddope vector DO

BEGIN

lower := mem(addr1);

upper := mem(addr1+2);

no := membyte(addr1+4);

size := membyte(addr1+5);

IF (index < lower) OR (upper < index) THEN

exception(index error);

index := index - lower;

addr2.base := stack(lp-11);

addr2.disp := stack(lp-9) + (index DIV no) * 2;

operand := (stack(lp-1);

mask := 1 SHIFT size - 1;

no ofshifts := 16 - (index MOD no + 1) * size;

operand := operand shift no of shifts;

mask := mask SHIFT no of shifts;
result := memword(addr2);

result := result AND (NOT mask);

menword(addr2) := result OR operand

g

301

13. MISCELLANEOUS 13.

13.1 No Operation 13.1

The execution of this instruction has no effect. The instruction

has no operands.

13.1.1 MNOOP 13.1.1

Miscellaneous NO OPeration Value: 2Fiiex

IP > MNOOP

STACK BEFORE: STACK AFTER:

(* MNOOP *)

BEGIN

ip :=ip+1

END; (* MNOOP *)

302

13.2 Exception 13.2

This instruction performs an unconditional jump to the program

point defined in the exception point field of the incarnation

descriptor. Before the jump, the multiple-wait flags are cleared

in the ps register of the register set and the maxstack pointer

reset to the value defined in the incarnation descriptor.

13.2.1 MXEPT 13.2.1

Miscellaneous eXcEPTion Value: 2B...

re > [EXEPT]

STACK BEFORE: STACK AFTER:

<
<

T

\

1

{

L
cause |

LP

(* MXEPT*)

VAR

cause : integer;

BEGIN

cause := stack(lp-1);

lp := lp - 2;

exception(cause) ;

END; (* MXEPT *)

303

13.3 Trap 13.3

13.3.1

Two instructions, with deliberatly illegal operation codes, are

reserved for software purposes. The parameter is interpreted by

software as a routine number.

TRAPE 13.3.1

TRAP Entry Value: 2Crex

re > [-TRapE _[parametey

STACK BEFORE: STACK AFTER:

|
— ,
tp ———l wp

(* TRAPE*)

BEGIN

exception(illegal opcode);

END; (* TRAPE *)

13.3.2 TRAPR

TRAP Return

TP + [-TRaPR [parametex

STACK BEFORE:

|
|

LP

(* TRAPR *)

BEGIN

exception(illegal opcode);

END; (* TRAPR *)

304

Value: 2Diex

STACK AFTER:

13.3.2

305

14. INSTRUCTION FETCH 14.

This chapter contains an algorithmetic description and a flow

Chart of the instruction fetch performed by the microprogram.

The fetch point is the point to which all instructions return

after execution. A few instructions return to special points in

the fetch algorithm, viz. the block input/output instructions and

the ‘Execute Next after Clearing Interrupt' (IONCI) instruction.

fetch: (* instruction fetch *)

IF debug_request THEN

executedebug request;

IF stop mode THEN

BEGIN

IF breakpoint mode = 0 THEN

GOTO fetch;

IF curlevel < nextlevel THEN (* interrupt with higher

priority *)

GOTO fetch1;

IF breakpoint mode > 0 THEN

breakpoint mode := breakpoint mode -1

ELSE ~ ~
IF reg set(curlevel).ip = breakpoint ip THEN

GOTO fetch ~
END;

GOTO execute_next;

fetch]:

IF curlevel < nextlevel THEN

curlevel := nextlevel;

IF regset(curlevel).ib.mode = block_io mode THEN

BEGIN ~
GOTO CASE regset(curlevel).ib OF

(iorbbe, iorbb, iorbwe, iorbw, iowbbc,

iowbb, iowbwc, iowbw)

END;

306

execute next:

IF regset(curlevel).ib.mode = dummy mode THEN

BEGIN

IF curlevel <> 0 THEN

BEGIN

dummy interrupt last := curlevel;

dummyinterruptcount := dummy_interrupt_count +1;

device(curlevel).interrupt := 0; (* clear interrupt level *)

GOTO fetch

END;

(* schedule; see subsection 3.7.5 *)

WITH monitorreg set DO

BEGIN

IF (n = -1) OR (nxt = m-1) THEN

BEGIN

dummy loop count := dummy loop count +1; (* 32 bits *)

GOTO fetch

END;

IF (nxt = -1) THEN

next :=k

ELSE

IF (k <= nxt) AND (nxt< -1) THEN

next := nxt +]

ELSE

nxt := nxt;

IF active_queue(next).base.nilbit = 1 THEN

BEGIN

nxt := nxt -1;

GOTO fetch

END;

loadregisters(memaddr(active_queue(next)));

GoTo fetch

END (* with monitor_regset *)

END; (* dummy mode *)
instruction := membyte(reg set(curlevel).ip);
GOTO map (instruction); —~

(* end fetch *)

307

1

INIT RC3502

|
|

|
|
|
|
|

|

k

LEVEL Y

SHIFT FETCH 1

N

INIT REGS

BLOCK I/O BLOCK I/O
INSTR INSTR

K
PARITY

i ERROR | INTR DEBUG

|
|

|
|
|
|
|

|
|
|
!

|
|

ES
i .

| k
NY

| w

INSTR 0 INSTR 1 INSTR 2 INSTR 3

| I | i] i]
| | | | |

LOU NS\ __

Fig. 16

RC3502 Microprogram Flow

15.

308

AUTOLOAD

The autoload function can be initiated in the following way:

- Power Restart

- Watchdog Restart

Power Restart

The built-in test programs are activated, controlled by the MODE

switch, (see subsection 16.2.1) and the CPU initializes the

registers, whereafter control is passed to the autoload program

residing in the first memory module.

Power Restart occurs:

- when power is turned ON manually on the Operator's Control

Panel (OCP) or on the power supply,

- after a temporary power failure,

- on manual activation of the autoload button on the OCP or

the AUTO push-button on the power supply.

Watchdog Restart

The CPU initializes the registers, whereafter control is passed

to the autoload program. No built-in test programs are activated.

The watchdog function can be activated manually by means of the

‘y' debug-console command as well as from the software (see sub-

section 3.3.4).

309

15.1 Initialization 15.1

The following algorithm is executed by the microprogram:

auto:

FOR i := 0 TO 123 DO

WITH reg_set (i) DO

BEGIN

1m

ps

pb

lu

sf

pr

ib e
r

e
T

o
u

ht
@

w
o
w

ou

|
i

t
o
u

t
o

|
e
e

e
s

s
s

S
e

N
e

e
e
e

e
e

" 1
= ~ic:

END;

curlevel := 1;

WITH reg set (curlevel) DO

BEGIN

ps := 0;

pb := #h OO;

ib := #h e;

ic := 2;

END;

device (curlevel).interrupt := 1;

GOTO fetch;

310

16. SWITCHES AND INDICATORS 16.

16.1 Operator Control Panel 16.1

CFF ON LOCK
POWER DK

OCPERATIN

OTESTMODE |
POWER AUTOLOAD

—

OTESTMODE CTESTMODE OTESTMODE

POWER AUTOLOAD AUTOLOAD AUTOLOAD

if

| OFF LOCK OPOWER DK OPOWER DK OPOWER DK
| OOPERATING OCPERATING! OCPERATIN

1
i

Figure 17: OCP for Rack with One RC3502 or Three RC3502's.

Power is removed from the RC3502('s) by turning the POWER key to

the OFF position.

Power is applied to the RC3502('s) by turning the POWER key to

the ON position (or further to the LOCK position).

The AUTOLOAD button(s) is (are) enabled when the POWER key is in

the ON position, and disabled when the POWER key is in the LOCK

position.

311

The AUTOLOAD button initiates autoloading of the relevant RC3502.

The POWER OK lamp, when lit, indicates that the power is as it

should be on the RC3502.

The OPERATING lamp, when lit, indicates that the RC3502 is

running normally.

The TEST MODE lamp, when lit, indicates that the rc3502 is

executing the built-in test programs.

16.2 Processor Front Panel 16.2

The front panel of the processor board contains five switches,

_

five indicators, and a jack.

DO

fol ae)

BUS

tP O

0-3

ose

: - RPeens °

4-7

ofl TMO

eave

8-11
ott =

© 2 ¢
eee fe)

S a w

m
o
u

Figure 18: Processor Front Panel, Switches, Indicators, and Jack.

312

All of the switches are rotary switches with 16 positions, indi-

cated by the hexadecimal digits 0 to F. The switches are set by

means of a screwdriver.

The four switches marked BUS are used to supply the processor

with data. There is a switch for bits 0 to 3, 4to7, 8 toll,

16.2.1 Switches

16.2.1.1 Bus Switches

and 12 to 15.

16.2.1.2 Debug Mode Switch

The switch marked MODE is used to enable activation of the debug

console and to control the execution of the built-in test pro-

grams (subsection 16.2.2).

The switch settings 0 to 7 select a baud rate for the debug con-

sole and a program execution mode, whereas the switch settings 8

to F select only a program execution mode, i.e. the console can-

not be activated, to debug mode (chapter 17).

Settings Baud Rate Execution Mode

fe) (8) 300 bps run test, loop

1 (9) 1200 - run test, loop

2 (A) 300 - skip test

3 (B) 1200 - skip test

4 (c) 300 - run test, no loop

5 (D) 1200 - run test, no loop

6 (E) 300 - skip test

7 (F) 1200 - skip test

16.261

—

16.2.1.1

16.2.2

313

Test Program Execution Modes

run test The programs are executed whenever the AUTOLOAD but-

ton is pressed.

skip test The programs are not executed.

loop The programs are executed in an endless loop.

no loop The programs are executed once.

16.2.2 Indicators

DI Disabled Interrupt

OP

This lamp, when lit, indicates that the processor is running

in the disabled interrupt mode.

Operation

This lamp, when lit, indicates that the processor is running

normally; when it is extinguished, the processor has stopped.

Left Parity Error

This lamp, when lit, indicates that a parity error has been

detected during a memory read in the left byte. The lamp can

be extinguished only by power restart or autoload.

Right Parity Error

This lamp, when lit, indicates that a parity error has been

detected during a memory read in the right byte. The lamp can

be extinguished only by power restart or autoload.

Test Mode

This lamp, when lit, indicates that the processor is execut-

ing the built-in test programs. The current program is indi-

cated by the OP, LP, RP, and T lamps, TM representing the

least significant bit of the program number.

If an error is detected by a test program, one of the mes-

sages described below will be displayed on the debug console.

For a description of the display cammands, see section 17.2.

16.2.2

B

D

314

8085 Comminication Test

Message: err 1 <dummy> <dunmy>

Y5D displays 6 bytes of transmitted data.

Y70 displays 6 bytes of received data.

Communication Test

Microprogram interrupt of debug microprocessor.

No message is displayed, but RP and TTM are lit.

Working Register Address Test

Message: err 5 <address> <data read>

W<address> displays data read.

Working Register Data Test

Message: err 7 <address> <data read>

W<address> displays data read.

Memory Address Test

Message: err 9 <address.displacement> <data read> <err.type>

err.type: + 1]

+2

+ 4 = data error

Y40 displays memory module number.

M<memory module.displacement> displays data read.

left parity error

right parity error

Memory Data Test

Pattern 5555.

Message: err b <address.displacement> <data read> <err.type>

err.type: see 9

Y40 displays memory module munber.

M<memory module.displacement> displays data read.

Memory Data Test

Pattern AAAA.

Message: err d<address.displacement> <data read> <err.type>

err.type: see 9

Y40 displays memory module number.

M<memory module.displacement> displays data read.

315

~ 16.2.3 Jack 16.2.3

The jack, marked CONSOLE, is a 9-pin CANON jack for connection of

a debug console (Teletype compatible device). The console, which

is further described in chapter 17, must have the following char-

acteristics:

8 data bits per character

no parity bit

1 stop bit

300 or 1200 bps

The electrical/logical characteristics of the signals in the jack

> must conform to Recommendation V.24. The signals are as follows:

Pin No Signal Name

] +5 V

2 +412 :V

3 received data

4 -12 V

5 ov

6 transmitted data

7 Ov

8 (not used)

9 ov

16.3 Power Supply 16.3

The power supply (POW201) is supplied with a number of controls:

AC MAINS: Manual and automatic circuit breaker.

LOCK: Spring loaded lock switch, which inhibits manual in-

tervention in AC MAINS and AUTO functions.

POWER CK: Indicator, which stays lit as long as power is as it

should be.

316

Push-button for manual generation of an autoload

signal.

Indicator, which remains on after a power break

caused by overheating.

17.

317

DEBUG CONSOLE 17.

17.1

The debug console can be in one of two possible modes: debug mode

(D mode) or terminal mode (T mode). A switch between the two

modes takes place when the BELL key (CTRL and G) is pressed.

Activation of the Console 17.1

17.2

If the MODE switch (subsection 16.2.1.2) is set in the range 0 to

7, the debug console can be activated at any time by pressing the

BELL key (CTRL and G) without stopping instruction execution in

the processor.

Display Commands 17.2

Display commands cause the display of eight words of data. The

following display commands are available:

M <gaddr> Modify Memory

Displays the contents of the 8 memory locations

starting at <gaddr>.

W <register> Modify Working Registers

Displays the contents of the 8 working registers

starting at <register>.

L <level> Modify Working Registers

Displays the level number and the contents of the 8

working registers belonging to <level>.

Y <yaddr> Modify Control Microprocessor RAM

Displays the contents of the 8 control microproces-

sor RAM locations starting at <yaddr>.

17.3

318

Display commands are executed in the following situations:

1) When a display command is entered

One can now modify the displayed data by entering new data in

2)

the same positions on the following line. Pressing the space

bar will move the cursor one position to the right.

A display cammand is terminated by pressing one of the follow

ing keys:

CR

ESC

The CR kay terminates the current display command.

The debug console will await the next command.

The + key terminates the current display cammand and

executes a display command for the succeeding 8

words (M or Y) or the 8 registers on the succeding

level (W).

The - key terminates the current display cammand and

executes a display command for the preceeding 8

words (M or Y) or the 8 registers on the preceding

level (W).

The ESC key terminates the current display command,

but no data modification takes place. The text <ES@

is displayed. The debug console will await the next

cammand .

When a control command (section 17.3) is terminated

The last executred display command is repeated, but modifica-

tion of the displayed data is not allowed. The debug console

will await the next cammand.

Control Commands

The following control canmands are available:

Run

The processor will start instruction execution.

17.3

im

17.4

319

Ss Instruction Step

The processor will execute one instruction, stop,

and reactivate the debug console.

S <steps> Multi-Instruction Step

The processor will execute <steps> instructions,

stop, and reactivate the debug console.

Command Parameters 17.4

All numbers entered or displayed are hexadecimal.

At any time the entering of an empty canmand (i.e. pressing the

CR key) will cause the previous command to be repeated.

A global address (<gaddr>) is entered using one of the following

formats:

<base> : <disp>

or

: <disp>

<base> is the leftmost 16 bits of the 32-bit address.

<disp> is the displacement within the selected memory module,

i.e. the rightmost 16 bits of the address.

If the second format (: <disp>) is used, the last entered address

base will be echoed and used.

320

17.5 Connection of the Console

a2

(CBL312 for RC822)

(CBL588 for RC831)

Console Jack

(subsection 16.2.3)

Figure 19: Connection of the Console.

17.5

Teletype Compatible

Device (RC822 or RC831)

18.

321

ACTUAL INSTRUCTION SET 18.

The Base Instruction Set (BIS) described in chapters 4 to 14 has

been extended with a number of encoded instructions to form the

Actual Instruction Set (AIS) for the RC3502. The candidates for

encoding were selected after camprehensive analyses of static and

dynamic instruction frequency for large application systems.

Every encoded instruction in the AIS has a single corresponding

instruction in the BIS, fran which it is encoded. In practice the

encoding follows one of the two models:

- A 16-bit parameter may be expressed in 8 bits, and the en-

coding is done by introducing a new instruction (new oper-

ation code) occupying 8 bits less than its BIS form.

- A single 16-bit parameter value is so frequent that it may

be expressed implicitly in the operation code for the encod-

ed instruction.

In the description of encoded instructions, the following infor-

mation is given:

- Symbolic name

Hexadecimal operation code value

Original BIS instruction and the parameter value interval

Number of bytes occupied. If several parameters follow the

Operation code, the distribution of byte consumption on

Operation code and parameters is shown (e.g. 3 bytes (1,1,1)

indicates that the instruction occupies 3 bytes, distributed

on operation code: 1 byte, parameter 1: 1 byte, and par-

ameter 2: 1 byte).

For the verbal, diagrammatic, and algorithmic descriptions, see

the description of the original BIS instruction, which is func-

tionally equivalent.

322

Symbolic | Op-Code Corresponding BIS Instruction | Number of Bytes

Name Hex Value} and Parameter Value Occupied

REAGDS CE REAGD,X; X € [0..255] 2

REALDS CF REALD,X; X € [0..255] 2

RECO 60 RECHW, 0 1

REC] 01 RECHW, 1 1

REC1O OA RECHW, 10 1

REC11 OB RECHW, 11]

REC12 oc RECHW, 12]

REC13 OD ~ | RECHW,13 1

RECI4 OE RECHW, 14 1

RECI5 OF RECHW, 15 1

REC2 02 RECHW, 2 1

REC3 03 RECHW, 3 1

REC4 04 RECHW, 4 1

REC5 05 RECHW, 5 1

REC6 06 RECHW, 6 1

REC7 07 RECHW, 7 1

RECS 08 RECHW,8]

REC9 09 RECHW, 9]

RECHWS cs RECHW,X; X€ [0..255] 2

REVGBS 89 REVGB,X; X€ [0..255] 2

REVGDS EQ REVGD,X; X€ [0..255] 2

REVGFS c REVGF,X; X€ [0..255] 3 (1,1,1)

REVGWS 5X) REVGW,X; X€ [0..255] 2

REVLBS 8B REVLB,X; X€ [0..255] 2

REVLDS EB REVLD,X; X € [0..255] 2

REVLFS cB REVLF,X; X € [0..255] 3 (1,1,1)

REVLWS AB REVLW,X; X € [0..255] 2

RVSBO 81 REVSB, 0 1

RVSB12 8D REVSB, 12 1

RVSB2 83 REVSB, 2 1

RVSB4 85 REVSB,4 1

RVSB6 87 REVSB, 6 1

RVSD12 ED REVSD, 12 1

RVSD2 E3 REVSD, 2 1

RVSD4 ES REVSD,4 1

RVSD6 E7 REVSD ,6 1

RVSFO cl REVSF,0,X 2

RVSF12 cD REVSF,12,X 2

RVSF2 C3 REVSF, 2,X 2

RVSF4 cS REVSF,4,X 2

RVSF6 C7 REVSF,6,X 2

RVSWO Al REVSW,0O 1

RVSW12 AD REVSW, 12]

RVSW2 A3 REVSW, 2 1

RVSW4 A5 REVSW,4 1

RVSW6 A7 REVSW,6 1

323

Symbolic} Op-Code Corresponding BIS Instruction | Number of Bytes

Name Hex Value| and Parameter Value Occupied

STVLBS 8A STVLB,X; X €[0..255] 2

STVLDS FA STVLD,X; X € [0..255] 2

STVLFS CA STVLF,X,Y; X €[0..255] 3 (1,1,1)

STVLWS AA STIVLW,X; X €[0..255] 2

SVSBO 80 STVSB,O 1

SVSB2 82 STVSB, 2 1

SVSB28 9C STVSB, 28 1

SVSB29 9D STVSB, 29 1

SVSB30 9E STVSB, 30]

SVSB31 OF STVSB, 31 1

SVSB4 84 STVSB,4 1

SVSB6 86 STVSB,6 1

SVSFO co STVSF,0,X 2

SVSF2 C2 STVSF,2,X 2

SVSF28 pe STVSF, 28, X 2

SVSF29 DD STVSF,29,X 2

SVSF30 DE STVSF, 30,X 2

SVSF31 DF SIVSF,31,X 2

SVSF4 C4 STVSF,4,X 2

SVSF6 C6 STVSF',6,X 2

SVSWO AO STVSW,0 1

sSvsw2 A2 STVSW,2 1

SVSW28 BC STVSW, 28 1

SVSW29 BD STVSW, 29 1

SVsw30 BE STVSW, 30]

SVSW31 BF STVSW, 31 1

svsw4 A4 STVSW,4 1

SVSW6 AG STVSW,6 1

324

INSTRUCTION EXECUTION TIMES

The calculated execution times of the RC3502 Rev. 5 machine in-

structions are based on an 18.432 MHz CPU clock, high-speed work-

ing registers, and the absence of DMA controllers stealing CPU

cycles. The execution time includes a non-interrupt instruction

fetch, with normal microinstruction flow. It is assumed that

block I/O is stopped by count, and not because of end of medium.

For each memory write, 2 steps are added, and for each memory

read, 1 step or 0.5 step when there are microinstructions between

the request (address) and the read.

Same of the execution times may vary, e.g. arguments may start in

an odd or even address or there may be a differing number of ones

in miltiplication. This deviation is indicated by percentages in

the table.

On level shift add:

level <= 7 12.0 step 2.6 psec.

level > 7 18.0 step 3.1 psec.

Note: On block I/O do not add level shifts.

Scheduling on level O is done by a level shift to level 1,

where the SCHED instruction is executed.

The following instructions are interruptable:

CSTOP IORBB IORBBC IORBW

IORBWC IOWBB IOWBBC IOWBW

IOWBWC MOVEB MOVEG REVSM

SCHED SETAD SETCR SETDI

SETEQ SETIN SETSB SETSP

SETST SETUN STCEA

325

The following abbreviations are employed:

x

SH

Weq

Beq

psec.

time required for one microinstruction, viz. 217.0

nanoseconds

shiftout + shiftin time (controller dependent)

number of words

number of equal words before difference

number of bytes

number of equal bytes before difference

element size

element number in word

first bit number in a field instruction bit;

0 is most significant bit

last bit mumber in a field instruction bit;

0 is most significant bit

static procedure level difference

number of empty queues before the SCHEDuled process is

found

number of processes in queue before the CSTOPped pro-

cess

microsecond (s)

Instruction

CEXCH

CGREG

CLLST

empty chain

not empty chain

COMPL

CRC16

CRELE

open semaphore

passive semaphore

closed semaphore

start level = 0

active queue empty,

semaphore

going passive

staying closed

active queue not empty,

semaphore

going passive

staying closed

closed semaphore

start level > 0

semaphore

going passive

staying closed

CRGET

CRPUT

CRRAM

CSELL

level = 0, new level >0O,

active queue

going enpty
staying not empty

level > 0, new level = 0,

active queue

empty

not empty

326

Step

25.0

30.0

29.0

99.0

17.0

112.0

132.0

22.0

62.0

157.8

136.8

251.3

266.3

257.3

272.3

179.8

194.8

23.0

30.0

33.5

299.5

302.5

psec.

5.4

6.5

6.3

21.5

3.7

24.3

28.6

4.8

13.5

34.2

29.7

55.8

59.1

39.0

42.3

5.0

6.5

7.3

63.4

138

23

23

13

1%

1%

1%

33

23

1%

2%

23

1%

13

Instruction

level > 0,

new level > 0

level = 0,

new level = 0

CSENS

open semaphore

going passive

open semaphore

staying open

passive semaphore

closed semaphore

CSIGN

open semaphore

passive semaphore

closed semaphore

start level = 0

active queue empty,

semaphore

going passive

staying closed

active queue not empty,

semaphore

going passive

staying closed

closed semaphore

start level > 0

semaphore

going passive

staying closed

CSKIP

active queue empty

active queue not empty

CSLEV

CSTDR

CSTOP

process not in queue

level = 0

level > 0

process in queue

going empty
level = 0

level > 0

327

Step

249.0

194.5

121.0

136.0

96.0

97.0

151.0

130.0

250.5

265.5

173.0

188.0

35.0

26.5

136.0

97.5

146.5

150.5

199.5

psec.

54.0

42.2

26.3

29.5

20.8

32.8

28.2

32.7

43.3

23

23

1%

1%

63

1%

1%

Instruction

process in queue

last process

in queue

level = 0

level > 0

process in queue

staying not empty,

not last process

in queue

level = 0

level > 0

CWAIT

open semaphore

going passive

open semaphore

staying open

passive semaphore,

level = 0,

active queue

going empty
staying not empty

passive semaphore,

level > 0

closed semaphore,

level = 0,

active queue

going empty
staying not empty

closed semaphore,

level > 0

CWRAM

CWIAC

reference nil

reference not nil

DIV

EQ

GE

cT

INDEX

elementsize <= 60

elementsize > 60

328

Step

16.O0P+177.5

16 .0P+226.5

16.O0P+162.5

16.0P+211.5

120.0

135.0

207.0

222.0

167.0

64.0

55.0

99.0

30.5

31.0

31.0

usec.

3.5P+38.5

3.5P+49.2

41.0

7.8

13.9

11.9

21.5

6.6

6.7

6.7

0.2E+18.2

31.2

23

23

53

9%

23

33

33

Instruction

INPRS

INPSS

INTRS

roccr

IOCDA

IoGI

IOGO

IOIBX

IONCI

IORBB

IORBBC

IORBW

IORBWC

IORS

IORW

IOWBB

IOWBBC

IOWBW

IOWBWC

Towc

TOWW

JMPHC

JMPPD

JMPRW

UMZGE

329

Step

2SE+3S+E+156.5

SE+3S+2E+187.0

46.0

21.0

46.5

SH/X+46.0

37.5

103.5

18.0

(SH/X+40.5)B+96.5

(SH/X+40.5)B+89.5

(SH/X+47 .0)W+96.5

(SH/X+47 .0)W+89.5

SH/X+36.5

SH/X+36.5

(SH/X+40.5)B+96.5

(SH/X+40.5)B+89.5

(SH/X+45..5)W+96.5

(SH/X+45..5)WH+89.5

28.5

32.5

66.0

29.0

23.0

18.0

25.5

25.5

26.0

26.5

psec.

-2(2SE+3S+E)+34.0

+2 (SE+3S+2E)+40.6

10.0

4.6

10.1

SH+10.0

8.1

22.5

3.9

(SH+8.8)B+20.9

(SH+8.8)B+19.4

(SH+10.2)Ww#20.9

(SH+10.2)W+19.4

SH+79

SH+7 .9

(SH+8.8)B+20.9

(SH+8.8)Bt19.4

(SH+9.9)WH+20.9

(SH+9.9)W+19.4

6.2

7.1

14.3

6.3

5.0

3.9

5.5

5.5

5.6

5.8

7%

1%

1%

9%

1%

1%

8%

63

10%

10%

8%

Instruction

JMZLT

JMZNE

LE

LLOCK

LPOP

no description clear

description clear

LPUSH

no description copy

description copy

LRESE

LT

MADD

MBSET

MBTES

MCIS

open semaphore

going passive

open semaphore

staying open

passive semaphore,

level = 0,

active queue

going empty
staying not empty

passive semaphore,

level > 0

timer = 0

MCIST

open semaphore

going passive

open semaphore

staying open

passive semaphore,

level = 0,

active queue

going empty
staying not empty

330

Step

25.5

25.5

31.0

87.5

129.0

146.0

136.0

177.0

40.0

31.0

29.0

26.0

26.5

165.5

180.5

252.5

267.5

212.5

60.5

165.5

180.5

252.5

267.5

psec.

5.5

5.5

6.7

19.0

6.7

6.3

5.6

5.8

35.9

39.2

54.8

46.1

13.1

35.9

39.2

&

33

23

9%

3%

8

1%

Instruction

passive semaphore,

level > 0

timer = 0

MCIT

level = 0,

active queue

going empty
staying not empty

level > 0

timer = 0

MNOOP

MOD

MOVEB

MOVEG

even bytes

both even

one odd

both odd

odd bytes

both even

one cdd

both odd

MSUB

MTIME

empty timer chain

For each process in

timer chain add one

of the following times:

own.timer = 0

own.timer > 0

own.timer = 1,

level = 0,

semaphore

not used

going passive

staying closed

own.timer = 1,

level > 0,

semaphore

not used

going passive

staying closed

331

Step

212.5

60.5

128.5

143.5

71.5

59.5

10.0

98.5

18.0B+40.0

17.5W+41.0

24.0W+41.0

30.5W+41.0

30. 5W+56.0

24.OW+56.0

17.5W+56.0

29.0

175.5

215.5

230.5

89.0

129.0

144.0

96.5

psec.

46.1 1%

13.1

12.9

2.2

21.4 10%

3.9B+8.7

-8wt+s8

-2Wt+8

-6W+8

23

O
U
W
w

o
n
o
"

6.6W+12.2

5.2W+12.2 2%

3.8W+12.2

6.3

4.6

a
u
n

N
O

19.3 2%

28.0 2%

31.2 1%

20.9 10%

Instruction

MWI

level = 0,

active queue

going empty

staying not empty

level >0

MwIS

Open semaphore,

going passive

open semaphore,

staying open

passive semaphore,

level = 0,

active queue

going empty
staying not empty

passive semaphore,

level > 0

MWIST

Open semaphore,

going passive

Open semaphore,

staying open

passive semaphore,

level = 0,

active queue

going empty
staying not empty

passive semaphore,

level > 0

timer = 0

MWIT

level = 0,

active queue

going empty

staying not empty

level > 0

timer = 0

MwST

Open semaphore,

going passive

Open semaphore,

staying open

332

Step

93.0

108.0

36.0

142.0

157.0

142.0

157.0

106.0

121.0

49.0

37.0

142.0

157.0

psec.

20.2

23.4

30.8

34.1

49.7

52.9

41.0

30.8

34.1

23.0

26.3

10.6

8.0

30.8

34.1

2%

23

6%

Instruction

passive semaphore,

level = 0,

active queue

going empty
staying not empty

passive semaphore,

level > 0

timer = 0

MWr

level = 0,

active queue

going empty
staying not empty

level > 0

timer = 0

MWTAC

Wait Start

Causes Reason Level

I I -

Ss Ss -

Ss not S e)
active queue

going empty

staying not empty
Ss not S >0

T T -

T not T)

active queue

going anpty
staying not empty

T not T >0O

Is I -

semaphore

going passive

staying closed

Is Ss -

IT I -

IT T -

TS T -

TS Ss -

TS I (0)

active queue

going empty
staying not open

TS I >0

Ist I -

semaphore

going passive

staying closed

Ist Ss -

Ist T -

333

Step

106.0

121.0

49.0

37.0

Hsec.

8.0

30.1

33.3

11.8

11.2

10.1

14.2

11.8

32.4

35.7

11.8

14.2

23

63

1%

1%

7%

1%

1%

1%

1%

1%

53

1%

1%

Instruction

NOT

OR

PCALD

PEXIT

READB

REAGD

REAGDS

REAID

REASD

RECO

REC] -REC15

RECHWS

RENHB

RENPB

REVAB

REVAD

even address

odd address

334

Step

30.

24.

24.

29.

81

7.OR+86.

44.

41

37.

38.

33.

31

7.OR+43.

33.

31

32.

45.

25.

16.

18.

4).

25.

22.

21.

18.

42.

55.

67.

5

fe)

5

(0)

-0

3

5

-0

5

5

fe)

-8

3

fe)

-8

e)

fe)

fe)

ie)

fe)

0

0

8

fe)

(0)

0

fe)

ysec.

6.6 2%

5.2

5.3 23

6.3

17.6

1.5R+18.7 7%

9.7 3%

8.9 7%

8.1

8.4

7.2 5%

6.9 9%

1.5R+9.4 11%

7.2 5%

6.9 9%

6.9 5%

9.8 3%

5.4

3.5

3.9

8.9 7%

5.4 6%

4.9 12%

4.6 7%

3.9

9.1 7%

—
o

A
S

W
o

&
oe

Instruction

REVAF

even address

odd address

REVAW

even address

odd address

REVGB

REVGBS

REVGD

even address

odd address

REVGDS

even address

odd address

REVGF

even address

odd address

REVGF'S

even address

odd address

REVGW

even address

odd address

REVGWS

even address

odd address

REVIB

REVID

even address

odd address

REVIF

even address

odd address

REVIW

even address

odd address

REVLB

REVLBS

REVLD

even address

odd address

335

Step

-F+79.

-F+85.

4).

47.

34.

32.

47.

59.

45.

57.

-F+71.

-F+77.

-F+70.

-F+76.

33.

39.

32.

38.

7.OR+43.

7.0R+56.

7.0R+68.

7.OR-F+80.

7.OR-F+86.

7.OR+42.

7.OR+48.

34.

32.

47.

59.

3

3

5

5

0)

8

a
o

W
w

W
w

usec.

-.2F+17.2 9%

-.2F+18.5 8%

9.0 7%

10.3 6%

7.4 4%

7.1

10.2 3%

12.8 3%

9.9 6%

2.5 5%

-2F+15.5 8%

-2F+16.8 7%

+2F+15.2 10%

-2F+16.5 9%

4%

43o
n

O
W

9%

7%o
n

w
o

1].5R+9.4 113

1.5R+12.2 9%

1.5R+14.8 7%

1.5R-.2F+17.5 11%

1.5R-.2F+18.8 103

1.5R+9.3 113

1.5R+10.6 103

7.4 4%

7.1 9%

10.2 3%

12.8 3%

Instruction

REVLDS

even address

odd address

REVLF

even address

odd address

REVLFS

even address

odd address

REVLW

even address

odd address

REVLWS

even address

odd address

REVPD

REVPW

REVSB

REVSD

even address

odd address

REVSF

even address

odd address

REVSM

even address

odd address

REVSW

even address

odd address

RVSBO

RVSB2-RVSBI12

RVSDO

even address

odd address

RVSD2-RVSD12

even address

odd address

RVSFO

even address

odd address

336

Step

57.8

-F+71.

-F+77.

-F+70.

-F+76.

33.

39.

32.

38.

34.

22.

46.

-F+83.

-F+89.

17. 5W+34.

23. SW+34.

45.

51.

39.

40.

52.

64.

53.

65.

-F+76.

-F+82.

59.

71.

3

4

m
a
u

W
w

w

ysec.

-2F+15. 83

-2F+16.8 73%

w
o

«2F+15.2 10%

-2F+16.5 9%

10.0 33

12.8 33

15.4 2%

-.2F+18.1 63

-.2F+19.4 6%

3.8W+7.4

5. 1W+7.4

3%

8.5

8.7

-.2F+16.6 5%

-.2F+17.9 43

Instruction

RVSF2-RVSF12

even address

odd address

RVSWO

even address

odd address

RVSW2-RVSW1 2

even address

odd address

SCHED

SETAD

even address

odd address

SETCR

SETDI

both even

one odd

both odd

SETEQ

result true

both even

one odd

both odd

result false

both even

one odd

both odd

SETIN

both even

one odd

both odd

SETSB

result true

both even

one odd

both odd

result false

both even

one odd

both odd

337

Step

-F+77.3

-F+83.3

38.5

44.5

39.5

45.5

34. 5NF+192.0

36.OW+79.5

42.0W+79.5

108 .5W+85.5

45 .OW+80.5

51.0Ww+80.5

57.0W+80.5

38. 5W+81.5

44.5W+81.5

50. 5W+81.5

38. 5Weq+106.0

44. 5Weqt112.0

50. SWeg+118.0

45 .OwW+80.5

51 .OW+80.5

57 .OW+80.5

38. 5W+81.5

44.5W+81.5

50. 5W+81.5

38. SWeg+106.0

44, 5Weqt112.0

50. 5Weq+118.0

psec.

-.2F+16.8

-.2F+18.1

w
o

O
o

N
A

8.6

9.9

7. 5NE+41.7

7.8W+17.3

9.1W+17.3

23. 5W+18.6

9.8W+17.

11.17W+17.

12. 4W+17. n
o
w

8.4W+17.

9. 7W+17.

11.O0W+17. N
N
N

8. 4Weq+23.0

9. TWeqt24.3

11. Weg+25.6

w
n9. 8W+17.

11.1W+17.5

12. 4W+17.5

“
N

8.4W+17.

9. 7W+17.7

11.0W+17.7

8.4Weqt23.

9. 7Weqt24.

11.OWeqt+25. o
w
W
o

43

4%

43

10%

8%

188

83

73

6%

43

4%

43

3%

3%

3%

4%

4%

43

4%

43

43

33

33

3%

Instruction

SETSP

result true

both even

one odd

both odd

result false

both even

one odd

both odd

SETST

even address

odd address

SETIM

even address

odd address

SETUN

both even

one odd

both odd

SHC

SHC8

STCEA

result true

result false

STNHB

STVAB

STVAD

even address

odd address

STVAF

even address

odd address

STVAW

even address

odd address

STVGB

STVGD

even address

odd address

STVGF

even address

odd address

338

Step

38. 5W+81 .5

44. 5W+81.5

50. 5W+81.5

38. 5Weqt106.0

44. 5Weqt112.0

50. 5Weq+118.0

35.0W+75.0

4] .OW+75.0

56.5

62.5

45 .OW+80.5

51.0w+80.5

57.Ow+80.5

39.5

24.0

18.0B+48.0

18. 0Beq+64.0

19.0

38.5

50.5

64.5

-F-L+101.3

-F-L+114.3

38.5

45.5

30.5

42.5

56.5

-F-L+93.3

-F-L+106.3

psec.

8.4W4+17.7

9. 7W+17.7

17. 7W+17.7

3. 4Weq+23.0

9. 7Weqt24.3

11. OWeqt25.6

9.8W+17.5

11.1W+17.5

12. 4W+17.5

8.6

5.2

3.9B+10.4

3. 9Beqt13.9

4.1

8.4

-.2F-.2L+22.0

-.2F-.21+24.8

P

©

o
n

o
v

o
v

N
O

W
n

-.2F-.2L+20.2

-.2F-.2L+23.1

4%

43

4%

3%

33

33

10%

9%

14%

13%

8%

7%

6%

22%

83

6%

5%

9%

7%

8%

7%

5%

43

33

83

6%

Instruction

STVGW

even address

odd address

STVIB

STVID

even address

odd address

STVIF

even address

odd address

STVIW

even address

odd address

STVLB

STVLBS

STVLD

even address

odd address

STVLDS

even address

odd address

’ STVLF

even address

odd address

STVLFS

even address

odd address

STVLW

even address

odd address

STVLWS

even address

odd address

STVSB

STVSD

even address

odd address

STVSF

even address

odd address

STVSW

even address

odd address

339

Step

30.

37. w
u
n

7.OR+39.8

7.OR+51.8

7.OR+65.8

7.OR-F-L+102.

7.OR-F-L+115. O
u
r

7.OR+39.8

7.0R+46.8

30.5

29.3

42.5

56.5

41.3

55.3

-F-L+93.3

—-F-L+106.3

-F-L+92.0

-F-L+105.0

u
w

30.

37.5

29.

36. W
W

44.0

57.0

71.0

-F-L+105.

-F-L4+118. 0
0

0

44.0

51.0

psec.

6.6 53

8.1 4%

1.5R+8.6 123

1.5R+11.2 93%

1.5R+14.3 7%

1.5R-.2F-.2L+22.2 11%

].5R-.2F-.21+25.1 9%

].5R+8.6 12%

1.5R+10.2 10%

6.6 53

6.4 10%

N
O

W
n

v
O

o
o
-.2F—.2L+20.2

—.2F-.2L+23.1

43

3%

7%

53

8%

63

-.2F-.21+20.0 10%

-.2F-.21+22.8

a -

o
O

8%

B
U

a
0

o
e

6.4 10%

7.9

9.5

2

15.4

-.2F-.21423.0

-.2F-.21+25.8

83

33

33

23

63

53

3%

33

Instruction

SUB

SVSBO

SVSB2-SVSB31

SVSFO

even address

odd address

SVSF2-SVSF31

even address

odd address

SVSWO

even address

odd address

SVSW2-SVSW31

even address

odd address

TEQAD

TLOCK

TNILL

TOPEN

UADD

UADHW

UDIV

UMOD

USUB

XOR

340

Step

30.0

38.0

39.0

-F-L+99.8

-F-L+112.8

-F-L+100.8

-F-L+113.8

38.0

45.0

39.0

46.0

43.0

41.0

40.5

42.0

30.0

45.0

93.0

30.5

93.0

92.0

30.0

29.0

psec.

@

2
9
o
w

o
n

~.2F-.2L+21.7

—.-2F=.21t24.5

-.2F-.2L+21.9

-.2F—.2L4+24.7

oo
”

e
m

o
u

o
n

8.9

8.8

9.1

6.5

9.8

20.2

6.6

20.2

20.0

6.5

6.5

53

43

-2%

23

23

33

9%

341

INSTRUCTION TABLES

Instructions Listed by Operation Code

For each instruction the following is given: operation code

(hexadecimal), symbolic name, and mumber of bytes in each par-

ameter (if any).

00: except 2b: ioibx 56: setcr

Ol: recl 2c: trape 1 57: settm

02: rec2 2d: trapr 1 58: mcis

03: rec3 2e: mxept 59: seteq

04: rec4 2£: mnoop 5a: setsb

05: rec5 30: mwst 5b: setsp

06: rec6 31: ult 5c: setun

07: rec7 32: eq 5d: setin

08: rec8 33: ne 5e: setdi

09: rec9 34: 1t 5f: setad

Oa: reclod 35: gt 60: recO

Ob: recll 36: le 61: jmzeq 2

Oc: recl2 37: ge 62: jmzne 2

Od: recl3 38: mwist 63: jmzlt 2

Oe: recl4 39: tnill 64: jmzgt 2

Of: recl5 3a: topen 65: jmzle 2

10: cwait 3b: tlock 66: jmzge 2

11: csign 3c: teqad 67: jmprw 2

12: crele 1 3d: not 68: mcit

13: cllst 3e: except 69: jmphc 4

14: cskip 3f: except 6a: jmppd

15: csens 40: madd 6b: jmcht 4

16: cwtac 41: msub 6c: intrs

17: mwtac 42: uadd | 6d: index

18: mwis 43: usub 6e: inprs

19: mtime 44: add 6f: inpss

la: csell 45: sub 70: iorbbe

lb: cstop 46: umul 71: iorbb

le: cstdr 47: udiv 72: iowbbec

ld: sched 48: umod 73: itowbb

le: cslev 49: mul 74: iorbwe

lf: cgreg 4a: div 75: iorbw

20: mwt 4b: mod 76: iowbwe

21: iowc 4c: and 77: iowbw
22: iors 4d: or 78: mcist

23: iorw 4e: xor 79: pceald

24: ioww 4f£: crcl6é Jaz: peals 1 4

25: iogo 50: neg 7b: pexit 2

26: iogi 51: abs 7c: lpush

27: ionci 52: compl 7d: lpop

28: mwit 53: she Je: lrese

29: iocci 54: shc8 7£: llock 2

2a: iocda 55: except 80: svsb0

a5:

a7:

a8:

ad:

aa:

abs:

rvsb0

svsb2

rvsb2

svsb4

rvsb4

svsb6

rvsb6

mwi

revgbs

stvlbs

revlbs

stnhb

rvsbl2

renpb

renhb

readb

crget

stvgb

revgb

stvib

revib

stvlb

revlb

stvsb

revsb

stvab

revab

svsb28

svsb29

svsb30

svsb3l

svsw0

rvsw0

svsw2

rvsw2

svsw4

rvsw4

svsw6

rvsw6

rechw

revgws

stvlws

reviws

N
P
R
e
H

P
P
D
N
Y

N
H
N

E
N

N
D

e
l

a
e

o
S
)

n
N

cd:

cé6:

8:

cb:

342

moveb

rvswl2

moveg

revpw

readw

erput

stvgw

revgw

stviw

reviw

stvlw

revlw

stvsw

revsw

stvaw

revaw

svsw28

svsw29

svsw30

svsw31l

svsf0

rvsf0

svsf2

rvsf2

svsf4

rvsf4

svsf6

rvsf6

rechws

revgfs

stvlfs

revlfs

revsm

rvsf12

reagds

realds

crram

mbtes

stvgf

revgf

stvif

revif

stvlf

P
P
N
Y
O
N
N

N
R
H
N

N
Y

L
l

e
l
 e
e

ee
l
e
e

d
n

P
R
E

N
r
F
r
F
N
N
N

N
N

P
e
e

P
U
N
E

d7:

d8:

d9:

da:

db:

dc:

dd:

des

e0:

eb:

£4:

fe:

revlf

stvsf

revsf

stvaf

revaf

svsf28

svsf29

svsf30

svsf3l

reagd

rvsdo

reaid

rvsd2

reald

rvsd4

uadhw

reasd

rvsd6

reaad

rechd

revgds

stvlds

revlds

setst

rvsd12

stcea

revpd

cwram

mbset

stvgd

revgd

stvid

revid

stvld

revld

stvsd

revsd

stvad

revad

reard

reaxd

cexch

except

N
P
R

R

P
P
M

N
D

i
)

i
e
}

N
N

P
R
E
D

N
O
P

P
N
Y

N
M
N
N
F
E
R
N
ND
N

P
R
R

R
R

N
N

A.2 Instructions Listed by Name

abs

add

and

cexch

egreg

clist

compl

crcl6

crele

crget

crput

crram

csell

csens

csign

cskip

cslev

cestdr

cstop

cwait

cwram

cwtac

div

eg

except

except

except

except

except

ge

gt

index

inprs

inpss

intrs

locci

iocda

iogi

iogo

ioibx

ionci

iorbb

iorbbe

51

4c

fe

lf

13

52

4f

12

91

bl

do

la

15

ll

14

le

le

lb

10

£0

16

4a

32

00

3e

3f

55

37

35

6d

6e

6f£

6c

29

2a

25

2b

27

71

70

iorbw

iorbwe

iors

iorw

iowbb

iowbbc

iowbw

lowbwc

iowc

ioww

jmcht

jmphe

jmppd

jmprw

jmzeq

jmzge

jmzgt

jmzle

jmzlt

jmzne

le

llock

lpop

lpush

lrese

lt

madd

mbset

mbtes

mcis

mcist

meit

mnoop

mod

moveb

moveg

msub

mtime

mul

mwi

mwis

mwist

mwit

343

75

22

23

73

72

77

76

21

24

6b

69

6a

67

61

66

64

65

63

62

36

7£

Te

Te

34

40

fl

dl

58

78

68

2f

4b

ac

ae

41

19

49

88

18

38

28

mMwst

mwt

mwtac

mxept

ne

neg

not

or

peald

peals

pexit

reaad

readb

readw

reagd

reagds

reaid

reald

realds

reard

reasd

reaxd

recO

recl

recl0O

recll

recl2

recl3

recl4

recl5

rec2

rec3

rec4

rec5

rec6

rec7

rec8

rec9

rechd

rechw

rechws

renhb

renpb

30

20

17

2e

33

50

3d

4d

79

Ja

7b

e8

90

e0

ce

e2

e4

cf

fc

e6

fd

60

01

0a

Ob

Oc

0d

Oe

Of

02

03

04

05

06

07

08

09

e8

a8

c8

8f

8e

A.2

revab

revad

revaf

revaw

revgb

revgbs

revgd

revgds

revgf

revgfs

revgw

revgws

revib
revid

revif

reviw

revlb

revlbs

revld

revlds

revlf

revlfs

revlw

revlws

revpd

revpw

revsb

revsd

revsf

revsm

revsw

rvsb0

rvsbl2

rvsb2

rvsb4

rvsb6

rvsd0

rvsdl2

rvsd2

rvsd4

rvsd6

rvsf0

rvsf12

9b

fb

db

bb

93

89

£3

e9

d3

c9

b3

ad

95

£5

d5

b5

97

8b

£7

eb

d7

cb

b7

ab

ef

af

99

£9

dag

ce

b9

81

8d

83

85

87

el

e3

e5

e7

cl

cd

rvsf2

rvsf4

rvsf6

rvsw0

rvswl2

rvsw2

rvsw4

rvsw6

sched

setad

setcr

setdi

seteg

setin

setsb

setsp

setst

settm

setun

she

shc8

stcea

stnhb

stvab

stvad

stvaf

stvaw

stvgb

stvgd

stvgf

stvgw

stvib

stvid

stvif

stviw

stvlb

stvlbs

stvld

stvlds

stvlf

stvlfs

stvlw

stvlws

344

c3

c5

c7

al

ad

a3

a5

a7

1d

5f£

56

5e

59

5d

5a

5b

ec

57

5¢

53

54

ee

8c

9a

fa

da

ba

92

£2

d2

b2

94

£4

d4

b4

96

8a

£6

ea

dé

ca

b6é

aa

stvsb

stvsd

stvsf

stvsw

sub

svsb0

svsb2

svsb28

svsb29

svsb30

svsb31

svsb4

svsb6

svsf0

svsf2

svsf28

svsf29

svsf30

svsf3l

svsf4

svsf6

svsw0

svsw2

svsw28

svsw29

svsw30

svsw31

svsw4

svsw6

teqad

tlock

tnill

topen

trape

trapr

uadd

uadhw

udiv

ult

umod

umul

usub

xor

98

£8

d8

b8

80

82

9c

9d

9e

9f

84

86

c0

c2

dc

dd

de

df

c4

c6

ad

a2

be

bd

be

bf

a4

3c

3b

3a

2c

42

e6

47

31

48

46

43

4e

A.3

345

Instructions, Section Reference

abs

add

and

cexch

cgreg

cllist

compl

crclé

crele

erget

crput

crram

csell

csens

csign

cskip

cslev

cstdr

cstop

cwait

cwram

cwtac

div

eq

except

ge

gt

index

inprs

inpss

intrs

locci

iocda

iogi

iogo

ioibx

ionci

iorbb

lorbbe

ilorbw

iorbwe

iors

lorw

W
o
r
e

H
W
W
L
M
O

.

M
P
W
O
W
N
N
E

B
r

U
N

D
A
H

W
w
W

11

ll.

9.2.2

11.1.2

11.10.1

11.10.2

11.10.3

11.4.1

11.2.1

11.1.1

11.3.2

11.9.2

11.9.1

11.5.1

11.2.2

11.10.4

11.2.3

9.2.4

9.2.10

13.2

9.2.15

9.2.13

12.2.1

12.3.1

12.4.1

12.1.1

10.7.1

10.9.1

10.6.1

10.3.1

10.10.1

10.8.1

10.15.1

10.16.1

10.17.1

10.18.1

10.4.1

10.5.1

lowbb

iowbbc

iowbw

lowbwce

iowc

ioww

jmcht

jmphe

jmppd

jmprw

jmzeq

jmzge

jmzgt

jmzle

jmzlt

jmzne

le

llock

lpop

lpush

lrese

lt

madd

mbset

mbtes

mcis

mcist

meit

mnoop

mod

moveb

moveg

msub

mtime

mul

mwi

mwis

mwist

mwit

mwst

mwt

mwtac

mxept

10.11.1

10.12.1

10.13.1

10.14.1

10.1.1

10.2.1

R
P

P
N

W
U
R
P

D
P
W

N
E
E

—-
O
D
D
D
D
D
D

A
W
M

.

N
e

W
W
W
W
W

W
P

R
E
D

.

11.10.7

11.10.6

11.6.1

11.6.3

a
n
v

m
o
e

e

h
e

P
R
R

r
O
r
F
e

W
W

W
O

e
H

e
o

e
e

N
D
e

e
w

©

D
A
D
A
N
A
Y
s

R
P
r
R
N
W
O

N
e

e

©
e
e

N
O
D

P
W
R
W
E
H
E
N

U
E
N
D

b
e

a a
o
n

1
0
0

11.6.10

13.2

ne

neg

not

or

peald

peals

pexit

reaad

readb

readw

reagd

reagds

reaid

reald

realds

reard

reasd

reaxd

rec0

recl

recl0d

recll

recl2

recl3

recl4

recl5

rec2

rec3

rec4

rec5

rec6

rec7

rec8

rec9

rechd

rechw

rechws

renhb

renpb

revab

revad

revaft

revaw

O
o

©
U
T
A

W
W

O

W
e

o
e
N
D

*
N
U
N
F
P
R
E
N
E
R
e

e
e

u
u
r

U
l
e

o
e

1
m

B
e

oe

6

a
w
n

e
e

e
e

W
w
w

W
w

W
e

h
m
e

r
o
e

M
e

N
N

«
D
r
R
A
N
A
W
U
N
O
P

B
R

W
H
R

D
T
N

R
R

a
u

e
e

R
e

0
0

0
0
©

P
R

P
R
P

E
P

R
P
E

H
P
P

e
e

©

©

C
O

©

M
O

~

O
O

O
o

a
u

o
e

P
E
P
P
E
R

N
L
D

o
e

e
w

w
e

H
e

e
w

B
P
O
A
U
W
H
E
N
D
A
r
R
N

A.3

revgb

revgbs

revgd

revgds

revgf

revgfs

revgw

revgws

revib

revid

revif

reviw

revlb

revlbs

revld

revlids

revlf

revlfs

revlw

revlws

revpd

revpw

revsb

revsd

revsf

revsm

revsw

rvsb0

rvsbl2

rvsb2

rvsb4

rvsb6

rvsd0

rvsdl2

rvsd2

rvsd4

rvsd6

rvsf0

rvsf12

rvsf2

rvsf4

rvsf6

rvsw0

5.4.11

18

5.4.13

18

5.4.14

18

5.4.12

18

5.4.15

5.4.17

5.4.18

5.4.16

5.4.7

18

5.4.9

18

5.4.10

eo
H
e

e
w

fo
e)

W
e

N
e

M
O
N
E
.

O
P
N
F

O
F
N
A
O
D

w
o
u

°

m
e

P
h

h
e

°

o
e

ed
d
c
e
l

e
e

c
e
l

O
D
M
W
D
M
D
D
A
D
M
D
D
M
D
A
M
O
M
D
M
D
M
O
M
O

©

W
O
M

rvswl2

rvsw2

rvsw4

rvsw6

sched

setad

setcr

setdi

seteg

setin

setsb

setsp

setst

settm

setun

she

shc8

stcea

stnhb

stvab

stvad

stvaft

stvaw

stvgb

stvgd

stvgf

stvgw

stvib

stvid

stvif

stviw

stvlb

stvlbs

stvld

stvlds

stvlf

stvlfs

stvlw

stvlws

stvsb

stvsd

stvsf

stvsw

346

18

e
K

W
O
W
W
A
W
W
W

W
W
W

W
P

e
o

e
o

-

e
o
.

w
o
n
w
n
w
o
n
w
n
w
n
r
y
o

N
O
N

P
W
W
W
N

W
N
E

F
O

b
i
e

w
w

e
e

e
o

e
e

e
o

e
e

D
A
K
H
D
A
A
A
A
N

o
e

D
M
N

N
N
E

W
w

e
e

D
A
A
A
K
D
A
A
H
A

a
e

e
e

N
N
N
N
N
M
N
N
-
e

N
e

a

N
O
U
P
D
A
N
W
O
N
E
F
O
N
B
W
E
H
W

O
D
P

H
U
W
N
N
H
E
W
E
N
E

a n
N

a fo
e}

6.2.8

18

6.2.6

18

6.2.17

6.2.19

6.2.20

9.2.18

sub

svsb0

svsb2

svsb28

svsb29

svsb30

svsb3l

svsb4

svsb6

svsf0

svsf2

svsf28

svsf29

svsf30

svsf3l

svsf4

svsf6

svsw0

svsw2

svsw28

svsw29

svsw30

svsw3l

svsw4

svsw6

teqad

tlock

tnill

topen

trape

trapr

uadd

uadhw

udiv

ult

umod

umul

usub

xor

18

X
e
}

.

e
e

e
e

e
e

e
e

w
O
o
r
P
H

U
e

W
W
O
D
O
W
W

N
M
O
N
N
N
e
N
e

b
e

N
D
N
M
O
W
O
r
W
O
O
D
H
A
A
N
E
F
P
A
U
AS
&S

N
e

W
e

W
W
H
R
E
W
w

\
o

W
e

N
e

. .

R
P
r
R
e
R

D
e

N
e

w
w
w
n
o

RETURN LETTER

Title: RC3502 Reference Manual RCSLNo.: 52-AA972

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need

user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,

and readability: °

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you

1
2
8
8

Senet eee eretetes Do not tear - Fold here and staple405

Affix

postage

here

§REGNECENTRALEN

af 1979

Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

