Al Tl &l &l &N Gl G D BN B BN . e
-Q

PASCAL BLS
’%mgermonu@\

/Progr(lmmer l'mg& monuol

N

B

!
)
.‘l"

I

KI(otn ST AL

R \f_\Qw‘ t21¥%0 aaa

I/ A LMK A

A N 2 ;

Blue Label Software

o o]

E /’ft

H iy \f

'“L
BRUGERMANUAL
1pPE | GYV - 3FOB ltro -yEoo),
g FF

oy SO
f'».“ P ATIORE ﬁm,-vg
‘ § 3 ¥ 3l :'(‘!.\274, i
M 9 % k;';;-..-;.'u.i ‘w AR B RO A § N5, |
m!f“I’Ou(‘ﬂtCr

Strandboulevarden 63
2100 Kobenhavn @ - TIf. (01) 4207 05

R,

- — -

INTRODUKTIOP‘ L L R B B I I B I I I I

KOI\ITROIJPROGRA‘Jlt'iET L L I I B I I B B B B

IND- OG UDLESNING AF PROGRAMTEKST

2.1 . SAVE kommandoen ...ccseeocceccsscee
2.2 LORD kommandoen, s cu s oo s oo oieis vs s
2.3 VERIFY kommandoen seeeiossossesassn
EDEFTOREN s aier o alo s st o siausl olokoneshone s os
3.1 Editeringskommandoer ..cceeeeeees
S«2 Cursorkonmandoer .covessssnnsssse
3.3 Blokkommandoer ..ccccceecccccccncs
3.4 Sogekommandoer ..cseceecscccsccccs
3.5 Tabulatorkommandoer .c.cse.csssocsve
3.6 Andre editorkommandoer ..e.eeeeess
CURPILERER . i vissavmsasinnis ninss wee
4,1 COMPILE Kkommandoen .eeeeeescoseses
4.2 RUN kommandoencecccccscsecsce
4.3 TAPE kommandoen .«eeeeescoesscsosns
4.4 FIND Kommandoen ...cecoeeecosocnsse
ANDRE KONTROLKOMMANDOER veveecocoooesese
5.1 MEMORY kommandoen ...eeeeeoeceses
5.2 ZAP kommandoeneceeoesscocaoas
5.3 QUIT Komnmandoen eeeecececooscosocesses

APPENDIX

- o - ———

Indlesning og opstart af systemet
Systemarbe jdslageret

Memory maps

Den brugerdefinerbare udskriftsrutine
Kommandooversigter

. . * e o o

. . e« o o

e e o e o e

. e e o

.
o o . .
e o . .
e« o . .
e o . .
*« o o .

—
OWVWWVWOO _NNNOoOoUn Iz S owWww w n

P e e e Y
— -t

e

O: INTRODUKTION

B - . - - —— . e T G .

BLS Pascal er et komplet 12 K sprogsystem udviklet til NASCOM
mikrodatamaten. Systemet indeholder et kontrolprogram, en

skermeditor, en pascalcompiler og en runtime pakke med de for-
ngdne runtime rutiner. .

Compileren behover kun et gennemlob, og producerer direkte Z-80
maskinkode. Det oversatte program kraver kun tilstedeva@relse af
runtime pakken feor at kunne kore.

Denne manual beskrlver systemets opbygning og betjening. Selve

programmeringssproget er defineret i BLS Pascal programmerings-
manual.

BLS Pascal systemet og de dertil horende manualer er udviklet
af Anders Hejlsberg i efteraret 1980,

Copyright (C) 1981 Poly-Data microcenter ApS .

¢

e '
".-

: =3
1: KONTROLPROGRAMMET :

B e - - ——— - —— - — - -

dar systemet er indlest og opstartet som beskreVét, i APPENDIX
A, udskrives der p& skarmen:

BLS Pascal version x.x

Copyright (C). 1981

Poly-Data microcenter ApS

e, .
hvor x.x er versionsnummeret. Vinkelen er systemets prompt-
tegn, og indikerer at en kontrolkommando kan indtastes. Under
indtastning af kontrolkommandoer kan fglgende specialnggler
bruges:

<BS> Sletter det sidst indtastede tegn.-
<ESC> Sletter hele indtastningen.
<ERTER> Accepterer indtastningen.

En kontrolkommancdo bestar af et kommandoord eventuelt efter-
fulgt af en parameter. Der skal va@re mindst et blanktegn mellem
sarametren og kommandoordet. Kommandoer kan forkortes til det
forste bogstav i kommandoordet. Sdledes galder der at kommando-
linien:

t

LOAD testprogram
Svarer til:
L testprogram

Der er elleve kontrolkommandoer i BLS Pascal systemet. Disse
kan, efter deres funktion, opdeles i 4 grupper:

1. Ind- og udlesning af programtekst.
2. Editoren.

3. Compileren.

4, Andre funktioner

B e Bt G T ———— — - — - S - e =

Ind- og udlasning af programtekst til og fra bandoptager vare-
tages af de 3 kontrolkommandoer SAVE, LOAD og VERIFY.

Formatet af en udl®@sning svarer til NAS-SYS W-format, hvilket
betyder, at hvis man under en indl@sning far en checksumfejl i
en blok, kan man spole tilbage og indl@se den péany.

2.1 SAVE kommandoen

Denne kommando bruges til udl@sning af prograhtekstér. Formatet
af kommandolinien er:

SAVE filnavn eller S filnavn

hvor filnavn er det navn, man ¢nsker.programmet gemt under.
Filnavne kan have hvilkensomhelst l@ngde, og m& gerne indeholde
‘lanktegn.

s
A4

......._.,“.....-—vu

e

— el

_ il
2.2 LOAD kommandoen

Denne kommando bruges til indl@sning af programtekster. Forma-
.et af kommandolinien er: ' i B Y) '

LOAD filnavn eller L filnavn
hvor filnavn er navnet pa det program, man @nsker at indlase.
Hvis filnavnet udelades, indleses den f¢rste fil, der m¢des.

Hvergang et program bliver fundet, udskrives der:

File filnavn found

Det indlaste program bliver lagt i lageret efter det nuverende.

Siledes er der mulighed for at sammensztte et program af i for-
vejen bestdende underprogrammer. Onsker man at indl@se et pro-
gram for sig selv, boer den nuverende programtekst forst slet-
tes, fx. med ZAP kommandoen. LOAD kommandoen kan pé ethvert
tidspunkt afbrydes ved et tryk pa <ESC>. Ved kald af LOAD kom-

mandoen slettes objektkoden. O%)%QQYLOQC)
5
2.3 VERIFY kommandoen

Denne kommando bruges til at verificere en wudlesning af en
programtekst. Formatet af kommandolinien er:

VERIFY filnavn eller V filnavn

hvor filnavn er navnet p& den programtekst, man ¢nsker at veri-
ficere. Hvis filnavnet udelades, verificeres den foerste fil,
der modes. VERIFY kommandoen kan p& ethvert tidspunkt &afbrydes
ved et tryk pa <ESC>.

3: EDITOREN

- e - —— - -

Editoren i BLS Pascal systemet er skarmorienteret. Dette bety-
der bl. a., at der ikke, i mods@tning til BASIC, er Dbehov for
linienumre i programteksten.

1+ en skarmorienteret editor virker skermen som et vindue, der
kan flyttes rundt over programteksten. Cursoren befinder sig
altid inden for dette vindue, og angiver, ved sin position,
hvor der skal indsattes, fjernes eller rettes nogle tegn eller
linier.

I editoren kan programlinier vere op til 80 tegn lange. Dette
betyder, at skarmen, ud over at kunne flyttes frem og tilbage i
programteksten, ogsa kan flyttes til siderne. Hvis man skriver
over 48 tegn pa en linie, vil cursoren ikke flytte ned p& naste
linie, men skarmen vil i stedet scrolle mod venstre, sadledes at
de forreste tegn pad linien 'forsvinder'. Forst nar der er skre-
vet 80 tegn, flytter cursoren ned p& naste linie.

Umiddelbart kan denne opbygning virke forvirrende, men i Pascal
er det meget ofte neodvendigt med linier der er lzngere end u8
tegn, for at programtekstens overskuelighed skal bevares.

iitoren aktiveres med kommandoen:

EDIT eller ‘ E

o, P

Ved indgangen kommer man tilbage til det sted i teksten, man
forlod ved sidste editering. Hvis det er forste gang editoren
aktiveres, eller hvis ZAP kommandoen har veret i brug, slettes
skermen, og cursoren placeres i gverste venste hjoerne.

Editoren har 27 kommandoer, der har ASCII-verdierne mellem 1 og
27 (dvs. kontroltegn). Alle ovrige tegn (inklusive grafiktegn)
vil, nar de indtastes, blive indsat i programteksten p& det
sted hvor cursoren befinder sig, og denne vil derefter, hvis
det er muligt, flytte een position mod hojre.

Under brug af editoren kan det ske, at arbejdslagereret bliver
opbrugt. I s& tilfelde slettes skermen, og der udskives:

Overflow

Brugeren ma da, hvis det er muligt, udvide arbedjslageret ved
at flytte MTOP til en hojere adresse (se APPENDIX B).

Under beskrivelsen af editorens kommandoer bruges de folgende
notationer:

CTRL/ eller SHFT/ efterfulgt af et bogstav betyder, at
bogstavet indtastes samtidig med at control- eller shift-
ngglen holdes nede.

HP betyder hojrepil, VP venstrepil, NP nedpil og OP oppil.
3.1 Editeringskommandoer

Editeringskommandoerne er de kommandoer der retter 1 progran-
teksten.

<BS> Flytter cursoren een position mod venstre og slet-
ter det tegn, den bliver placeret cven i. Hvis cur-
soren star i forste position pé¢ en linie flyttes
den til position nummer 79 i den foregaende linie.

<ENTER> Flytter cursoren een linie ned og indsatter en tom
: linie. Cursoren placeres i fe¢rste position af denne
linte.
<ESC> Sletter cden linie cursoren star pé& og flytter cur-
soren een linie op. Cursoren flytter til f¢rste po-
sition. '
SHFT/HP Flytter den del af linien, der star efter cursoren,
CTRL/V een position mod he¢jre og indsztter et tlanktegn.
SHFT/VP Fjerner det tegn, der star under cursoren, og ryk-
CTRL/U ker resten af linien een position mod venstre.
SHFT/NP Flytter den linie, cursoren star pa, og de - under-
CTRL/Z stdende linier een linie ned og indsztter en tom
linie. Cursoren flytter til fe¢rste position.
SHFT/0P Sletter den linie, cursoren star pa, og flytter de
CTRL/Y understdende linier een linie op. Cursoren flytter

til forste position. . ‘

~3

T A A A7 0 s LN AT s i ,-—i- ot e I I*"I

B

3.2 Cursorkommandoer

Cursorkommandoerne er kommandoer, der flytter cursoren uden at
rette i programteksten,

HP Flytter cursoren een position mod he¢jre. Hvis cur-

CTRL/R soren stdr i position 79, flytter den til forste
position i nz=ste linie. : '

VP Flytter cursoren een position mod venstre. Hvis

CTRL/Q cursoren stadr i f¢rste position flytter, den til
position 79 i den forrige linie.

NP Flytter cursoren een linie ned. Hvis cursoren stéar

CTRL/T 1 nederste linie, scroller skarmen een linie op.

opP Flytter cursoren een linie op. Hvis cursoren stér

CTRL/S i overste linie, scroller sk@rmen een linie ned.

CTRL/B Flytter cursoren til ferste position i program-

~ tekstens forste linie. :

CTRL/E Flytter cursoren til f¢rste position i program-
tekstens sidste linie.

CTRL/N Flytter cursoren 14 linier frem i programteksten.

CTRL/0O Flytter cursoren 14 linier tilbage i programtekst-
en.

<LF> Flytter cursoren til f¢rste position pd den nuver-

CTRL/J ende linie.

<CS> Flytter cursoren til positionen umiddelbart efter:

CTRL/L det sidste tegn p& den nuvarende linie.
3.3 Blokkommandoer

Blokkommandoerne er kommandoer, der berg¢rer hele blokke af pro-
gramteksten. En blok afm@rkes ved hjalp af blokmarker, der kan
szttes med CTRL/A kommandoen. En blckkommando berg¢rer kun den
forste afmarkede blok i programteksten. Hvis der ikke er nogen

blokafmarkninger i programteksten, ignorereres blokkommancoerne
(dog ikke CTRL/A).

CTRL/A Denne kommando skal efterfolges af et bogstav.
'B' indikerer at man ¢nsker at s@tte et start-blok-
merke, og 'E' indikerer at man ensker at s®tte et
slut-blokmezrke. Blokmerker bliver altid indsat fer
den nuvarende linies fe¢rste position. Hvis der i
forvejen star et blokmzrke i linien, bliver CTRL/A
kommandoen ignoreret.

CTRL/D Fjerner den forste merkede blok (inclusive blok-
merker) fra programteksten. Cursoren flytter til
den forste position i den linie, hvor slut-blokmer-
ket ‘stod. ‘

CTRL/I Indsztter den f¢rste markede blok (exclusive blok-
me&rker) umiddelbart feor den ‘linie, cursoren star
pa. Hvis cursoren stidr p& en af linierne mellem
blokmerkerne, eller pd& den linie, hvor slut-blok-

ER L i, 5

maerket—st-dry—ignorereres—GIhL/AI—kommandoens

*

’ ' ‘

i

CTRL/P

-T=

Udskriver den f¢rste merkede blok via den bruger-

‘definerbare udskriftsrutine (se APPENDIX D). Kom-

mandoen CTRL/P skal efterfeolges af et Dbogstav.
Hvis dette er et - 'L', udskrives blokken med linie-
numre.

3.4 Segekommandoer

De to sogekommandoer bruges til at finde de steder i program-

teksten,

CTRL/F

CTRL/C

hvor en indtastet sogetekst forekommer.

Finder den forste forekomst af en sggetekst pad max.
40 tegn. Idet CTRL/F indtestes, indszttes der en
tom linie pad skzrmen, og som prompt-tegn wudskrives
der en hojrepil. Herefter kan soggeteksten indtas-
tes, under brug af de samme specialnggler som ved
kommandoindtastninger. N3r indtastningen er afslut-
tet forsvinder linien igen. -

Hvis teksten bliver fundet under so¢ogningen, bliver
cursoren placeret oven i det forste tegn i teksten.
Hvis teksten ikke bliver fundet, bliver cursoren
staende. :

Sggningen starter altid i linien umiddelbart efter
den nuverende.

Fortsztter sogningen efter den sidst indtastede
spgetekst. ' :

3.5 Tabulatorkomnandoer

CTRL/K

<CH>

. CTRL/W

Denne kommando bruges til at s=tte tabulatorleng-
den. CTRL/K skal efterfolges af et bogstzv, der af-
ger tabulatorlzngden. Bogstavet 'A' svarer til en
lengde pé& 1, bogstavet 'B' til en lz=ngde p& 2,
etc., hvilket svarer til, at lzngden bliver bogsta-
vets ASCII verdi minus 64. Den maksimale tabulator-
lzngde er 63. Hvis man valger en tabulatorle®ngde pd
0 (ved at trykke CTRL/K efterfulgt af '€'), virker
tabulatoren anderledes, idet den nu flytter cursor-
en til den position i linien, der svarer til posi-
tionen af det forste tegn i den foregdende 1linie.
Tabulaterlangden =ndres ikke ved, at editoren for-
lades.

Flytter cursoren frem til den nzste tabulatorposi-
tion, eller, hvis tabulatorl=ngden er 0, til den
position i den nuvarende linie, der svarer til po-
sitionen af det forste tegn i den foregaende linie.

3.6 Andre editorkommandoer

CTRL/G

 CTRL/X

Denne kommando bruges til at =ndre <GRAPH> noglens
funktion. CTRL/G skal efterfplges af et bogstav.
Hvis man trykker 'A' vil <GRAPH> neglen nu virke
som en APLHA-LOCK negle: Hvergang den nedtrykkes,
reverseres <SHIFT> neglens funktion. Hvis CTRL/G
efterfelges af et "G', virker <GRAPH> noglen igen
som normalt. <GRAPH> ngglens funktion bliver hus-
Ret selvom editoren forlades.

Sletter skzrmen og gar tilbage til kontrolprogram-

met. CTRL/X fjerner desuden alle blokmazrker fra .-

programteksten. . R X i TN YN TN P W P

=

» & = o b B

4: COMPILEREN

- - - — - e - - - . -

Compileren er hjertet i sprogsystemet. Ved hj®lp af denne kan
programtekster oversazttes (compileres) til objektkode.

Compileren kan arbejde pa flere forskellige mader:

1) Med COMPILE/RUM kommandoerne gemmes den producerede objekt-
kode direkte ud i lageret, umiddelbart efter programtekst-
en. Denne metocde er langt den hurtigste, men den stiller
det krav, at der er plads til bade sprogsystemet, program-
teksten og objektkoden i lageret pa een gang.

2) Med TAPE kommandoen udl@ses den producerede objektkode til
ba&ndoptager. Denne metode er naturligvis langsommere end
den ovenstdaende, men den har den fordel, at der ikke kreves
lagerplads til objektkoden. Desuden giver TAPE kommandoen
brugeren mulighed for at adressere objektkoden hvorsomhelst
i lageret.

3) Nar compileren aktiveres via FIND kommancoen, genereres der
ingen objektkode. FIND kommandoen bruges til at finde et
sted i progremteksten, der svarer til en bestemt adresse i
objektkoden. Dette er iser brugbart, hvis man under kors-
len 2f et program f&r en runtime fejl og gnsker at finde
den sztning i programteksten, der er skyld i fejlen.

Hvis man under en compilering far en fejl, bliver editoren au-
tomatisk aktiveret, og p& skaermens gverste linie udskrives fej-
lens nummer. Cursoren placeres oven i eller umiddelbart efter
den tekst, der er skyld i fejlen.

Lzd os antazge at man har indtestet det felgende program:

VAR i: INTEGER;
BEGIN

readln(i); writeln('Kvadratet er ',sqr(j))
END.

Programmet indeholder en fejl, jdet variablen j ikke er erkle-
ret. Hvis man prover at compilere programmet, vil der ske fel-
gende:

Compilation error 64 Press <SPACE>
readln(i); writeln('Kvadratet er v osqr(j))
END.
Cursoren er placeret oven i j'et, p4d den forste linie, for at

angive fejlen. Idet man trykker (SPACE> forsvinder fejlteksten,
og programmet kan editeres, som navde man aktiveret editoren pa
normal vis.

Uncer en compilering kan det ske, at alt arbejdslageret: bliver
opbrugt. Da udskrives der:

Overflow

Brugeren md nu, hvis det er muligt, udvide arbejdslageret pa en
af de folgende mader: ’ ‘

il Il N N EE .

> A

’

Hvis systemet ikke har tilgang til hele RAM-lageret, boer
MEMTOP flyttes til en hpjere adresse (se herom i APPENDIX
B).

—
N

2) Hvis compileren blev aktiveret med COMPILE eller RUN kom-
mandoerne, kan man i stedet bruge TAPE kommandoen og ud-
lese objektkoden pa& band.

4.1 COMPILE kommandoen
Nar compileren aktiveres via COMPILE kommandoen} bliver den

producerede objektkode lagt direkte ud 1 lageret umiddelbart
efter programteksten. Formatet af kommandolinien er:

COMPILE , eller iy o4 : . ¢
Efter kommandokaldét udskrives der:
Compiling

Forudsat at der ikke er fejl i programteksten, bliver fg@lgende
uskrevet, efter at compileringen er slut:

Compiling OK :
Text: $aaaa $bbbb <xxxxx>
Code: $ccce $dddd <yyyyy>

hvor aaaa og bbbb er programtekstens start- og slutadresser (i
hexnotation), og xxxxx er programtekstens storrelse. cccc, dddd
0g Yyyyyy er de tilsvarende parcznietre for objektkoden.

4,2 RUN kommandoen

- Denne kommando bruges, nar man onsker at wudfore et program.

Hvis programteksten ikke er compileret (ved hjelp af COMPILE
eller en tidligere RUMN kommando), vil dette blive gjort for
programmet startes. Forudsat at der ikke opstér fejl wunder
compileringen, eller hvis programteksten i forvejen er er con-
pileret, udskrives der:

Running

hvorefter kontrollen bliver wovergivet til programmet. Efter

endt k¢rsel af programmet, bliver kontrollen tilbagegivet til
sprogsystemet. Hvis der opstér en runtime fejl wunder korslen
af et program, udskrives der:

Runtime error xx at $nnnn

hvorefter kontrollen overgives til sprogsystemet (eller til
HAS-SYS hvis programmet er compileret med TAPE kommandoen).
xx er fejlens nummer, og nnnn er fejladressen 1 hexnotation.
Adressen er ikke den absolutte adresse, men offsetadressen
fra programmets startadresse. Ved hje@lp af FIND kommancoen
(uden argument) kan man nu finde den setning i programteksten,
der er skyld i fejlen. :

4,3 TAPE kommandoen

Nér'éompileren aktiveres via TAPE "kommandoen, bliver objekt-
koden-udlest til bandoptageren; denne beor derfor startes for
kommandokaldet. Formatet af kommandolinien er:

R S T T . T

W PRSRTYT

G s, . e o 5

da abd

dhihe.

- i S e .

I

0
TAPE nnnn eller T nnnn

hvor nnnn er den hexadecimale adresse, man ¢nsker objektkoden
adresseret til. Hvis nnnn udelades, velger systemet $2180 som
‘startadresse (hvilket er slutadressen for runtime pakken og
startadressen for kontrolprogrammet). Objektkoden wudskrives i
NAS-SYS W-format, og kan senere indleses med NAS-SYS R-komman-
doen. Nar udlesningen er slut, udskrives der:

xxxx’ End.
Hvor xxxx er objektkodens slutadresse.

Nar programmet senere indleses, kan det startes med NAS-SYS
kommandoen Ennnn, hvor nnnn er startadressen. For at program-
met kan kore, krazves det at runtime pakken er tilstede i lager-
et mellem $1000 og $2180; imidlertid behgver resten af sprog-
systemet ikke at vere tilstede. Nar et program virker tilfreds-
stillende, kan man sdledes udlese objektkoden med TAPE komman-
doen, og derefter sammensztte denne med runtime pakken, for at
danne en f@rdig objektkode, der kan ko¢re helt for sig selv.
Eventuelle maskinkoderutiner kan med fordel placeres imellem
$2180 og programmets startadresse . Har man for eksempel en
samling maskinkoderutiner cder fylder 128 bytes ($80), kan disse
startes i $2180 og programmet i $2200.

4.4 FIND kommandoen ’

FIND kommandoen bruges til at finde et sted i programteksten,
der svarer til en adresse i objektkoden. Nar compileren akti-
veres via FIND, genereres der ingen objektkode. Formatet af
kommandolinien er:

FIND nnnn eller . F nnnn . :

hvor nnnn er den azdresse man ¢nsker at finde. Adressen er ikke
den absolutte adresse, men en offsetadresse fra programmets
startadresse. Hvis et program fx. starter i $218C, og man
¢nsker at finde det sted i programteksten, der svarer til ad-
ressen $2295, skal man indtaste FIHND 115. Hvis nnnn udelades
bruges adressen pa den sidst forekomne runtime fejl. Efter
kommandokaldet udskrives der:

Searching

Hvis offsetadressen passeres under s¢gningen, reagerer systemet
ved at aktivere editoren og udskrive:

Compilation error 00 Press <SPACE>

Cursoren er placeret umiddelbart efter den relevante tekst.
Idet man trykker <SPACE> forsvinder fejlmeldingen, og program-
met kan editeres som normalt. :

Hvis offsetadressen ikke passeres, udskrives der: -

Searching ?

Ved brugen af FIND kommandoen, slettes en eventuel objektkode,

.

l * 5: ANDRE KONTROLKOMMANDOER

.

- - - - - .

5.1 MEMORY kommandoen
Denne kommancdo oplyser start- og slutadresserne o0g sterrelsen
af programteksten, og de samme parzmetre for en eventuel ob-
jektkode. Formatet af kommandolinien er:

MEMORY eller : *M
Herved udskrives der:

Text: $azaa $bbbb <xxxxx>
hvor aaaa og bbbb er programtekstens start- og slutadresser (i
hexnotation) og xxxxx er programtekstens sterrelse. Hvis prog-
rammets objektkode er tilstede, udskrives der tillige:

Code: $ccce Sdddd <yyyyy>

hvor cccc, dddd og yyyyy er de tilsvarence parametre for ob-
Jjektkoden.

5.2 ZAP kommandoen

Denne kommando sletter programtekst og objektkode. Formatet af
kommandolinien er:

ZAP eller ' yA
Pas godt p& med denne kommando.
5.3 QUIT kommandoen

Denne kommando overgiver kontrollen til MNAS-SYS. Formatet af
kommancolinien er:

QUIT . eller Q

Systemet kan senere varmstartes som beskrevet i APPENDIX A.

BLS Pascal systemet leveres pa et kassettebdnd, der er udlest
med NAS-SYS W-kommando pa 1200 baud. Indlesningen foregdr ved
hjelp af NAS-SYS R-kommando.
BLS Pascal systemet koldstartes ved at skrive:

E1000 aaas eller E2180 aaaa
hvor aaza er den sidste adresse i RAM-lageret sprogsystemet mé
benytte. Hvis aaaa wudelades benyttes alt tilgengeligt RAM-
lager.

BLS Pascal systemet varmstartes ved kommandoen:

E2182

| -
r

g
|

*APPENDIX B -~ SYSTEMARBEJDSLAGERETS LAYOUT

Systemets bruger 128 bytes arbejdslager i omradet $C80 til
$D00. I dette omréde kan fe¢lgende vere af interesse for bru-
geren:

C80-C81 MTOP Den ¢verste adresse i RAM-lageret sprogsy-
: stemet méa bruge.

€C82-C83 EOFP Programtekstens slutadresse.

Ce4-C85 PEND Objektkodens slutadresse.

D.1
« APPENDIX D -- DEN BRUGERDEFINERBARE UDSKRIFTSRUTINE

L e S S R

Nar man bruger CTRL/P kommandoen i editoren, bliver udskriften
sendt via den brugerdefinerbare udskriftsrutine i NAS-SYS.

Adressen pd denne rutine skal std i adresserne $C78-$C79, og
den bor felge de regler, der er givet i afsnittet INPUT AND
OUTPUT 1 iIAS-SYS manuzlen.

- - i L VSN =,

‘

APPENDIX C -- MEMORY MAP

B Gt - G G - S e e S e - - ——

Under udviklingen af et program har
det fgolgende layout:

0c8o
0DOoO
1000
2180
2980
4000
EOFP

PEND

MTOP

- - —— - ———— - —— - -~ - - -

. - - e -G8 ——— . - - — v ——— - — ;-

- e - - ———— - - ——— - —— - — -

- —— - ————— ———— - —— - ———

- ——— - — - ——— ———— -~ —— - —————

- ——————————————— - -~ ——

Rt g el T E pp——

evt. maskinkoderutiner

. —————— - ————————————— - —— -

Under ko¢rslen af det fzrdige program
typisk det folgende layout:

0C80
0D0O0

1000

21380

MTOP

R e R S p——

e e - —— - ————

systemets stack

e ——————— - ———————— e - -

- e - - - — - - - -

Lttt e T S ——

Rt ey Sy ———

e v tme "o tem oum tem o cen see tem

-4

har systemets RAM-lager

e L

f}

Blue Label Software

—_
scal

PROGCRAMMERINGSMANUAL

¥ p Caialo
=/ microcenter
_ Strandboulevarden 63 :
: - "2100 Kobenhavn @ - TIf. (01) 4207 05

B

. 8 INEREDBETINN o senasorivievpeansosasansvseseninsssnh
1. SPROGETS GRUNDLEGGENDE ELEMENTER ..ccecc..

M.l Symboler .. R R e e e LR e sl e s vinses e heilTle e

' 1.2 Reserverede ord og standardldentlflere
1.3 DR I LONer L icccrvescirsesntssssssssssnsnsesseenene

l 2. BRUGERDEFINEREDE SPROGELEMENTER .eceveene
2.1 Identifiere ,....9s ~E e T AR R N RS o "

g Bl L PRGN ST PSP SRR S ot alol oo ienodls

233 JETENLEC cesnirnosisssspsneess L T IR

l 2.4 Kommentarer ..cccccececcoccccsocsscccncnse ceseccene
B PRTATYIPER vcovne

' BT INLEEerSs .ivicssinees
Bk RRRLS . conns e e i B R supBiaswe

3.3 Booleans SRR n S K AR SRSy FeeE

. S S BRI E S il v e o0 eine e STV e R S oiel S iee b
SO Arraystruktorer PRI B PR I PR . =

2.5 1 melp arraystrukturen. ...veececeece oo bR

l B ERELERINGER OC DEFINERINGER (cceevcceconcscns
et Labelerklmringer ..cisecseoces LR, AP A oA Sl

.2 Konstantdefineringer ..ccccceceecccccccccccccssccsns

l 4.3 Variabelerklaringer o ¢ y o s W wEA AR v
4.4 Procedure- og funktlonserklerlnger e <A

I L WDTRIR s B i by e e & A RS 5 8 .
5.1 NOT operatoren P ¥ S AP .

5.2 Multiplicerende operatorer .ccceececsocecces o solaiele

+ 5.3 Adderende operatorer

l ; 5.4 Sammenlignende operatorer LSRR
SN P nleSBr 21 CUGERYK o ae oo ssonesiose o o s o toN olar/oaE

' $.8 Funktionskald .ceeee. ol e B i+ w3 i e
B SETRINCER00 on BN AR AN . PR R UM A -1

6.1 Simple saatnlnger PG SR S g

I 1.3 Tilskrivningssetningeén. sicececcee N AR
B.1:2 Proosduresatnipgen .cecococeos o ibitide AT "

: Bl 3 COTORSRLAINEED (v vecesssccccnsanseis
B AN TR RN O] "« oo inotie e cnge annine e s nliae

. 5:1.5 Tonme BRENINECr .ovessscnvecsostons PO
8.2 Strukturerede SELNiIiNELr .cocsssivvrasscssnssavesss

et] Sannensht SBEHTNE o« conevons e e dinnems

l 6.2.2 Betingede s@tninger .cecececcecs Stk .
8.2,2.1 FFESBEDINELD 5 anvcsonesn o a TR

B0 .2.C CASEwSBERINEOR o « v 40 é o s spifins s sn eis

' BiRiS BepatitionsSEEnInEer cos o vevse s
0.253.1 HHILE=SHBENINEON .« .cov oo asabnesns .8

6.2.3.2 REPEAT-s&tningen ..weees PN

.. 6.2,3.3 FOR-satningen cccsvcee
Ts TPROCEDURER .vocoviods RPN 5= R P

7.1 Procedureerkl@ringer o . - A e

' T.1.1 Procedurehovedet .c.cecccocvsccsosscessrcsssecs
g 7.1.2 Erkleringsdelen PRI (e R
T:1.3 Satningsdelen sscssscrcssopsvmonscnessinsings

' 1.2 :5tandardproCedUIrer . oif: ossie e s s.0 06 o/6isannaesssisess

iy

s W

VOO oooooooovoy ULTuniuiut,n

10
10
10
10
11
11

12
12
12
12
12
12
13
14
14
14
14
14
15
15
15
15

17

17
17
17
17

-

8.

-

\'

ey,

wlabhl_ialbatney .

mabaesaadani o o 2 W8 2 - <« ameraic

R

10.

FUNKTIONER.
8.1 Funktionserklaringer
8.1.1 Funktionshovedet ..
8.1.2 Erkleringsdelen ...
8.1.3 S@tningsdelen
ndardfunktioner
Reelle funktioner .
Heltalsfunktioner .
Stringfunktioner ..

8.2 Sta
8.2.
8.2,
8.2.
8.2.
8.2.
T

PARAMETR
9.1 Parametertyper .v..ceeeess
9.1.1 Vzlue-parametre ...
9.1.2 Var-parametre

® % 0 0 00 0000000000

2
3
L Konverterlncsfunktloner
5
E

LN

Andre standardfunktioner

o 0 0 0 0 0

® ° 0 0 0 0

® e 0 0 0

® o 0 v 0

9.2 Formelle og aktuelle parametre

INDLESNING OG UDLESNING

® o 0 0.0 0

10.1 Indlesning fra konsollen

10.1.1 read proceduren

*® 0 0 0 0

10.1.2 readln proceduren

10.2 Udlesning til konsollen

* e . .

. e e e e e o o

e °* e e o

.

10.2.1 write proceduren
10.2.2 writeln procedurene.....
10.3 Indlasning og udlesning af arraystrukturer

10.3.1 save proceduren
10.3.2 load proceduren

APPENDIX

HIOM@HDOOW>

Syntaxdiagrammer

Eksempler pd underprogrammer
Systemarbe jdslageret

Intern datareprasentztion
Eksterne underprogrammer
Benchmarktests og tider
Litteraturliste

Compiler fejlmeddelelser
Runtime fejlmeddelelser

. e o . e o e o .

. *« o e o

. LI) . o * e o o
. o o . e e e e =

.
e o . e
.

. . .
.
.

e o s e e
* e LY .
e o e e .

.
.
L
.
.
.
.
.

e o e o e

.
.
3
.

. e o . .
e o e o o

e e
.

. . . . e o

Ll AR AEL EL B B T B G R B SN R R S N W R W I R 8 I o e

LR B L I I R I R T TN T SR

. e e e o

19
19
19

19
20
20
20
20
21
21

22
e
22
22
22

23
23
23
23
24
24
25
25
25
25

-3~
O0: INTRODUKTION

- ——— - g e G G ——

Hovedmédlet med udviklingen af BLS Pascal systemet er at skabe
et alternativ til BASIC programmeringssproget.

Programmer skrevet i BASIC har en tendens til at blive uover-
skuelige og korer ofte meget langsomt. Programmer skrevet i det
blokstrukturerede sprog Pascal er langt mere overskuelige og
korer meget hurtigere, da de ikke skal fortolkes, men i stedet
oversattes til maskinkode.

BLS Pascal er et meget kompakt system, der kun krazver ca. 12 K
lager, hvoraf ce ca. 5 1/2 K er compilerdelen. Naturligvis kan
det p& en sa& lille plads ikke lade sig gore at lave en komplet
pascalcompiler. I.BLS Pascal er der derfor givet afkald pa
nogle Pascal faciliteter, bl. a. brugerdefinerede variabeltyp-
er, mengder og filtyper. Imidlertid er alle sztningskonstruk-
tioner bibeholdt, ligesom procedurer og funktioner ©bade kan
tage value- og var-parametre. De grundlazggendende datatyper
INTEGER, REAL og BOOLEAN er ogsa bibeholdt, mens datatypen
CHAR er blevet erstzttet af en den mere fleksible datatype
STRING. :

Denne manual definerer'fuldstandigt BLS Pascal sproget, og ber
derfor gennemlases grundigt foer programmeringen pébegyndes.

BLS Pascal systemet og de dertil horende manualer er wudviklet
af Anders Hejlsberg i efteraret 1980.

¢

Copyright (C) 1981 Poly-Data microcenter ApS

At A

-l

e S B I AL
it e A UL s A

B " TAES TY RNt o bt phrsr R ' o
> g P TR — - ¥ o At

Rt I S ——

1.1 SYMBOLER

Folgende tegn er de grundlaggende symboler i Pascal:

Bogstaver: A
Talcifre: 0
+

ti
1
Symboler: -

* N =

45
N

R

Nogle operatorer og seperatorer er sammensat af to tegn:

L

2. (. og .) kan bruges i stedet for [og]J.

3. (*¥ og *) kan bruges i stedet for { og }.

1.2 RESERVEREDE ORD 0G STANDARDIDENTIFIERE

Reserverede orc kan ikke benyttes som brugercefinerede identi-

fiere. De reserverede ord er:

¢ AND / FOR
. ARRAY FUNCTION
/BEGIN GOTO
~ BOOLEA /IF
7 CASE INIT
VDIV INTEGER
DO ' LABEL
 DOVINTO HOD
v ELSE 'NOT
_VEND OF
~ EXOR OR
~ EXTERNAL - OTHERS

‘PROCEDURE

PROGRAM
REAL
REPEAT
SHIFT
STRING
THEN

TO
UNTIL
VAR
WHILE

I BLS Pascal findes ogs2 et antal standardidentifiere, der ikke
€r reserverede, men som er navne pa pradefinerede procedurer,
funktioner og konstanter. Disse identifiere kan overskrives med

brugerens egne definitioner.

/abs left
addr ln
arctan . load
call ‘maxint
chr mem
concat mid
cos odd
empty ord

' exp - pi
false plot

~- frec point
int ' pred
keyboarc random

Der skelnes ikke mellem smé& og store

ord og standarcdidentifiere.

1.3 SEPERATORER

' read

readln
right
round
save
sin
sqr
sart
succe
true
trunc

‘write

writeln

bogstaver 1 reserverede

¢

Blanktegn, linieskift og kommentarer anses for seperatorer. I-
mellem to Pascal elementer skal der vere mindst een seperator.

2: BRUGERDEFINEREDE SPROGELEMENTER

G B e S e - - G- —— - — an W G S O - —— . o

2.1 IDENTIFIERE

En identifier bruges til at navngive konstanter, procedurer,
funktioner, variable og labels. En identifier bestar af et bog-
stav efterfulgt af et vilkarligt antal bogstaver, talcifre el-
ler '.'-tegn. Eksempler:

PASCAL Pascal NAVN.41,CODE

Compileren skelner mellem sm& og store bogstaver i brugerdefi-
nerede identifiere.

Bae TAL

Tal skrives i decimal eller hexadecimal notation. Hexadecimal
notation valges ved at skrive et $-tegn foran tallet. Bogstavet
E foran skalafaktoren udtales som 'gange 10 ople¢ftet i'.
Eksempler:

1 100 $25EC 0.138 5E10 87 .13E-8
Talkonstanter mé& ikke indehdlde blanktegn.

2.3 STRENGE

En streng er en sekvens af tegn omsluttet af enkelte anfgrel-
sestegn. Anférelsestegnet kan indgd i strengen, hvis det skri-
ves dobbelt. Eksempler:

'BLS Pasczal'! TAY 'A ' '"That''s all folks'
2.4 KOMMENTARER

En kommentar er en sekvens af tegn, der kan fjernes fra prog-
rammet, uden at dettes mening @ndres. Kommentarer skal omslut-
tes af symbolerne { og } eller af symbolerne (* og *).
Eksempel:

(¥ Dette er en kommentar ¥)

.
o ae ama G+

PR R AT

S e

P P

e

o

s st o M artbh S

T S —
R

3 S

1 S e s 1

-

-0 -

3: DATATYPER

- - aen e - -

En variabels datatype er afgorende for hvilke vaerdier, den kan
antage 1 programmet. I BLS Pascal er der fire datatyper: Integ-
er, real, boolean og string.

3.1 INTEGERS

En integer er et heltal i omrddet -32768 <= I <= 32767. Over-.
flow pé& integers detekteres ikke. :

3.2 REALS
En real er et reelt tal i omraderne:

-1.7014118346E38 <= R <= -2.9387358770E-39
R =20 :
2.9387358770E-39 <= R <= 1.7014118346E38

I BLS Pascal regnes reelle tal med 11+ betydence cifre. Ved un-
derflow pé& reelle tal sattes resultatet 1lig 0. Ved overflow
stcpper programmet med en fejlmeddelelse.

3.3 BOOLEANS

I BLS Pasczl opfattes Integers og Booleans ens. Typen boolean
er kun medtaget for at give kompatibilitet med andre Pascal-
compilere. Booleans bor ikke antage andre verdier end true
(-1) eller false (0).

3.4 STRINGS

Ndr en string erklzres, angiver man den maksimale lwngde, denne
kan antage (mellem 1 0g 255) Eksempler:

STRING (.32.)
STRING (.stringsize.)

3.5 ARRAYSTRUKTURER

Et array bestar af et antal dataelementer, der 2lle er af samne
type. Et element refereres ved at angive et (eller flere) in-
dex, der afger, hvor i strukturen elementet findes. N3ar en ar-
raystruktur erkl®@res, angiver man den nedre og ovre granse for
hver enkelt dimension. Eksempler:

ARRAY (.1..10.) OF INTEGER
ARRAY (.0..maxsize.) OF STRING (.32.)
ARRAY (._5‘.11’29'.45.) OF REAL

Variable i en n-dimensional arraystruktur refereres ved at an-
give arreystrukturens identifier efterfulgt af n heltalsudtryk,
adskilt af kommaer, omsluttet af firkantparenteser. Eksempler:

data(.12.)
Bl.%+3,T7.)
navne(.pil(.8.),3.)

’i 3.5.1 mem arraystrukturen

rer til en byte hvis adresse er dens index
Et element kan sdledes kun

endimensionalt
Hver enkelt element sva-

i

array,

arraystrukturen.
Til-

let modulus 256.

Eksempler:

antage verdier mellem O og 255.

skrives en verdi sterre end 255, bliver den aktuelle verdi tal-

| mem arraystrukturen er et praedefineret
der representerer computerens memory.

\

\

i:=mem(.$C00.) AND $16;

FOR p:=1 TO length(s) DO
mem(.of fset+p.):=zord(mid(s,p,1));

QOCOO W SV "‘\)(,\ ‘Ln H

- RN R S s g AT s g ST b St T e e

e oul ~dag 45

s | I

4
e bt e e

i bt
- S

e o AT R W

= 7

|
!

o o 2ok dund |

- .

- . G e e

=8
Et program bestéar af tre dele:
1. Programhovedet
2. Erkleringsdelen

3. Sztningsdelen b

I programhovedet erkl@res programmets navn o0g input/output pa-
rametre. Eksempler:

PROGRAM konverter;
PROGRAM beregning(input,output);
I BLS Pasczl er programhovedet ikke nodvendigt, og hvis det er

tilstede opfattes alt, mellem symbolet PROGRAM og det naeste se-
mikolon, som en kommentar.

Erkleringer skel foretages i rakkefolgen:

1. Labelerkleringer

2. Konstantdefineringer

3. Variavelerklaeringer

4, Procedure/Funktion erkleringer

Ingen af de ovennavnte punkter behgver at vere til stede (sale-
des kan erklzringsdelen godt vere tom).

4.1 LABELERKLERINGER

I labelerklazringsdelen, der starter med det reserverede ord
LABEL, skrives identifierne for 2lle de labels der bruges i
programmet adskilt af kommaer. I BLS Pascal kan en label enten
vere et fortegnsfrit heltal eller en identifier. Eksempel:

LABEL 1,error,999,stop;

En label defineres ved at skrive navnet efterfulgt af et kolon.
Eksempel:

999: write('Slut');

En label bor kun refereres indenfor den blok hvori den er . er-
klaeret.

4.2 KONSTANT DEFINERINGER

Konstantdefineringsdelen startes med det reserverede ord COIiST.
llavnet pa en konstant er en identifier. -Konstante verdier kan
vere tal eller strenge. Eksempel: -

CONST
antal=45;
"max=193.158;
min=-max;
navn='Jensen'; Y S T

Felgende standardkonstanper behgver ingen definering:

pi Real 3.1415926536.

true Boolean Sand (-1). e
false Boolean Falsk (0C). ’
maxint Integer 32767T.

empty String '* (Den tomme streng).

4.3 VARIABELERKLERINGER

Alle variable, der anvendes i et program, skal erklzres i en
VAR-erklaringsdel. Denne definerer, hvilken datatype variablen
skal vere, og dermed hvilke vardier den kan antage. Eksempel:

VAR
i,J,k: INTEGER;
Xx.coor,y.coor: REAL;
navne: ARRAY (.1..100.) OF STRING (.32.)

Flere variable af samme datatype kan erkl@res samtidigt ved at

_skrive deres identifiere adskilt af kommaer. En variabel kan

kun bruges i den blok, hvori den erkleres, samt ce blokke, der
erkleres inden for denne blok.

Under indgangen til en blok bliver alle de heri erklerede vari-
able nulstillet, dvs. reals og integers antager verdien 0, boo-
leans antager verdien false og strings antager vardien empty.

4.4 PROCEDURE- OG FUMKTIOMSERKLERINGER

Procedureerklzringsdelen bruges til at definere underprogrammer
i hovedprogrammet (se afsnit 7).

Funktionserkloringsdelen bruges til at definere underprogrammer
der returnerer en varci (se afsnit 8).

sk

-10-

5: UDTRYK

I BLS Pascal er der 4 klasser af operatorer. Operatoren NOT har
den hpjeste prioritet, efterfulgt af de sdkaldte multipliceren-
de operatorer (¥ / DIV MOD AND SHIFT), igen efterfulgt af de
sakaldte adderende operatorer (+ - OR EXOR), og til sidst sam-
menligningsoperatorerne (= <> > < >= <=).

Alle opratcrer der tillader integers tillader ogsa booleans.

5.1 NOT OPERTOREN

Operatoren MHOT indikerer, at operanden skal komplementeres.
Operanden skal vere af typen boolean eller integer. Eksempler:

NOT true = false
NOT false = true
NOT 5 = -6

5.2 MULTIPLICERENDE OPERATORER

Operator Operation . Operandtype Resultattype
¥ Multiplikation real,integer real,integer
/ Division real,integer real

DIV Heltalsdivision integer integer

MOD Modulus integer integer
SHIFT Logisk skiftning integer integer

AND Logisk AND integer integer

Bttt T R e e e ———

Operationen I SHIFT J har folgende virkning: I skiftes J gange
mod venstre, hvis J er positiv og -J gange mod hejre ,hvis J er
negativ. Hvis ABS(.) er storre end 15 er resultatet altid nul.

5.3 ADDERENDE OPERATORER

Operator Operation Operandtype Resultattype

+ Addition real,integer real,integer

- Subtraktion real,integer real,integer

OR Logisk INCLUSIVE OR integer integer

EXOR Logisk EXCLUSIVE OR integer integer

Hvis + eller - bruges med kun een operand, indikerer <de hen-

holdsvis identisk og inverteret fortegn.

5.4 SAMMENLIGHNENDE OPERATORER)

Ce sammenlignendce operatorer = , <> , >, <, >= , <= Detyder
henholdsvis lig med, forskellig fra, sterre enc, mindre end,
sterre enc eller lig med og mindre end eller lig med. Alle da-
tatyper kan indga som operander, dog ma tal ikke sammenlignes

med strings.

Resultatet af en sammenligning har enten verdien true (-1) el-
ler false (0), og typen integer (boolean).

Ved sammenligning af strings, sammenlignes ASCII va&rdien af
hver enkelt karakter, -til en forskel mgdes, eller en af de to
strenge ikke er lengere. Eksempler:

¥

I IAY . true
"HIJK'<*HIJKLMN' true

5.5 PARANTESER I UDTRYK
Udtrykket

a+b¥*c :
beregnes ved at multiplicere b og ¢ og addere a ‘hertil, idet
multiplikation har ne¢jere prioritet end addition.
Onsker man at @ndre denne rakkefclge kan der indszttes parante-
ser i udtrykket, idet paranteser altid har hojeste prioritet:

(z+b)*c
tiu bliver additicnen udfe¢rt for multiplikationen.
5.6 FUNKTIONSKALD

Et funktionskald (til enten en standardfunktion eller en bru-
gerdefineret funktion) kan indgd i et wudtryk ved at angive
funktionens identifier eventuelt efterfulgt af en parameterlis-
te. Funktionens resultat kan betragtes som en variabel af samme
datatype som funktionen. Eksempler:
sin(y)+cos(x) ’
concat('Nevn: ',fornavn,' ',efternavn)
arctan(1.0)*4.0
afstand(x,y)>5 AND (z=0)

.
+
{

YL

6: SETNINGER

- - - ———

Setninger i Pascal kan opdeles i to hovedgrupper: Simple s®t-
ninger, der ikke kan indeholde andre s@tninger, .og strukturer-
ede sztninger, der indeholder andre s&tninger.

Enhver sztning kan forudgads af en label, der kan refereres i en
GOTO satning (se afs. 4.1 og 6.1.3).

6.1 SIMPLE SETNINGER

I BLS Pascal er der fem simple saetninger: Tilskrivningssetning-
en, procedure*”tnlngen, GOTO-sztningen, INIT-s®mtningen og den
tomme s&tning.

6.1.1 Tilskrivningss&tningen

Madlet med en tilskrivningssetning er at tilskrive en wvariabel
eller et funktionsresultat en verdi.

I en tilskrivrning bruges operatoren := til at adskille variab-
len (eller funktionen) og udtrykket.

zriablen (eller funktionen) og udtrykket skal @re at samme
datatype, dog med den undtagelse at reals godt Van tilskrives
integer (heltallige) verdier. Eksempler:

X:zy+2Z (*¥ x antager verdien y plus z ¥)

Hvis en strengvariabel tilskrives et strengudtryk, der er l&ng-
ere en strenbvorlablens maksimale lanade, overferes kun de ven-
stremest justerede tegn.

6.1.2 Proceduresztningen

En proceduresztning bruges til at aktivere den procedure, hvis
identifier indgér i s@tningen. Proceduresztningen kan desuden
indeholde en liste over aktuelle parzmetre, der under kaldet
bliver substitueret af de tilsvarende formelle parametre.
Eksempler:

sorter(navne);

ombyt(x,y);)

plot(x,rouncd(sin(x*f)*20)+20,1);
6.1.3 GOTO-sztningen

En GOTO-sztning indikerer, at programudforslen skal fortsattes
frz den latel der refereres.

Ved drugen zf GOTO-sztninger ber fcolgence regler iagttages:

1) En label ber kun refereres inden for cen blok, hvori
den er erklzret. Det er saledes ikke tilladt at hoppe
ind og ud af procedureblokke.

2) Et hop ud af og ind i en FOR-sztning er ikke tilladt.

6.1.4 INIT-satningen
En INIT-s&ztning bruges'til at tilskrive en arraystruktur kon-

stante vardier. De givne verdier skal vere af samme datatype
som arraystrukturen. '

e e e A e O s i e g

- Fe

Hvis der er farre elementer i INIT-listen end i arraystruktu-
ren, bliver kun de forste elementer initieret. Eksempel:

VAR :
data: ARRAY (.1..6.) OF INTEGER;
BEGIN

data(.6.)=100; -

INIT data TO -15,6,99,341;

END.

Efter INIT-sztningen har elementerne i DATA de fo¢lgende verdi-
er:

data(.1.)=-15 data(.2.)=
data(.4.)=341 data(.5.)=

Hvis arraystrukturen har flere dimensioner bliver der talt bag-
fra. Eksempel:

VAR ,
a: ARRAY (.1..3,1..3.) OF INTEGER;
BEGIN

INIT a TO -9,6,-3,18,41,38,1357,-1,5;

END.

Svarer til:
" VAR |
22 ARRAY (. Vs34 1::3.) OF INIEGER:
BEGIN

Hw o on
P . |
W, oo
Wwe we
-
-
N N

"

£

—h
N oW o
NN AN
. - .
W N —
www
. . .
Nt Nt s
" oaon
(GARUN BN |
- OOW

0 se e

END.

INIT-sztningen kan ogsad bruges til at initiere en blok af mem-
ory. Eksempel: i

INIT mem(.mc.) TO $EF,$41,$42,543,300,5CO;

Hvis heltzlsvariablen mc har verdien $D00 galder der efter endt
udfgrsel af denne sztning at adressen $D00 her verdien $EF, ad-
ress=zn SDO1 verdien {41 etc.

6.1.5 Tomme s@tninger

-

Den tomme s@tning indeholder ingen symboler (undtaget kommen-
tarer) og giver s2ledes heller ingen aktion. En tom . s&tning
forekommer de steder hvor Pascalsyntaxen forventer en sztning,
men hvor der ingen er. Eksempler:

BEGIN END; '
WHILE digit AND (a>17) DO (¥ ingenting ¥*);
'REPEAT (* vent ¥) UNTIL keyboard;

— ween I GBS UG G G BN BN G D G AN BN B BN O Bm B e

1Y

6.2 STRUKTUREREDE SETNINGER

En struktureret s@tning er en sztning der blandt andet indehol-
der andre s&tninger.

6.2.1 Sammensat s&tning

I nogle tilfelde ma man kun anvende en enkelt sz@tning. Safremt
man i denne situation ensker at skrive flere setninger, skal de
omsluttes af BEGIN og END, der virker som s&@tningsparanteser.
Eksempel:

IF a=1 THEN
BEGIN]
Zi=X; Xiz=y; Y.:=2Z (* ombyt x og y ved hj®lp af z ¥)
END;
De enkelte s@tninger, i den sammensatte satning, adskilles med

semikolon. Der behover ikke at vere et semikolon efter den sid-
ste s®&tning 1 den sammensatte s@tning.

6.2.2 Betingede satninger

En betinget sztning er en setning, der pa& grundlag af et valg
udforer en af de indeholdte sztninger.

6.2.2.1 IF-s=tningen

IF-sztningen bruges i de tilfelde, hvor en s@tning kun skal ud-
feres, hvis et (boolean) udtryk er sandt. Hvis udtrykket er
falsk, galder der enten, at der ikke udferes nogen zktion, el-
ler 2t s®tningen efter ELSE symbolet skal udfe¢res. S@tningen:

IF <e1> THEN IF <e2> THEN <s1> ELSE <s2>;
skal forstds pa fe¢lgende made:

Hvis <el1> er falsk, udferes der ingen aktion.
Hvis <el1> er sand, og <e2> er sand, udferes <si1>.
Hvis <el1> er sand, og <e2> er falsk, udfores <s2>.

Generelt gzlder cer, at en ELSE-cdel herer sammen med den sidste
IF-del, der mangler en ELSE-del. I’
Eksempler:

IF x<1.5 THEN z:=x+y EL3E 2z:21.5;

IF nzvn=zempty THEN navn:='Ikke opgivet';

6.2.2.2 CASE-sztningen

CASE-sztningen bestar a2f et udtryk (kaldet wvalgudtrykket) og
en liste af sztninger hver foregdet af en verdiliste bestdende
af en eller flere konstanter af samme type som valgudtrykket.
En sztning bliver udfert, hvis verdien af valgudtrykket findes
i setningens vardiliste. Hvis ingen af vardilisterne indeholder
en konstant, svarende til vealgudtrykkets verdi, bliver sa@tning-
en, der er forudgaet af OTHERS:, wudfert. Hvis verdilisten
OTHERS ikke er tilstede, wudfeores der ingen aktion i det sidst-
nevnte tilfelde. Verdilisten OTHERS: skal, hvis den er tilste-
de, vere den sidste verdiliste.

Valgudtrykket skal vere af typen integer, boolean eller string
(reals er ikke tilladt). :

-15-

Eksempler:

CASE operator OF
Yol XizX+y;
't XizXx-Y;
Sy Ry=x%yy
"/': x:=x/y

END;

CASE i OF
1: write('en');
2: write('to');
3,4,5: write('flere');
OTHERS: write('mange')
END;

Det er ikke nodvendigt med et semikolon efter den sidste szt-
ning i CASE-sztningen (men det mad godt vere tilstede).

6.2.3 Repetitionssztninger

En repetitionssatning bruges de steder, hvor man ¢nsker at gen-
tage en, eller flere, s&tninger. Er antallet af gentagelser pa
forhand kendt, ber man bruge FOR-s®tningen; ellers kan WHILE-
og REPEAT-s&ztningerne bruges.

1

6.2.3.1 WHILE-s&tningen

Udtrykket, der kontrollerer WHILE-sztningen, skal vere af typen
boolean (integer). Sadleznge WHILE-udtrykket er sandt, gentages
setningen efter DO. Eksempel:

‘" WHILE a<1000 do
BEGIN
a:=sqr(a); b:=z=b+1
END;

6.2.3.2 REPEAT-s&tningen

Udtrykket, der kontrollerer REPEAT-sztningen, skal vaere af ty-
pen boolean (integer). Hvergang sztningerne mellem REPEAT og
UNTIL er udfecrt, testes sanchedsudtrykket. Hvis dette er falskt
udferes s@tningerne igen. Eksempel:
REPEAT
read(digit); write(digit);
number :=number¥*10+ord(digit)-46;
UNTIL number>10000C;

6.2.3.3 FOR-sztningen

FOR-sztningen indikerer, at en sztning skal wudfo¢res gentagne
gange, mens en stigende eller faldende razkke af verdier bliver
tilskrevet en variabel, kaldet styrevariablen. Styrevariablen,
startverdien og slutverdien skal vere af typen integer.
Verdierne kan enten stige i spring af 1 (TO) eller falde i
spring af 1 af (DOWNTO). :

Hvis slutverdien er mindre end startverdien ved TO, eller slut-
verdien er ste¢rre end startverdien ved DOVWNTO, udferes satning-

en i FOR-1le¢kken ikke.

e ——

. Gt e

.
e o b ik St - s e bt A 3.5 AT

P T ——

R TT—————

SR e e

e 116 =

Det er ikke tilladt at afbryde en FOR-sztning med en GOTO-szt-
ning. I stedet bor en WHILE- eller REPEAT-sa&tning bruges.

Eksempler:
FOR i:=1 TO 100 DO write(i:3,sqr(i):6);

FOR i:=1 TO 100 DO FOR j:=1 TO 10 DO
BEGIN S
IF a(.i,3j.)>5 THEN a(.i,j.):=5;
c:zc+al.1i,]j)
END;

Efter endt udfersel af en FOR-sztning, g&lder der folgende om
styrevariablens verdi:

Hvis FOR-sztningen blev oversprunget, er styrevariablen
lig startverdien.

Hvis FOR-s@tningen blev aktiveret, er styrevariablen lig
slutverdien plus eller minus 1, alt efter om der bley
brugt TO eller DOWNTO i FOR-sztningen.

I , L= |
T7: PROCEDURER :

ST Ve SR

o 5 e TR

En procedure (underprogram) er en selvst@ndig enhed i det sam-
lede program, med egne labels, konstanter, variable og eventelt
andre procedurer og funktioner. En procedure aktiveres fra en
proceduresztning (se afsnit 6.1.2).

7.1 PROCEDUREERKLEZRINGER
Procedureerkl@ringer bestar generelt af 3 dele:

1) Procedurehovedet
2) Erkleringsdelen ']
3) Sztningsdelen !

Eksempel:

PROCEDURE ombyt(VAR x,y: REAL); : :
VER , ;
temp: REAL; (¥ hjelpevariabel ¥*) L
BEGIN
temp:=x; x:=zy; y:=temp (* ombyt x og y *)
END; '

.

7.1.1 Procedurehovedet ,

I procedurehovedet erklzres procedurens navn og dens eventuelle
paranmetre. Procedurens navn er en identifier og skal felge de
regler, der er givet for sddanne. Procedurehovedet kan eventu- i
elt efterfelges af symbolet EXTERMNAL. Dette betyder at procedu-
ren er et uncerprogram 1 maskinkode, der starter i den adresse,
der er givet ved heltalskonstanten, der efterfelger EXTERNAL.
Hvis en procedure er erklazret som EXTERNAL, er erkl@ringsdelen
og se@tningsdelen tomme. Eksterne underprogrammer er yderligere
beskrevet 1 APPENDIX E.

7.1.2 Erkleringsdelen

En procedures erklzringsdel har samme form som et programs (se i
afsnit 4).

7.1.3 Satningsdelen ' . g

co

En procedures sztningsdel har samme form som et programs (se ,
afsnit €), dog med den undtagelse, at man i tilskrivninger og i
udtryk, ud over de lokale variable, ogs& kan bruge procedurens
parzmetre.

7.2 STANDARDPROCEDURER

Standardprocedurerne i BLS Pascal behover ingen erklaring, og
kan overskrives med brugerens egne erklzringer. : :
call(z) Genererer et kald til den adresse, der er gi-

vet ved heltalsudtrykket a.’

screen(x,y) Flytter cursoren til linie y position x; x og f
y er heltalsudtryk. Hvis en af koordinatver- ;
dierne er ulovlige, bliver den nuvarende ver-

di i denne koordinat bibeholdt. screen proce-
duren kan saledes bruges som tabulator ved at —
sette y-koordinaten lig 0. e -

L 4 ew e B TN S BN BN BN S B D D O B D BB BE BN e

plot{x,y,)

10.

Standardprocedurerne for input og output er beskrevet i

-18-

Udforcr en operation pad det semigrafiske

punkt x,y (hvor x og y er heltalsudtryk i om-
raderne 0 <= x <=z 95 og 0 <= y <= 47), afhen-
gigt af heltalsudtrykket f's vardi:

f=0: Slukkes
f=1: Tendes
f=2: Inverteres

I proceduren plot er der kompenseret for
skermadresseringen, sdledes at punkter med
y-koordinater mellem O og 2 bliver plottet
pa skazrmens g¢gverste linie,

afsnit

i) G
8: FUNKTIOMNER

S o e o - o -~ - -

En funktion er et underprogram der beregner, og returnerer, en
verdi. En funktion aktiveres ved at lade den indga i et udtryk
{(se afsnit 5.6).

8.1 FUNKTIONSERKLZRINGER
En funktionserklazring bestar af tre dele:

1) Funktionshovedet
2) Erkleringsdelen
3) Setningsdelen

Eksempler: -

FUNCTION afstand(x,y: REAL): REAL;
BEGIN

afstand:=sqrt(sqr(x)+sqr(y))
END;

FUNCTIOMN snit(VAR a: ARRAY(.1..100.) OF INTEGER;
start,slut: INTEGER): REAL;
VAR
i,s: INTEGER; , ,
BEGIN .
FOR i:=start TO slut DO
s:=s+al.i.);
snit:=s/(slut-start+1)
END;

8.1.1 Funktionshovedet

I funktionshovedet defineres funktionens navn og resultattype
og dens eventuelle parzmetre. Funktionens navn er en identifier
og skal fe¢lge de regler, der er givet for sddanne. En funktion
kan kun returnere vardier af standard datatyper, dvs. real, in-
teger, ©boolean eller string. Funktionens parametre skal folge
de regler, der er givet i afsnit 9. Funktionshovedet kan even-
tuelt efterfolges af symbolet EXTERNAL. Dette betyder, at funk-
tionen er et underprogrem i1 maskinkode, der starter i den ad-
resse, der er givet ved heltalskonstanten, der efterfolger
EXTERNAL. Hvis en funktion er erkleret som EXTERNAL, er erkle-
ringsdelen og s@tningsdelen tomme. EKsterne underprogrammer er
yderligere beksrevet i APPENDIX E.

8.1.2 Erklzringsdelen

En funktions erklzringsdel har samme form som et programs (se
afsnit 4).

8.1.3 S=ztningsdelen

En funktionss satningsdel har samme form som et programs (se
afs. 6), dog med den undtagelse, at man i tilskrivninger og ud-
tryk, ud over de lokale variable, ogsa kan bruge funktionens
parametre. Desuden skal man pa et tidspunkt tildele funktionens
identifier en vardi, der afger funktionens resultat.

AR TN T N PP S T Gt S

l ' -20-

i
.

8.2 STANDARDFUNKTIONER

abs(x)
sqr(x)
sqrt(x)
sin(x)
cos(x) .
arctan(x)
1n(x)

exp(x)

int(x)

.

frac(x)

abs (i)
sqr(i)
succ(1i)
pred(i)
odd (i)

length(s)

mid(s,p,n)
= LARS VU

Mmio 1,4
X

mid(s,p)

AR

Standardfunktionerne i BLS Pascal beheéver ingen
kan overskrives med brugerens wegne erkl&ringer.

"Returnerer den streng,

erklering,

8.2.1 Reelle funktioner

De reelle standardfunktioner tager et argument af typen real dg
giver et resultat af typen real.

Den absolutte verdi af x.
Kvadratet af x.

Kvadratroden af x.

Sinus til x i radianer.

Cosinus til x i radianer.

Arccus tangens til x i radianer.
Den naturlige logaritme af x.

Exponentialfunktionen: 2.7182818285 oploftet
i potens x. '

Heltalsdelen af x. Returnerer det ste¢rste
heltal, der er mindre end x, hvis x>=0, eller
det mindste heltal, der er stg¢rre end x, hvis
x<0.

Decimaldelen af x med samme fortegn som x (er
defineret som frac(x)=x-int(x)).

8.2.2 Heltzlsfunktioner

Heltalsfunktionerne tager et argument af typen integer og giver
et resultat af typen integer.

Den absolutte vardi af 1i.
Returnerer i¥*i.

Returnerer i+1.

Returnerer i-1.

Returnerer vzrdien false (0), hvis i er lige

og true (-1), nvis i er ulige.

8.2.3 Stringfunktioner -

Returnerer l@ngden af strengen s. Resultatet

er af typen integer.

der fremkommer ved at

tage n tegn fra strengen s startende fra po-

sition p. n og p skal vere heltalsudtryk.
\4OON ¢

Returnerer alle tegn til wewstre for position

p i strengen s. p skal vare et heltalsudtryk.

Al I N S B & I B B B 0D BN B BN B B B B B .

left(s,n)
right(s,n)

concat(s1,
$2,4.,5n0)

]

J,/‘ LEFT(®, 1) = L. ¥ -21_

Returnerer de venstre n tegn fra strengen s.
n skal vzre et heltalsudtryk.

Returnerer de hojre n tegn fra strengen s.
n skal vere et heltalsudtryk.

Returnerer string 1, string 2 frem til string
n sammensat 1 den n&avnte rakkef@lgeA

8.2.4 Konvertekingsfunktioner

trunc(x)

‘h~w\L/)\ &)= ‘)\

round(x)
r(/ua'\(\.\ Q <)‘ - 5

‘chr(i)

orc(s)

1

x er et udtryk af typen real. Resultatet er
den stérste integer, der er mindre end eller
lig x, hvis x>=0, eller den mindste integer,
der, er storre end eller lig x, hvis x<O0.

x er et udtryk af typen real. Resultatet, der
er af typen integer, er den afrundede vardi
af x, hvilket sverer til:

round(x) = trunc(x+0.5), for x>=0
trunc(x-0.5), for x<O

i er et heltalsudtryk. Resultatet er en
streng, med l&ngden 1, hvis tegn har ASCII-
verdien 1i.

s er et strengudtryk. Resultatet er en inte-
ger, der svarer til ASCII-verdien 2f det for-

ste tegn i s. Hvis s er den tomme streng re-—

turneres 0.

8.2.5 Andre standardfunktioner

addr(v)

random
randoin(i)

keyboarcd

point(x,y)

Returnerer variablen v's memoryadresse. En
arraystrukturs adresse kan fds vecd at refere-
re til det ferste element i strukturen.

Returnerer et tilfeldigt tal af typen real i
omridet 0 <= r < 1,

i er et heltzlsudtryk. Returnerer et tilfel-
digt heltzl i omrédet 0 <= t < i,

Scanner tastaturet, og returnerer den ned-
trykkede tasts ASCII vardi. Hvis ingen taster
er nedtrykket returneres et O.

Returnerer true (-1), hvis det" semigrafiske
purxt (x,y) er tendt og felse, hvis det er

slukket. .

-

: 5 lE . .
o ¥ B A U B = =
| ; I G I D N B T v
Il N - .

‘Hvis en parameter er en var-parameter, er bade den aktuelle

s

9: PARAMETRE

- e - . - ——

Parametre bruges til at overfe¢re verdier til en procedure eller
en funktion. I selve underprogrammet Kkan Parametrene betragtes
som almindelige variable.

9.1 PARAMETERTYPER

I BLS Pascal er der to parametertyper: Value-parametre Og var-
Parametre. Parzmetre specificeret med VAR i procedurehovedet
eller funktionshovedet kaldes var-parametre.

-

5.1 Value-parametre

Hvis en parameter er en value-parameter, oprettes der ved pro-
cedurekaldet en variabel (den formelle parameter), hvis start-
verdi er givet den aktuelle parameter,

Ved enkeltvariable skal den aktuelle parameter vere et udtryk
(hvoraf en variabel er et tilfelde). Ved arraystrukturer skal
den aktuelle parzmeter ve&re en arraystruktur af samme type, og
med samme antal elementer, som den formelle parameter.

tuelle parameter.

9.1.2 Var-parametre

Og
den formelle parameter lig den samme lagerplads. Under udforel-

en af underprogrammet representerer den formelle parameter den
aktuelle parzmeter, og tilskrivninger til den fermelle parazme-
ter vil &ndre den aktuelle parameter tilsvarende. Aktuelle var-

parametre skal altid vare en variabels eller en arraystrukturs
identifier,

9.2 FORMELLE 0G AKTUELLE PARAMETRE

Parametre, der navrnes i procedure/funktions-erkleringen, kaldes
formelle parametre, Parzmetre der navnes i procedure/funktions-
kaldet kaldes aktuelle parametre. De formelle og aktuelle para-
metre skal stenme overens ried hensyn til antzl, rzkkefolge 0g
type, dog med felgende undtagelser:

1) Hvis en formel parameter er en value-parameter af ty-

pPen real, méd den aktuelle parameter godt vere af ty-
pen integer. Dette galder imidlertid ikke for var-pa-
rametre.

2) Hvis en formel Farameter er en value-parameter ar Ty=-
pen string, na den zktuelle stringparameter Fpave
hvilkensomhelst lzngde. Dog gzlder der, at hvis den
aktuelle stringparameters lzngde er sterre end den
formelle stringparameters maksimale lengde, bliver
kun de venstremest Justerede tegn overfort. Ovennmyn-
te gmlder ikke for var-parametre.

3) Hvis den formelle parameter er en arraystruktur, skal
den aktuelle parameter v@&re en arraystruktur af samme
type og med samme antal elementer. Imidlertid behover
der ikke at vere overensstemmelse mellem ¢gvre og ned-
re granser og antallet af dimensioner. '

Tilskrivninger til den formelle parameter berorer ikke den ak-'

e e

: .

-23-
10: INDLESNING OG UDLESNING

S v S e G e G Gee S ——— " - —— - -

I Pascal varetages indlesning fra og wudlesning til konsollen
af fire standarcdprocedurer (read, readln, write og writeln).
BLS Pascal 1indeholder yderligere to standardprocedurer til
indl&sning og udla@sning af arraystrukturer fra og til béand-
optager (load og save). ‘ :

10.1 INDLZSNING FRA KONSOLLEN

Indlaesning fra konsollen varetages af standardprocedurerne read
og readln.

10.1.1 read proceduren

READ proceduren kKan indlzse enkeltvariable af alle datatyper.

Formatet af READ proceduresaztningen er:

read(vl,v2,...,vn);
Hvilket svarer til:
read(v1); read(v2); ... read(vn);

Under indtastningen ma brugeren benytte felgende spécialn@gler:

<BS> Sletter cet sidst indtastede tegn.

<ESC> Sletter hele indtastningen.

<ENTER> Afslutter indtastningen.
Ved 1ndlasn1ﬁa af talvariable (rezls og integers) gelder der,
at tallet nd foregis af et vilkarlipgt zntal blanktegn, men det
iz ikice incenoclde clanktegn. Det skrevne tal skal fclge de sam-
me regler fcr formater som talkonstanter i et program, og skal
vare af samme datatype som den varlabel det indl@ses i (dog med
den undtagelse at heltal godt ma indl@ses i reals). En indlas-

ning skal afsluttes med et linieskift. Linieskiftet bliver ikke
udskrevet. Hvis det indtastede tal 1indeholder fejl (overflow
eller ulovlige tegn), bliver indtastningen slettet og, cursoren
returnerer til startpositionen, hvorefter en ny indtastning kan
foretages. :

Ved indtestning af strengvariable bliver alle de 1ndl"*te tegn
gemt 1 strengen. Der kan maksimalt indlases det azntal tegn der,
svarer til strengvariablens lzngde, eller hvis strengvariablens
maksimale lzngde er sterre end 64, 64 tegn. Hvis strengvariab-
lens maksimale langde er 1, fortsetter programkerslen umiddel-

bart efter en tast er nedtrykket, uden at tegnet bliver udskre-
vet.

10.1.2 reecdln proceduren : -

‘Forskellen pé& read proceduren og readln proceduren er, at det

afsluttende linieskift bliver udskrevet med readln. Formatet af
readln proceduresztningen er:

readln(vl,v2,...,vn); .
Hvilket svarer til:

-readln(v1); readln(v2); ... readln(vn);

SRS

o -24~
10.2 UDLESNING TIL KONSOLLEN

Udlesning til konsollen varetages af standardprocedurerne write
og writeln.

10.2.1 write proceduren

WRITE proceduren kan udskrive enkeltvariable af alle datatyper.
Formatet af WRITE procedures@tningen er:

write(pl,p2,...,pn);
Hvilket svarer til:

write(p1); write(p2); ... write(pn);
hvor p1,p2,...,pn er sadkaldte write-parametre. Write-parametre-
ne kan have forskellig form alt efter hvilken datatype, der

skal udskrives. I beskrivelsen er m og n synonymer for heltals-
udtryk. :

INTEGER:
i Udtrykket i udskrives i frit format.
i:n Udtrykket i udskrives hgjrejusteret i et felt pév
n tegn. ,
REAL:
r Udtrykket r udskrives i exponentiel notation i et
4 felt pa 18 tegn. Formatet af udskriften er:
" sd.ddddddddddEtdd"
hvor s enten er " " eller "-", d er et ciffer, og
t er enten "+" eller "-",
r:n Udtrykket r udskrives 1 exponentiel notation.

Formatet er afhengigt af n's verdi:
n<8: "-d.dEtdd" eller "d.dEtdd"

8<=n<17: "sd.<digits>Etdd", hvor <digits> er
n-6 cifre.

n>17: "{spaces>sd.ddddddddddEtdd", hvor
: {spaces?> er n-17 blanktegn.

Eenkm Udtrykket r udskrives hojrejusteret i fastkomma-
notation i et felt p3d n tegn med m decimaler. m
skal vere i omradet 0 <= m <= 24. Hvis dette ikke
er tilfeldet, velges exponentiel notation.

STRING:
s Stringudtrykket s udskrives.
s:n Stringudtrykket s udskrives ‘i et felt pad n tegn.
n er en heltalskonstant.

.

s | 1o
Generelt galder der fglgende for udskrifter:

1) Hvis n er mindre end lezngden p& det der skal udskrives
udvides feltet.

2) Hvis n er mindre end 0, betragtes n som verende 0.
3) Hvis n er stg¢rre end 255, betragtes n som varende 255.
10.2.2 writeln proceduren
Forskellen pad writeln og write procedurerne er, at der efter
endt udskrift udskrives et linieskift, hvis writeln proceduren
benyttes. Formatet for writeln proceduresatnlngen er:
writeln(p1,p2,...,pn);
Hvilket sverer til:

write(p1); write(p2); ... writeln(pn);

Hvis writeln proceduren kaldes uden parametre er resultatet, at
der udfores et linieskift.

10.3 INDLZSNING OG UDLESNING AF ARRAYSTRUKTURER

Indlesning og udlesning af arraystrukturer fra og til bandop-
tager varetages af standardprocedurerne load og save.

10.3.1 save proceduren

save standardproceduren kan udl&se arraystrukturer zf alle da-

.tatyper til bandoptager. Formatet af save proceduresztningen

er:
save(a);

hvor a er en arraystrukturs identifier. Ved procedurekaldet

tendes tape-lysdioden, arraystrukturen udskrives, og lysdioden

slukkes igen.

10.3.2 load proceduren

load standardproceduren kan indlzse arraystrukturer, der er ud-

lest med save proceduren. Formatet af load proceduresztningen
er:

load(a,i);

Hvor a er en arraystrukturs identifier, og i er en heltalsvar1~
abel, hvori en eventuel fejlkode kan returneres.

Ved procedurekaldet tendes tape-lysdioden. Denne slukkes igen
nar proceduren forlades, hvilket kan ske pa en af de folgende
mader :

Brugeren afbred proceduren ved at trykke <ESC>.
En fejl forekom under 1ndl&sn1ngen.
Indlesningen forleb OK.

’

e an et oy

-26- ;

I heltalsvariablen i kan fe¢lgende verdier forekomme efter pro-
cedurekaldet:

iz0: Indlesningen forlgb OK,.

i=1: Arraystrukturernes elementantal eller datatype
stemmer ikke overens,

2: Checksumfejl.

3: Brugeren afbred proceduren ved at trykke <ESC>,

.

i
i

l ‘
:

- - —— ——— e S o A b

. Al g@
ATFENDIX A —-— SYN1AXDIACRAMMER . |

e s b S —————— —————— o — - o — " {t b - bt oo

amtifier (ident)

l - bhogcstav
l ——mj ‘ s =
el bohaibl¥ -

l) "

'1sstrerus

heltal

talstrernc

hexciffer

l -talstrenc »I%::}*-talstrene talstrenc —
k.or

heltsl S 4 ﬂi

- ‘ 4Vi

nstant (konst) ﬂ

i

\ ‘ !
H

(<E;f1 J kornst ident ?

v. iabel

- a Ee .
o]
<~
o
o}
=

variabel ident

term

R

aE

C wdtruk, I
’
J\
~ konst
variabel
b funbktion ident (vdtruk | <E:}—
’
P
— (=+ udtruk 44:2}

faktor

e~

- NOT)

faktor

udtruk

g

O @D @D @D @D

simrelt udtruhk

e —— \ At b b e i rc

ki
4
4
4
-

9
b

term

RILE Jar

-

L-lJtl“.-{k

<
n

l — simrelt udtruhk -
é l ‘ ' ' simrelt udtrybk =
lmpel ture
= INTEGER P -
: ~ REAL
—{ EOOLEAN }—
STRING korst _,@
. I
——T ARRAY konst —-—@—o‘ v.onst]
20
- simrel ture o
rameterliste o
o
VAR ident @ ture
talstrenrc
' ; ident —

saetnineG

label

-

S DA L e SRR

ot ek Lk

T O

L

kLA

PR SRR £ S T

3

Frrocedure ident

'
i

_—* = /——[:P tnijj‘
b= A
N

— IF

[P p—— A

sgetninG

A4
varisbel {EE}—+ uvdtruk
aatruh

o~

4/?\ udtruk ;))
e]
END ‘JA
/ [
| udtruk —{ THEN saetninG ELSE sgetning |——————s
-+ THEN)~ |
|
O\ ?
U :

4 4 \
—+ CASE udtruhb —W\OF
i
i
i OTHERS
| Frrestos Tl amermses BT o
—" WHILE = udtrsk — DO saetning
e . P e !
r—ﬁ\REPEﬁT + saetnina UNTIL »~ udtruk

D,

FOR rﬁ»Vorlahel ident

ndtrakb

DOWNTO

——= T0

N——

A @

[*Udtrsk

{00)

sagetninG

label

array ident

kornst

udtruk

B sy
] LB

-

=
=

label

Laent = komnst

4/*_ s

i s o o ao

\J
AN

FUNCTION}—-—A

ident B+

: xﬂﬁft'—r~\i)—ﬂ ture
~.
- - e — ,-/;--0-———-——-- —— e
konst ~1\hX7EHNAP/
- @u bilok)
o,]
—4TPROCEDUWEi}+JidPnf F%~PBPJMEt&T115tQA} —
il ¥ e = .

rarameterliste { o

simrel ture

2
I - @ & & N D B G B B BN B EE .

w

roGgram

L eeetn e
—\E-LGINJ

sgetrning

[[y N
— FROGHANM
), S

tear

>——-—-r.—

blok

\:t
)

T ——

K e e

APPENDIX B -~ EKSEMPLER PA UNDERPROGRAMMER

et e iy —

(* Funktionen value konverterer tallet i strenges s til et ¥*)
(* reelt tal. Variablen p peger p& det forste tegn der skal ¥)
(* indga i konverteringen. Efter kaldet peger p pa det for— *)
(¥ ste tegn der ikke indgik i konverteringen *)

FUNCTION value(s: STRING(.48.); VAR p: INTEGER): REAL;

CONST '

zero=48; (* ASCII zero *¥)
VAR

r,f: REAL;

ch: STRING(.1.);
neg,decpoint: BOOLEAN;

PROCEDURE nextchar; ' ‘ o
BEGIN

ch:=mid(s,p,1); p:=succ(p)
END (* of nextchar *)s

BEGIN
f:=1; nextchar; i
IF ch='-" THEN

BEGIN neg:=true; nextchar END;

WHILE (ch>='0') AND (ch<='9') DO

BEGIN :
r:=r*¥10+(ord(ch)-zero);

« IF decpoint THEN f:=f%10; , .
nextchar;
IF (ch='."') AND NOT decpoint THEN
BEGIN decpoint:=true; nextchar END;

END;

p:=pred(p);

IF neg THEN value:=z-r/f ELSE value:=r/f

END (* of value ¥); :

(* Funktionen pos returnerer den ferste position i streng- %)
(* udtrykket s hvor strengudtrykket t forekommer. Hvis ¢t %)
(* ikke findes i. s returneres et 0. #)

FUNCTION pos(t,s: STRING(.48.)): INTEGER;
LABEL exit;

VAR
1dif,1t,p: INTEGER;
BEGIN
lt:=length(t); ldif:=zlength(s)-1lt;
WHILE p<=1dif DO)
BEGIN

p:=succ(p);
IF mid(s,p,lt)=t THEN
BEGIN pos:=zp; GOTO exit END
END;
exit:
END (¥ of pos ¥);

B.2

(¥ Procedure topline placerer strengudtrykket s p3 sk@rmens %)
(* gverste linie, og fjerner alle gvrige tegn. %)

PROCEDURE topline(s: STRING(.48.));
CONST
toplineadr=$BC9; (¥* topliniens adresse -1 ¥)
space=32; (*¥ ASCII blanktegn ¥*)
VAR
p: INTEGER; .
BEGIN
FOR p:=1 TO length(s) DO
mem(.p+toplineadr.):zord(mid(s,p,1));
FOR p:=p TO 48 DO
mem(.p+toplineadr.):=space
END;

e T T Y T LB S R Y P I =R M

-

Pk oy

T T~
A B Pe Th e P s .
X

2 L s ol i NSt i o b
o e P PO Aty s S

-

APPENDIX C -- SYSTEMARBEJDSLAGERET i

. - O . - — S S " S S . e - - e e e Sae G S S e G S See

Systemet bruger 128 bytes arbejdslager i omradet $C80 til $DO0O.
I dette omrade kan folgende vere af interesse for brugeren:

C92-C93 - WSP Programarbejdslagerets stackpointer. Nar pro-
grammet startes, szttes WSP til programmets
slutadresse. Hvergang en blck aktiveres (ho-
vedprogrammet eller et underprogram), flyttes
WSP lzngere op i lageret for at give plads
til blokkens variable og parametre. Nar blok-
ken forlades, flyttes WSP tilbzge til sin op-
rindelige verdi.

C94-C95 PUTP Den ¢verste adresse i RAM-lageret, der m& be-
nyttes af programmet. Hvis VWSP bliver storre
end eller lig med PMTP, stoppes programmet

‘ med runtime error 99.

C98-C9B RKDHN Zendomgeneratorens sidst udregnede vardi.
Brugeren kan starte en bestemt randomsekvens
ved at lzgge et fast tel ud i disse fire by-
tes.

Den forste instruktionssekvens i et programs objektkode er et
kald til systemets initialiseringsrutine, efterfulgt af 5 bytes
parametre:

CD xx xx aa bb cc dd ee

Adressen bbaa er programmets slutadresse. /SP bliver sat 1lig
denne vrdi ved initieringen. Adressen ddcc angiver den gverste
adresse 1 rAlM-lageret, der ma benyttes af programmet. PMTP bli-
ver sat lig denne verdi ved initieringen. Byten ee afgeor hvor-
til kontrollen skal overgives i tilfzlde af en runtime fejl. Er
ee nul, bliver kontrollen overgivet til sprogsystemet. Er ee
forskellig fra nul, overgives kontrollen til NAS-SYS.

Omr&det fra $D0O0 til $1000 bruges til systemstakken. Ved star-
ten af et program bliver stackpointeren (SP) sat til £1000. Om
stakkens brug gzlder der bl. a. folgende:

Et procedure- eller funktionskald optager 2 bytes.
En aktiv FOR-lokke optager 4 bytes.

Under evaluering af udtryk bruges stakken til at gemme
-mellemresultater. Ved sammenligning af strengudtryk kan
der séledes optages indtil 512 bytes, hvis begge strenge
er 255 tegn lange. '
Under programkersel bliver der IKKE checket p& stakpointerens
position. Brugeren bor derfor sikre sig, at rekursive underpro-
grammer ikke kalder sig selv uendeligt.

g8
L ' ..

APPENDIX D -~ INTERN DATAREPRESENTATION

B ettt e e T I P S ——

Dette appendix er medtaget for at give brugeren en indsigt i,
hvorleces BLS Pascal behandler de forskellige datatyper in-
ternt. I beskrivelsen skal symbolet 'adr' forstés som adressen
pa den f¢rste byte, en variabel af den beskrevne datatype op-
tager i lageret. Det er denne verdi, ‘standardfunktionen azddr
returnerer.

INTEGER og BOOLEAN: J

Internt behandles integers og booleans ens. En integer repre-
senteres ved et 16 bit 2's komplement tsl. I lageret gemmes en

integer pé& felgence made:

M2
adr IS

adr+1 5|

t tetydende byte.
betydende byte,

[, e

3
as
+“

v

(M

o7 J

ette svzrer til Z-€C processorens stendeard.

RELL
n resl reprizenteres ved en 40 bits mantisse o en 2 dits 2's
siporent. I lageret pemmes en real p& fclgende made:

adr lilantissens mest betydende byte.

adr+14 lentissens mindst betydende byte.

adr+5 2's exponent,

Exponenten er et btinert tal med et offset pd $80. Sidledes svar-

2r en gizorent & 384 til, =zt mantissen sral Sanges med 2°(384-
$80) = 2°4 = 16. Hvis exponentens vaerci er $GO opfettes hele

tallet som varende 0. Vardien af mantissen kan opfattes som det
fortegnslese heltal, bestéencde af de 5 ferste bytes, divideret
med 2740. Mantissen er altid normaliseret, dvs. den mest bety-
dende bit skal altid opfattes som verende sat. Fortegnet gemmes
i den mest betydende bit: Er denne sat er tallet negativt, er
den nul er tallet positivt.

STRING: 4 -

En string optager den maksimale lzngde plus 1 bytes i lageret.
I den f¢rste byte star strengens nuvarende lzngde. I den zanden
byte stér strengens sidste tegn, 1 den tredje byte det nest-
sidste tegn, etc.: :

adr Lemgde (=n).
adr+1 Tegn nr. n.
adr+2 Tegn nr. n-1, -

adr+n Tegn nr. 1,

Hvis en streng ikke er fyldt helt ud, er indholdet af de res-
terende bytes ukendt. .

e N

.

0
Lo adhiegis
.— L

R

Sn 5 e A S

L Ry P

~r.

ARRAYSTRUKTURER Y

Et element i en arraystruktur har samme format som en enkeltva-
riabel af samme datatype. I lageret ligger elementet med det
laveste index forst (dvs. pd den laveste adressé). Hvis array-
strukturen har flere dimensioner, telles der op startende med
den sidste dimension. En arraystruktur erkleret som:

a: ARRAY(.1,.3,1..3.).

vil sdledes blive gemt i den denne rekkefelge:

laveste adr. a(.1,1.)
- -
a(.1,3.)
al .2 %3
a(.2,2.)
heojeste adr. a(.3,3.)

Lk b s Mottt uta e e WM».M..-..;.M‘.“- - A D0 R b it DEIDLS S o LA AR £r A S e

: K

=

)

f
-I

!
5
£
i
A

'

APPENDIX E -- EKSTERNE UNDERPROGRAMMER

. - - - - - - G — S S S - . G e - e e

Procedurer og funktioner erklaret med EXTERNAL specifikationen
giver brugeren mulighed for at kalde maskinkodesubrutiner. I
pascalprogrammet behandles et EXTERNAL specificeret wunderpro-
gram som et almindeligt underprogram.

Parameteroverf¢rsel til et underprogram foregar via programar-
bejdslageret. Hvis underprogrammet er en funktion, afsattes der
forst plads til returverdien. Parametrene bliver derefter skub-
bet pé& arbejdsstakken en ad gangen. I en maskinkoderutine kan
brugeren f& tilgang til parametrene ved at indexere sig frem i
forhold til programarbejdslagerets stackpointer WSP (se herom i
APPENDIX C).

Value-parametre folger de regler, der er givet for de forskel-
lige datatyper i APPENDIX D. Hvis en parameter er VAR specifi-
ceret, overferes adressen pd den fdorste byte i lageret, der op-
tages af cen aktuelle parzameter. Hvis en var-parameter er en
arraystruktur, overfe¢res adressen pa det forste element.

Hvis en funktion fx. er erklaret som:

FUNICTION test(VAR i: IHTEGER; r: REAL): STRING(.16.);

vil toppen af arbejdslageret se sadaledes ud ved kaldet:

laveste adr. WSP-25 17 bytes til resultztet
: (rulstillede ved kaldet).
R : WSP-9
wsp-8 Aclressen pd heltalsvariablen der

WSP-T7 udgor den cktuelle paranieter.

WSP-6 Verdi af typen real.

hojeste adr. WSP-1

hvor WSP er den adresse der stér 1 adresserne $C92-3C93 (se
herom i APPENDIX C). Adressen pd den fcrste byte i resultatet
kan fx. nds pad felgende made:

WSP: EQU O0C92H

LD HL,(WSP)
LD DE.-£5
ADD HL.DE

efter udferslen af koden peger HL registret p& den fe¢rste byte
af den lagerplads, der er sat af til strengresultatet. Adressen
pa heltalsvariablen kan fx. néds pa fe¢lgende méde:

LD HL,(WSP)

LD DE,-8

" ADD HL,DE ’
LD E,(HL)
INC HL

LD D, (HL)

i
}

s R IR L s e T R e e o S e e L el

T ——

i
i

L] WS s vy g g o, 2y SV AT TR TN IR L L R aia S S i WA i ot A g s T N Gt s B b s g . ,_-,.~¢«m<~)_,m974..‘...,.;....~;j’~‘gv~ gt d

E.2

Som et eksempel pa brugen af EXTERNAL specificerede underpro-
grammer er vist en procedure til udl@sning pad en dataport, og

en funktion til indl@sning fra en dataport. I programteksten er
felgende erklzringer nedvendige:

CONST

outportadr=5$D00;
inportadr=$DO0D;

PROCEDURE outport(port,data: INTEGER);
EXTERNAL outportadr;

FUNCTION inport(port: INTEGER): INTEGER; ~ -
EXTERNAL inportadr; . S

Maskinkoderutinerne kan fx. laves p&d folgende made:

-

'
P

0001 0ODOO ORG ODOOH

0002

0003 o0CQ92 WSP: EQU O0C92H

0004 ;

C00S 0500 DD2AG20C OUTP: LD IX,(WSP)

0006 ODO4 DDTEFE LD A,(IX-2

0007 0ODO7 DDHEFC LD C,(IX-4)

0008 0DOA EDT79 ouT (C),A

0009 0ODOC Cg RET

0010

0011 ODOD DD2AQ20C IMNP: LD IX,(WSP)

0012 OD11 DD4EFE LD c,(IX-2)
. 0013 0D14 ED78 IN A,(C)

0014 0OD16 DD7TFC LD (IX-4),A

0015 0D19 C¢ RET

0016

0017 END

I en maskinkoderutine kan brugeren frit benytte RAM-lageret
over 'SP som arbejdslager.

3
4

T
.
4

APPENDIX F -- BENCHMARKTESTS OG TIDER

- —— o - ——— - S e - - S G S e S See W e e e .

P& side F.2 er vist de 14 Pascal benchmarktests, som de er fo-
reslaet i Personal Computer YWorld fra december 1980. Malingerne
er foretaget pa en NASCOM 2 (Z-80 microprocessor, 4 MHz med 1
waitstate). Til sammenligning med de opnaede tider er vist ma-
linger fcretaget pa en Heathkit H-11A (LSI 11/2 16-bits pro-
cessor) med UCSD Pescal. Alle tider er i sekunder: ‘

TEST BLS Pascal H-11A
Magnifier c.8 3.9
Forloop : 8.6 42,8
Yhileloop 23.0 40.1
Repeatloop 20.8 35.0
Litteralzssign [A 4 50.0
Memoryacces 15.1 52.0
Rezlarithmetic 59.¢2 61.7
Reglalgebra 58.5 40.6
Vector 2.2 102.9
feuzlif 26,2 66 .8
Unesguelirl 2L,z 65.8
iloparancters 6.C 26 .4
Value 12.5 29.3
Reference 12.1 29.7

T o - - ————— e e . - - e e - e e e e e S e

Det bor navnes at UCSD Pascal regner reals med 6+ betydende
cifre, mens ELS Pascal regner med 11+ betydende cifre.

.

P it o s+ . . . R e LLT TR LI oyinss e g =

B Tk &L mi S A PRI R, -.,_’_v'f"‘"“-*.-—L 4

s ‘-p-"»«.wﬁi._

oty A

i

ST
S

e
P =~ e R,

e

|

APPENDIX G -~ LITTERATURLISTE

ettt T SN ——

Kathleen Jensen, Niklaus Wirth:
PASCAL user manual and report
Springer-Verlag

Anders Haraldsson:
Programmering i Pascal
Teknisk forlag A/S

I.R. Wilson, A.M. Addyman:
A Practical Introduction to Pascal
Springer-Verlag

Rodnay Zaks:
Introcduction to PASCAL

| Sybey
. - [
iiklaus Wirtn:
Alzorithrns + Dzta Structures = Programs
Prentice-Hzll

-

o N T AT s gt B S A Wm0 e T Y ot N Kl O, wTTENTETT g W e

N Al ke e ae

«©

-t l?ae:}.u)..ya S W Py st S s PP K Al bt s o € ot b i Syt

e

APPENDIX H -- COMPILER FEJLMEDDELELSER

— -

00

01
02
03
o4
05
06
07
06
09
10
1M

20
21
22

23

30
31
32
33

40

41

42
2:3
4y
us
46
47
48
49
50

60
61
62
63
64
65

66

70
71
12
80

k)

PP Mt e MR ¥ A M ST e N 8 T W N DT A TR DN W G A e,
¥ et . y *" i) S T ek, and (4% Ot VRIS v e A

Dttt e e e T e —

Fejladresse fundet.

Syntaxfejl eller manglende ';"'.
'=' forventet.
:t forventet.
' forventet.
' forventet.
' forventet.
' forventet.
' fecrventet.
' forventet.
.'" forventet.
:=! forventet.

3 - N TN

lledre greznse storre end ovre grense i arreydeklaration,

Overflow i arraydeklazretion.
*OQF!' wmangler i arrzydelklarztion.
Ulovligt tegn i identifier.
v:r&ni‘mngre wh ikke vere nul,
waEnet Lataiiie.

Lonstant af typen INTEGER forventet.

Konstant af typen STRING forventet.

Konstant af typen REAL forventet.
fdeltalskonstant ikke i omradet 0 <= k <= 255,

'"BEGIN' forventet.
'THEN"' mangler i IF-s@tning.

Valgudtryk skzl vere af typen INTEGER eller STRING.

"\'—' -— -

ngler 1 CRSE-se=trning

'ulU' nansler i CASE- 5mtr1ng

'DO' mangler i WHILE-sztning.
Variabel af typen INTEGER forventet.
'TO'/'DOVINTO' mangler i FOR-sztning.
'DO' mangler i FOR-s&tning.
Labelidentifier er ikke erklzret.
'TO' mangler i INIT-satning.

Typen STRING er ikke tilladt her. .
Udtryk af typen INTEGER forventet.

Udtryk af typen STRING forventet.
Typeuoverensstemmelse i udtryk.

Ukendt identifier i udtryk.

Syntaxfejl eller overflow i talkonstant, eller streng-

konstant indeholder et linieskift.
Strengkonstant for lang.

Typeuoverensstemmelse i tilskrivning eller parameterliste.

Ukendt variabelidentifier.
Ukendt arrayidentifier.

Label erklzret og refereret men ikke defineret.

Programmet afsluttet ulovligt. X

., gt b ewen

v
.

PR T

e
R o St s Ao s S, e e, o B e At 2o L BT 1 ML Pt 3 e et

O Ty ——

e
B e T~ Ty T e

PR
e

D m—
SRS

Pty

01
02
03
o4

05

10

20

99

s -
\
:
“ I..“h .‘

APPENDIX I -- RUNTIME FEJLMEDDELELSER

Overflow p& REAL regneoperation.

Division med O forseggt.

Kvadratroden forsg¢gt udregnet med et negatlvt argument.
Den naturlige logaritme forsegt udregnet med et argument
der er mindre end eller lig med O.

Reelt tal udenfor omradet -32768 <= R <= 32767 forsegt
konverteret til et heltal.

Den resulterende streng ved CONCAT har en lzngde der er
stgrre end 255, eller positionsnummeret ved MID er mindre
end eller lig med O.

Et af index ved en reference til et arrayelement er udenfor
de tilladte grenser.

Workspace overflow. Alt tilgengeligt arbejdslager er op-
brugt.

