

Ne
e 2

| | | |

~

> NS 4 RY : Ca) VO AQ ‘ W
i
e

o

VY ACN SS Key. e 4 Y

BRUGERMANUAL

Ps OLO STAY : a

Gil;
| . ‘ .

R;

)

BEY AL parry
ft SrA epg YR

remr Wii lice Tle
ue \4 BiiaStind (tna cnbendl Wesind

r= microcenter
Strandboulevarden 63

‘21090 Kobenhavn © - TIf. (01) 420705

« @

‘

KI J APE nt GUY — $F Ue hh 7 Sy,

ic

on
em

aoe

si

Q. INTRODUKTION oeeeteee0etsefes*enreenereenrtrteeeeeseteeeeeeeenrmeenrneenrsfeteterteeee

T KON TROLPROGRAMMET eeecveverevreevevreeeeeo ee eevee eee eevee eee eee

Bi ames OG UOLESNING: AP. PROGRAMNTGES! cic cccccuvccecvocee
. at mere MORMBMGOON 6 bi ike o 666 i ee wihcara ce be oo 6 we

i meen KOUINERCOGH Hck 0 0.0 6 6 ee Hn 6 bas ee cee ees
wee SORLe + MOMBUNGOEN 44 Wak 6 a0 6k he oe het eee es tewese

Be RE oh pe vo eee chee whie ees pe es are rere ee
Bat Os CEPT HESKOMMANGORY 5.0. cde ec cb acccecus coe ee eeaece
Dee eT MOMICOES. 6 kb 6 sw 5 5 Was oe bo 65s ow eee os
3.3 Blokkommandoere-. pe eduuas « fdas 0446 Cle Cees
Di ar OMROEr 5. o's v vince 0 dss 0 0 8 ew cas bee oo ws ee us ;
3.5 Tabulatorkommandoer See be eau 6 4s ee as ;
3.0 AMGrée edtrerkommandoer: 2k ss. ct ccc cas crccectcccs

it ee ON go ko kw oo bo bw 0 a ee oe eee a ak
Met GOOLE KOMMONGOER 6.5 0:00 bbe cd oo eabe bce es ccece
4.2 RUN kommandoen ies ee ee cee eee ewe

4.3 TAPE kommandoen so aw a oad oe Cees >
Mat PEND WOMMARGOER 6 oc ccs och ce hae dui ccs obec 4

ms MOORE: KOR FROLKOMMAMDOER... cc cnaveoccccecscecsvcceceses
5.1 MEMORY kommandoen . Vee os ds 6 oe ee

ee OGD. bag Wc 66 os es was cca ekes ona

em Ne MOM ANGOED bo i 05.65.) Kade so ics 646 6 ba tees be

_ APPENDIX
— eo er ee ee me oe oe

- Indlesning og opstart af systemet
- Systemarbejdslageret
- Memory maps

. Den brugerdefinerbare udskriftsrutine
- Kommandooversigter

fF
o
e
o
w
w

WwW
N
M

e
e

_
aT

O: INTRODUKTION

BLS Pascal er et komplet 12 K sprogsystem udviklet til NASCOM
mikrodatamaten. Systemet indeholder et kontrolprogram, en
skermeditor, en pascalcompiler og en runtime pakke med de _ for-
ngdne runtime rutiner. : :

Compileren behgver kun et gennemlob, og producerer direkte Z-80
maskinkode. Det oversatte program kraver kun tilstedeverelse af
runtime pakken for at kunne kore.

Denne manual beskriver Systemets opbygning og betjening. Selve
programmeringssproget er defineret i BLS Pascal programmerings-
manual.

BLS Pascal systemet og de dertil h@rende manualer er udviklet
af Anders Hejlsberg i efteraret 1980.

Copyright (C) 1981 Poly-Data microcenter ApS ;
¢

Ge
&

=

l

G
E

mn
H
e
e

H
H

EH
HE

F
F

f
E

“4

'
é

1: KONTROLPROGRAMMET
2 oe ee ee ey ee ee ee eee ee ee et ee ee

ow . as toe gt he

dar systemet er indlest og opatartet som beskrevet. i APPENDIX
A, udskrives der pa skermen: |

BLS Pascal version x.x
Copyright (C). 1981
Poly-Data microcenter ApS
+. :

hvor x.x er versionsnummeret. Vinkelen er systemets prompt-
tegn, og indikerer at en kontrolkommando kan indtastes. Under
indtastning af kontrolkommandoer kan f¢lgende specialn¢ggler
bruges:

<BS> Sletter det sidst indtastede tegn.-
<ESG> Sletter hele indtastningen.
<ENTER>D Accepterer indtastningen.

En kontrolkommando bestar af et kommandoord eventuelt efter-
fulgt af en parameter. Der skal vere mindst et blanktegn mellem
parametren og kommandoordet. Kommandoer kan forkortes til det
férste bogstav i kommandoordet. Saledes gelder der at kommando-
linien:

!

LOAD testprogram

Svarer til:

L testprogram

Der er elleve kontrolkommandoer i BLS Pascal systemet. Disse
kan, efter deres funktion, opdeles i 4 grupper:

1. Ind- og udlesning af programtekst.
2. Editoren.
3. Compileren.
4. Andre funktioner

2: IND- OG UDLESNING AF PROGRAMTEKST

Ind- og udlesning af programtekst til og fra bandoptager vare-
tages af de 3 kontrolkommandoer SAVE, LOAD og VERIFY.
Formatet af en udlesning svarer til NAS-SYS W-format, hvilket
betyder, at hvis man under en indlesning far en checksumfejl i
en blok, kan man spole tilbage og indlwse den pany.

2.1 SAVE kommandoen

Denne kKommando bruges til udlesning af programteksteér. Formatet
af kommandolinien er:

SAVE filnavn eller S filnavn

hvor filnavn er det navn, man @nsker. programmet gemt under.
Filnavne kan have hvilkensomhelst lengde, og ma gerne indeholde
‘lanktegn.

i
|
{

owltn

Denne kommando bruges til indlesning af programtekster. Forma-

-et af kommandolinien er:

LOAD filnavn eller L filnavn

hvor filnavn er navnet pa det program, man @nsker at indlese.

Hvis filnavnet udelades, indleses den férste fil, der mé¢des.

Hvergang et program bliver fundet, udskrives der:

File filnavn found

Sdledes er der mulighed for at sammensette et program af i for-

vejen bestdende underprogrammer. Q@nsker man at indlése et pro-

gram for sig selv, bor den nuverende programtekst forst slet-

tes, fx. med ZAP kommandoen. LOAD kommandoen kan pé ethvert

tidspunkt afbrydes ved et tryk pa <ESC>. Ved kald af LOAD kom-

mandoen slettes objektkoden. albyador LOAD

¥

VERIFY kommandoen.

Denne kommando bruges til at verificere en udlesning af en

programtekst. Formatet af kommandolinien er:

VERIFY filnavn eller V filnavn

hvor filnavn er navnet pa den programtekst, man Onsker at veri-

ficere. Hvis filnavnet udelades, verificeres den feorste fil,

der modes. VERIFY kommandoen kan pa ethvert tidspunkt afbrydes

ved et tryk pa <ESC>.

3: EDITOREN
oo ee ee ee ee ee ow a oe

Ecitoren i BLS Pascal systemet er skermorienteret. Dette bety-

der bl. a., at der ikke, i modsetning til BASIC, er behov’ for

linienumre i programteksten.

1 en skermorienteret editor virker skermen som et vindue, der

kan flyttes rundt over programteksten. Cursoren befinder sig

altid inden for dette vindue, og angiver, ved sin position,

hvor der skal indsettes, fjernes eller rettes nogle tegn. eller

Linier.

I editoren kan programlinier vere op til 80 tegn lange. Dette
betyder, at skermen, ud over at kunne flyttes frem og tilbage i

programteksten, ogsa kan flyttes til siderne. Hvis man skriver

over 48 tegn pa en linie, vil cursoren ikke flytte ned pa neste.

linie, men skermen vil i stedet scrolle mod venstre, saledes at

de forreste tegn pa linien 'forsvinder'. Forst nar der er skre-

vet 80 tegn, flytter cursoren ned pa neste linie.

Umiddelbart kan denne opbygning virke forvirrende, men i Pascal

er det meget ofte ngdvendigt med linier der er lengere end 48

tegn, for at programtekstens overskuelighed skal bevares.

ditoren aktiveres med kommandoen:

EDIT eller | E

Det indleste program bliver lagt i lageret Shier Cab een oes

a5

Ved indgangen kommer man tilbage til det sted i teksten, man

forlod ved sidste editering. Hvis det er f@rste gang editoren
aktiveres, eller hvis ZAP kommandoen har veret i brug, slettes
skermen, Og cursoren placeres i g¢verste venste hjgrne.

Editoren har 27 kommandoer, der har ASCII-verdierne mellem 1 og
27 (dvs. kontroltegn). Alle ovrige tegn (inklusive grafiktegn)
vil, nar de indtastes, blive indsat i programteksten pa det
sted hvor cursoren befinder sig, og denne vil derefter, hvis
det er muligt, flytte een position mod hojre.

Under brug af editoren kan det ske, at arbejdslagereret bliver
opbrugt. I sa tilfelde slettes skermen, og der udskives:

Overflow

-Brugeren ma da, hvis det er muligt, udvide arbedjslageret ved
at flytte MTOP til en h@jere adresse (se APPENDIX B).

Under beskrivelsen af editorens kommandoer bruges de f¢lgende
notationer:

CTRL/ eller SHFT/ efterfulgt af et bogstav betyder, at
bogstavet indtastes samtidig med at control- eller shift-
néglen holdes nede.

HP betyder hojrepil, VP venstrepil, NP nedpil og OP oppil.

3.1 Editeringskommandoer

Editeringskommandoerne er de kommandoer der retter i program-
teksten.

<BS> Flytter cursoren een position mod venstre og slet-

ter det tegn, den bliver placeret oven i. Hvis cur-
Soren star i f¢@rste position pé en linie flyttes
den til position nummer 79 i den foregaende linie.

<ENTERD Flytter cursoren een linie ned og indsetter en tom
linie. Cursoren placeres i f¢@rste position af denne
linie.

<ESC> Sletter den linie cursoren star pa og flytter cur-
soren een linie op. Cursoren flytter til feérste po-

sition.

SHFT/HP Flytter den del af linien, der st&ar efter cursoren,
CTRL/V een position mod h@jre og indsetter et tlanktegn.

SHFT/VP Fjerner det tegn, der star under cursoren, og ryk-
CTRL/U ker resten af linien een position mod venstre.

SHFT/NP Flytter den linie, cursoren star pa, og de~- under-
CTRL/Z staende linier een linie ned og indsetter en tom

linie. Cursoren flytter til f¢rste position.

SHFT/OP Sletter den linie, cursoren star pa, og flytter de
CTRL/Y understaende linier een linie op. Cursoren flytter

til forste position. . ‘

R
E
S

o
e

oe
Sy

,
*..

3

FP
x

%
p
e

+
ew

es

-

e
e

=

c
g

a

—
—
s

a
e
.

c
i

a
e

&

(
a
e
:

me

.
x

—

lo
o
F

-
;
.
:

S
T

r
a
n
e

“
~
;

PE
rv

a
w
i
r

fae

he
3.2 Cursorkommandoer

Cursorkommandoerne er kommandoer, der flytter cursoren uden at
rette i programteksten.

HP
CTRL/R

VP
CTRL/Q

NP
CTRL/T

OP
CTRL/S

CTRL/B

CTRL/E

CTRL/N

CTRL/O

<LF>
CTRL/ J

<CS>
CTRL/L

Flytter cursoren een position mod h@jre. Hvis. cur-
soren star i position 79, flytter den til frste
position i neste linie.

Flytter cursoren een position mod venstre. Hvis
cursoren star i f¢rste position
position 79 i den forrige linie.

flyteer, den: 8)

Flytter cursoren een linie ned. Hvis cursoren star
i nederste linie, scroller skermen een linie op.

Flytter cursoren een linie op. Hvis
i overste linie,

cursoren star
scroller skermen een linie ned.

Flytter cursoren til forste position i program-
tekstens forste linie.

Flytter cursoren til fé¢rste position i program-
tekstens sidste linie.

Flytter cursoren 14 linier frem i programteksten.

Flytter cursoren 14 linier tilbage i
en.

programtekst-

Flytter cursoren til ferste position pa den
ende linie.

nuver-

Flytter cursoren til positionen umiddelbart
det sidste tegn pa den nuverende linie.

efter *

3.3 Blokkommandoer

Blokkommandoerne er kommandoer, der bergrer hele blokke af pro-
gramteksten. En blok afmerkes ved hjelp af blokmerker, der kan
settes med CTRL/A kommandoen.
forste afmerkede blok i programteksten. Hvis der ikke er

En bleokkommando ber@rer kun den

nogen
blokafmerkninger i programteksten, ignorereres blokkommancoerne
(dog ikke CTRL/A).

CTRL/A

CTRL/D

CTRL/I

Denne kommando skal efterf¢lges af et bogstav.
"B' indikerer at man ¢@nsker at sette et start-blok-
merke, og 'E' indikerer at man @nsker at sette et
Slut-blokmerke. Blokmerker bliver altid indsat for
den nuverende linies f@rste position. Hvis der i
forvejen star et blokmerke i linien, bliver CTRL/A
kommandoen ignoreret.

Fjerner den forste merkede blok (inclusive blok-
merker) fra programteksten. Cursoren flytter til
den forste position i den linie, hvor slut-blokmer-
ket stod.

Indsetter den f¢rste merkede blok (exclusive Dblok-~
merker) umiddelbart for den ‘linie, cursoren star
pa. Hvis cursoren star p& enaf linierne mellem
blokmerkerne, eller pa den linie, vor’ slut-blok-

nerket—star;—ignorereres—CTIRL-Lkommandoens

se

t
:

é
:

.
:

? ‘
q

j
«

ly
CTRL/P Udskriver Wen ferste merkede blok via den bruger-

‘definerbare udskriftsrutine (se APPENDIX D). Kom-
mMandoen CTRL/P skal efterfolges aft. et | Begetay.
Hvis dette er et 'L', udskrives blokken med linie-
numre. —

3.4 Ségekommandoer

De to ségekommandoer bruges til at finde de steder i program-
teksten, hvor en indtastet sogetekst forekommer.

CTRL/F Finder den forste forekomst af en s@getekst pa max.
40 tegn. Idet CTRL/F indtestes, indsettes der en
tom linie pa skermen, og som prompt-tegn udskrives
der en h@jrepil. Herefter kan s@getexksten indtas-
tes, under brug af de samme specialnggler som ved
kommandoindtastninger. Nar eee er afslut-
tet forsvinder linien igen.
Hvis teksten bliver fundet under s@gningen, bliver

~ cursoren placeret oven i det forste tegn i teksten.
Hvis teksten ikke bliver fundet, bliver cursoren
staende.
S¢gningen starter altid i linien umiddelbart efter
den nuverende.

CTRL/C . Fortsetter Sogningen efter den sidst indtastede
s¢@getekst.

3.5 Tabulatorkommandoer

CTRL/K Denne kommando bruges til at sette tabulatorleng-
den. CTRL/K skal efterfolges af et bogstav, der af-
&er tabulatorlengden. Bogstavet 'A' svarer til en
lengde pé 1, bogstavet 'B' til en lengde pa 2,
etc., hvilket svarer til, at lengden bliver bogsta-
vets ASCII verdi minus 64. Den maksimale tabulator-
lengde er 63. Hvis man vealger en tabulatorlengde pa
O (ved at trykke CTRL/K efterfulgt af '@'), virker
tabulatoren anderledes, idet den nu flytter cursor-
en til den position i linien, der svarer til posi-
tionen sf det forste tegn i den foregaende linie.
Tabulatorlangden endres ikke ved, at editoren for-
lades.

<CH> Flytter cursoren frem til den neste tabulatorposi-
_ CTRL/W tion, eller, hvis tabulatorlengden er O, til den

poSition i den nuverende linie, der svarer til po-
Sitionen af det forste tegn i den foregaende linie.

3.6 Andre editorkommandoer

CTRL/G Denne kommando bruges til at endre <GRAPH> noglens
Funktion. CTRL/G skal efterfgolges af et bogstav.
Hvis man trykker 'A't vil <GRAPH> noglen nu virke
som en APLHA-LOCK nggle: Hvergang den nedtrykkes,

reverseres <SHIFT> ngglens funktion. Hvis CTRL/G
efterfolges af et 'G', virker <GRAPH> noglen igen
som normalt. <GRAPH> noglens funktion bliver hus-
ket selvom editoren forlades.

| EPR X Sletter skermen og gar tilbage til kontrolprogram-
met. CTRL/X fjerner desuden alle blokmerker . fra ..

programteksten. - Se Said te a es i ae aa

-
e
d

,
}

ae

.
.

=

*

.
tee vem qperengarenettet Sane t ngs Seem ets eee mown SE Tee tt 8 eee =

Pan eee te ee Fm A ne emt ‘ oe . teehee
° . om

Compileren er hjertet i sprogsystemet. Ved hjelp af denne kan

programtekster oversettes (compileres) til objektkode.

Compileren kan arbejde pa flere forskellige mader:

1) Med COMPILE/RUN kommandoerne gemmes ,den producerede objekt-

kode direxte ud i lageret, umiddelbart efter prograemtekst-

en. Denne metoce er langt cen hurtigste, men den stiller

det krav, at der er plads til bade sprogsystemet, program-

teksten og objektkoden i lageret pa een gang.

2) Med TAPE kommandoen udleses den producerede objektkode til

bandoptager. Denne metode er naturligvis langsommere_ end

den ovenstadende, men den har den fordel, at der ikke kreves

lagerplads til objektkoden. Desuden giver TAPE kommandoen

brugeren mulighed for at adressere objektkoden hvorsomhelst

i lageret.

3) N&r compileren aktiveres via FIND kommancoen, genereres der

ingen objektkode. FIND kommandoen bruges til. a% finde et

sted i progremteksten, der svarer til en bestemt adresse i

objektkoden. Dette er iser brugbart, hvis man under’ kors-

len af et program far en runtime fejl og Onsker at finde

den setning i programteksten, der er skyld i fejlen.

Hvis man under en compilering far en fejl, bliver editoren au-

tomatisk aktiveret, og pad skermens overste linie udskrives fej-

lens nummer. Cursoren placeres oven i eller umiddelbart efter

den tekst, der er skyld i fejlen.

Led os antege at man har indtestet det folgende program:

VAR i: THTEGER;

BEGIN
readin(i); writeln('Kvadratet er ',sqr(j))

END.

Programmet indeholder en fejl, idet variablen j ikke er erkle-

ret. Hvis man prover at compilere programmet, vil der ske fo¢l-

gende:

Compilation error 64 Press <SPACE>

readln(i); writeln('Kvadratet er ' sqar(j))

END.

Cursoren er placeret oven i j'et, pa den ferste linie, for at

angive fejlen. Idet man trykker <SPACE> forsvinder fejlteksten,

og programmet kan editeres, som navde man aktiveret editoren pa

normal vis.

Under en compilering kan det ske, at alt arbejdslageret: bliver

opbrugt. Da udskrives der:

Overflow

Brugeren ma nu, hvis det er muligt, udvide arbejdslageret pa en

af de fglgende mader: ,

as

“es

we we eee es

eee ee ee ee a ee ee eye Ee ee
m
H

H
H

E
F

*

1) Hvis systemet ikke har tilgang til hele RAM-lageret, bor
MEMTOP flyttes til en hojere adresse (se herom i APPENDIX
B).

2) Hvis compileren blev aktiveret med COMPILE eller RUN kom-
mandoerne, kan man i stedet bruge TAPE kommandoen og ud-
lese objektkoden pa band.

4.1 COMPILE kommandoen

Nar compileren aktiveres via COMPILE kommandoen, bliver den
producerede objektkode lagt direkte ud i lageret umiddelbart
efter programteksten. Formatet af kommandolinien er:

COMPILE | eller © € re

Efter kommandokaldet udskrives der:

Compiling

Forudsat at der ikke er fejl i programteksten, bliver f¢lgende
uskrevet, efter at compileringen er slut:

Compiling Ok :
Text: $aaaa $obbb <xxxxx>d
Code: $cccec $dddd <yyyyy>

hvor aaaa og bbbb er programtekstens start- og Slutadresser (i
hexnotation), og xxxxx er programtekstens storrelse. cccc, dddd
Og yyyyy er de tilsvarende parésietre for objektkoden.

4.2 RUN kommandoen

Denne kommando bruges, nar man @nsker at udfg¢re..et program.
Hvis programteksten ikke er compileret (ved hjelp af COMPILE

eller en tidligere RUN kommando), vil dette blive gjort f¢r
programmet startes. Forudsat at der ikke opstar fejl under
compileringen, eller hvis programteksten i forvejen er er. com-
pileret, udskrives der:

Running

hvorefter kontrollen bliver overgivet til programmet. Efter
endt k¢rsel af programmet, bliver kontrollen tilbagegivet til
Sprogsystemet. Hvis der opstér en runtime fejl under’ korslen
ef et program, udskrives der:

Runtime error xx at $nnnn

hvorefter kontrollen overgives til sprogsystemet (eller til
NAS-SYS hvis programmet er compileret med TAPE kommandoen).
xx er fejlens nummer, og nnnn er fejladressen i hexnotation.
Adressen er ikke den absolutte adresse, men offsetadressen
fra programmets startadresse. Ved hjelp af FIND kommandoen
(uden argument) kan man nu finde den setning i programteksten,
der er skyld i fejién.

4.3 TAPE kommandoen

Nar compileren aktiveres via TAPE ‘kommandoen, bliver objekt-
koden: udlest til bandoptageren; denne bor derfor startes f@r
kommandokaldet. Formatet af kommandolinien er:

e
e

e
e
e

e
n

e
e

Sit
r
e
e
r

r
e

. tu

TAPE nnnn eller . T nnnn

hvor nnnn er den hexadecimale adresse, man ¢nsker objektkoden
adresseret til. Hvis nnnn udelades, velger systemet $2180 -som
‘startadresse (hvilket er slutadressen for runtime pakken og
Startadressen for kontrolprogrammet). Objektkoden udskrives i
NAS-SYS W-format, og Kan senere indleses med NAS-SYS R-komman-
doen. Nar udlesningen er slut, udskrives der:

4uxx End.

Hvor xxxx er objektkodens slutadresse.

Nar programmet senere indléses, kan det startes med NAS-SYS
kommandoen Ennnn, hvor nnnn er startadressen. For at’ program-
met kan kore, kreves det at runtime pakken er tilstede i lager-
et mellem $1000 og $2180; imidlertid behgver resten af sprog-
systemet ikke at vere tilstede. Nar et program virker tilfreds-
stillende, kan man sdledes udlese objektkoden med TAPE komman-
doen, og derefter sammensette denne med runtime pakken, for at
danne en ferdig objektkode, der kan k@re helt for sig selv.

entue. maskinkoderutiner kan med fordel placeres imellem
-programmets startadresse . Har man for eksempel en

“
O

samtihe maskinkoderutiner der fylder 128 bytes ($80), kan disse
Startes i $2180 og programmet i $2200.

4.4 FIND kommandoen

FIND kommandoen bruges til at finde et sted i programteksten,
der svarer til en adresse i objektkoden. Nar compileren akti-
veres via FIND, genereres der ingen objektkode. Formatet af
kommandolinien er:

FIND nnnn eller F nnonn ! ‘

hvor nnnn er den adresse man @nsker at finde. Adressen er ikke
den absolutte adresse, men en offsetadresse fra programmets
startadresse. Hvis et program: fx. starter i $2180, og man
¢nsker at finde det sted i programteksten, der svarer til ad-
ressen $2295, skal man indtaste FIND 115. Hvis nnnn udelades
bruges adressen pa den sidst forekomne runtime fejl. Efter
kommandokaldet udskrives der:

Searching

Hvis offsetadressen passeres under so@gningen, reagerer systemet
ved at aktivere editoren og udskrive:

Compilation error 00 Press’ <SPACE>

Cursoren er placeret umiddelbart efter den relevante tekst.
Idet man trykker. <SPACE> forsvinder fejlmeldingen, og program-
met kan editeres som normalt.
Hvis offsetadressen ikke passeres, udskrives der: .

Searching ?

Ved brugen af FIND kommandoen, slettes en eventuel objektkode,

=

~ 5: ANDRE KONTROLKONMANDOER
eet ee ee ON ee ee Oe ee ee et eet et a Oe ee et ee ee oe ee

5.1 MEMORY kommandoen

Denne kommando oplyser start- og slutadresserne og st@rrelsen
af programteksten, og de samme parametre for en eventuel ob-
jektkode. Formatet af kommandolinien er:

MEMORY” eller. - “M

Herved udskrives der:

Text: $aaaa Sobbb <xxxxx>

hvor aaaa og bbbb er programtekstens start- og slutadresser (i
hexnotation) og xxxxx er programtekstens st¢rrelse. Hvis. prog-
rammets objektkode er tilstede, udskrives cer tillige:

Code: $ccce Sdddd <yyyyy>

hvor cccc, dddd og yyyyy er de tilsvarende parametre for ob-
jektkoden.

5.2 ZAP kommandoen

Denne kommando sletter prograntekst og objektkode. Formatet af
kommandolinien er:

ZAP eller Z

Pas godt p&é med denne kommando.

5.3 QUIT konmmandoen

Denne kommando overgiver kontrollen til NAS-SYS. Formatet af
kommancolinien er:

QUIT - ; eller Q

Systemet kan senere varmstartes som beskrevet i APPENDIX A.

ae

OT ae eee ne ee ed ee ee ee ee a a a hr

BLS Pascal systemet leveres pa et kassetteband, der er udlest
med NAS-SYS W-kommando pa 1200 baud. Indlesningen foregar_ ved
hjelp af NAS-SYS R-kommando.

BLS Pascal systemet koldstartes ved at skrive:

E1000 aaaa ~ eller E2180 aaaa

hvor aaaa er den sidste adresse i RAM-lageret sprogsystemet ma
benytte. Hvis aaaa udelades benyttes alt tilgengeligt RAM-
lager. .

BLS Pescal Systemet varmstartes ved kommandoen:

E2182

sAPPENDIX B -~ SYSTEMARBEJ DSLAGERETS LAYOUT
Oe ee ee eee eee a ES EE es ee ee ee ee ee ER SE OE Oe et ee ce et Se eee Ree ee eee gt et et ee ee ae oe

Systemets bruger 128 bytes arbejdslager i omraddet $C80 til
$D00. I dette omréde kan f¢lgende vere af interesse for bru-
geren:

C&0-C&1 MTOP Den ¢verste adresse i RAM-lageret sprogsy-
Stemet mad bruge.

C82-C&3 EOFP Programtekstens slutadresse.
C84~C85 PEND Objektkodens slutadresse.

* APPENDIX D -~ DEN BRUGERDEFINERBARE UDSKRIFTSRUTINE
ow ee we ee ee ee ee OF ee me ee ee Ot et ee ee me ee ee ee ee ee es ee et ee ee ee ee em ee es es ee es se es se

Nar man bruger CTRL/P kommandoen i editoren, bliver udskriften
sendt via den brugerdefinerbare udskriftsrutine i NAS-SYS,

Adressen pa denne rutine skal sta i adresserne $C78-$C79, og
den bor f¢lge de regler, der er givet i. afsnittet INPUT AND
OUTPUT i WAS-SYS manualen.

a

S
S
T

.
«

—
=

=
-_—

a
—

=
-

=
a

‘

i
FF

~s

APPEND

Under udviklingen af et program har systemets RAN-lager typisk
det f¢@

OC&9O 4.

ODOO +

1000 +

2180 :

2980 +

4000

EOF P

PEND

MTOP +

Under k@rslen af det ferdige program har systemets RAM-lager

IX C ~- MEMORY MAP
— oo Oe Be ee om oe ee ee ee ee ee ee ee oe ee ee

lgende layout:

— oe me ee oe ae Oe eee ee ee ee es ee ee ee eee ee ee et ee ee ee ee ee ee ee ee ee ee

——_ oe se ee ee ee et me ee ee ee ee ee ee ee ee ee ee ee oe ee ee ee ee oe

-_— — ee ee ee ee ee ee ee ee ee ee ee ee ee eee ee ee ee ee te ee es eee ee ee

-——_— ee ee ee ae ee me me © oe ae ae oe oe OF oe om om ow ee ae ow ae on oe oe

——_— oe ee ae ee ow et oe ee ee a ew oe oe ae ee oe oe oe ae oe oe oe a ow oe

———_—— ee ee ee ee ee ee ee ee ee ee ewe em ee ee ee ae ee oe oe oe oe oe oe oe

typisk det felgende layout:

I ee Badin on <ilademnlih wy Sitctcre ac ie mm md npipinsiblinn me a +

! Systemets arbejdslager !
OD0G » 4m n 6 oe oe ein eb we ee ewe eee +

! systemets stack !
1000 +--------- woe ne +--+ +

! !
! runtime pakke !
! !

BESO Some Ck ee ee eee meme +
! evt. maskinkoderutiner !

tem nm ee ee eee ee ee ee ee =

: !
! objektkoGde !
! 1

tem nm ee me nm ne ee ee ee ee ee ee +

! !
! programnmets arbejdslager !
! !

MTOP 4+--~-----~~----~-~-~~-~~---- ~~~ + +

\
oy

-

Blue Label a

ee ASE

PROGRAMMERINGSMANUAL

—. es a,

rr 7 tLe 7 Pr me
Je Peiaae mn ‘A ue kn ie

er? microcenter
3 Strandboulevarden 63

‘J +2100 Kobenhavn © - Tif.(01)420705

nm
H
H

e
e

HE
Ee

HE
HE

HE
E
e

Ee
Ee

w
e

SE
E
S

e
S

o
e

w
e

e
e

Fs

a
wn

e
<

¥
f

,
;

‘
7

-
:

—
,

4
;

a

2

| INDEX |

os

—
—
—

—

B
h

HE
Ee

HE
HE

HE
Ee

HE
HF

HE
HF

E
E

EE
E
E

S
S

S
S

Ri

INTRODUKTION eeeteteeteeteen¢eee#steeeseenetee eeeeeeee

-SPROGETS GRUNDLEGGENDE ELEMENTER
Tet SYMOOLCr: . cesecvcccvessece
1.2 Reserverede ord og standardidentifiere
1.5 Seperatorer eoseeeeoeeee#*eetee0nree#e#eeeeteeeertetee

BRUGERDEFINEREDE SPROGELEMENTER é
ae BOOM EALL LOPES 5c cco tnnts sas Cc aw ee ee 8
ee ee as bo 0 tines cas pais galt ae eb. a ce ae eee
ee SEPOnGe iauob 4 0. dc 00 ewe es
re ee PO SG 5 oi a'd é:9'e-6 oe 6 ecw arse 6

eeeseee eee 8 @ @

Tis 4.606 Soe 0 0be 000.000 «0.0.8 8 08 6 8's
Bt SRCERETS ct-oc ce cbc ecw ccc ce vereswes
Dim GRRES «<0: es wks 0 0 « 0h Mee tee ae he 8
ie SAUL RDS 06-0 0 0.6.9.0 0,0 0:0 6 2 ae:e we Bee eee

Se DOPLDES © «04% 00.0.0
MOP POV SCHUM E!: 6 civics ctincevecccecce

Sos 4 Mew erraystrukturen. ... 6c. secee

ERKLERINGER OG DEFINERINGER ...cccceeee
pe OTT IMPINVE® 6 cdecccc csr cecocees
Ree honstantdefineringer .ccccecveveces
mos Wariapel erki@ringer ...cccrvcrcsccecvece
4.4 Procedure- og funktionserkleringer

MIE MD Sain 0 cco ce db ec een eet seacecvcre
ee re YO LOPOT GG: < oct e cece sce ccns
5.2 Multiplicerende operatorer
5.3 Adderende operatorer
5.4 Sammenlignende operatorer ..rcceees
em Perempecer <1. Udtr¥k ..ccccseceeveuer
Me PUNMELONSKEILG 6.0 ccc cwecscecevecses

UE RMUG 2 vec wees
Bat mole setninger <<<... % io as da ees

Osis tiiskrivningssetningen. .«.....
S.tce Preeeduresetningen ..cscccres
Se. ta GOTO-SRt HINGE sec eee ee eee
Os tue ONT PeeGEBENEeH s o.0:0 520 0% Piet

-5 Tomme S@tninger .ccrccccevsces at
tru

sO.) SOMMONSRt. SOLMINE.. .cceccvccece
s2.e Betingede s@tninger. .ccccccee

O22.) PERSON INGeNn 2s 6 0 cca es
2.c CASE“setningen. ...wse-
SLCIONSSSCHINGEr «602 ccc we
3.1 ,WHILE~setningen-.
3.2 REPEAT-setningen
3-3 FOR-satningen .ccecee

6
S
6
6

6.2
6.2.3 Repe

Ou23
6.2;
6.2,

PROCEDURER ..cccveccee $099 0 ce. weee see een e
7.1 Procedureerkl@eringer

7c121. Procedurehovedet cs.
Ti tcd: EFREMPINGSSGET ON wccvcdccss dase

7.1.3 Setningsdelen
Tee ‘Bhetiaarerrogedurer .:f 5 cccpeccceeons

oeee?##eet#8#8e

o 0 08:6 0.6.9. 6-9: ¢ 42 2:0-¢

kturerede S@tninger wcrccoevvtoces

eoeeetenveeeteeeete

oeeee#ee#3qeee#ee#e?e#ees¢

eoeeers#e#et?ee8e

eeeeeererstterte ee

eee5n31roe8nree?t8ec ee @ @ @

eoeeseesevs#8s5eaie?e#e#sehierekee#e*e?et#?

oeeeeteeeseset#srteeee

oeeee7enreeees#e€s?

eoeeeteene oe @oee#eee#e

eoeee7nroseevne#n#1ee?#?#¢#

oeee#erveertes#sfer#eere?ee

eseeet7e#7eerteeesest#e#+#

eee oi eeoeee*vs85e 8 @

oeeee?ee eeee#e#ee@s

eoeees#*es#eerteteete

eoeeesensv?@e?ft ee #@ @ @

eoe@ee<eedeesfee#srrteee

oeeeeneeneeere?#eee#se¢

eoeeees+5esrhrwetee3$5nre#e#ee#e

° eeeenteen#+e@es85ege¢

eeee#e#ev#5ne#e#es*tee#ee#%kHji?e8e@

eeoe*eee#8e#s8ee#ee?%#*

eee ee eeee##e

eee eeeeeees

eoee7ens¢eesrs5eresereegete?

eee eeeveweresrtersee

eoeeetee#eernrtenee#s

eseetree*#ste#ene#e#eestee

eeee#e#s¢ eee ee

obs ce eee ee

eeee#e#e? eevnve@8 4

eee#ee%#s? eeee#se

e eoeeeeskee#e#eg#sews#e?

oeeteeeete#e#et8f 8 @

oe@enoee#e eee

eeoeonveeeeeeee

aevrenrteeenetee eve

oseeooeeveeeeeees

oeevevoeeeeee eee

eee0nevseseenvee?e

*eseeeoeeetscerersekereee

O
O
o

C
O
C
O

N
A
N
A
A
N
A
N
O

O
M
N
I

S
F
e
e
r

Ww

10
10
10
10
11
11

12
12

12
12
12
¥3
14
14
14
14
14
15
15
15
15

17

17
17
17
17

sa
ng
e
e

ea
m

Se

R
E

a

a

ot

<
b

tal
ler

S

R
R

Fe
a
R
F

te

“
e
e

=

_
-__

RO
N
e
e

ee
PF

=

o
o
m

:
?

c
w

e
e
,

e
a

e
e
e

ay
”

38

8. FUNKTIONER. ead A CEO 6 WR 40 'Oe Nae OSs 0 6a Ne dae
int TMG LOU PL COP oo ok Ses onc voc ook.

ey hg 1 PUM, MO PGIPE os bo bn ’s 0 0 civod bcc oki
6.1.2 BO WR TEL OD 6 tats o wlan oe 0 bacapckeek.
ae a 5 UC OU gs oss vc cw bos come

5.2 Stan eer pal oe Fe bide 6 okie soy cakes
ces Vee. TUMEELONAF 2... es. oc cece st ccc,

Cue 3 Wee Ow SEUNIGHSOROI: 6 i 0 ond sos ce hukc cence s
6.2.3 Stringfunktioner« Baie ou « De pea su.
8.2.4 Konverteringsfunktioner Pe ee ae
S.2.5 andre standafdfunktioner::....... soe eckk

9. PARAMETRE VERA AEs bee 60.4 00 Ee 0) 65 a 6 00.06 bs sc
MP COP LV OP . ooo tino we bw 0 oeild woo ec eatcvun

Meat VALUE PaTAMOtre 6s ies sc ck cbs cede ee.
rae Wer Paremecre co. 665k bocce soo ce ean

Je Formelie og aktuelle parametrecccecoee

See Pee meN ING OG UDLESNING . 2... ccc ccwcccccccvccecce.
out nGewering fre konsollé@n .. cscs ccc cc cc cccen

Poy tes OOO BroOcegaren 2... bi. skis co cece cn
Pee tee PORCIA Procedures. .6G5 6 sc ccc ck cc chin

wexe Udlesning til. konsollen<.06ceccc 6 0008s
Pe veat WUTiCh DPOCedOren:. os 6k ss ce vce Gck cn
10.2.2 writeln proceduren + eae ke %

10.3 Indlesning og udlesning af arraystrukturer
Wey Sue BOVE OTOCECUr ON iowa ks as kc ec kee hc ce
Secure 2080 POGCOdGOren [56.5 Fs bcc we dee cose,

APPENDIX

A. Syntaxdiagrammer
B. Eksempler pa underprogrammer
C. Systemarbejdslageret
D. Intern datarepresentation
E. Eksterne underprogrammer
F, Benchmarktests og tider
GC. Litteraturliste
H. Compiler fejlmeddelelser
I. Runtime fejlmeddelelser

o
*

oe

e
e

*
°

° EE ee en eee = 5
O: INTRODUKTION

-

ph
in

ip
ni

te
tl

gt
n SS

Hovedmalet med udviklingen af BLS Pascal systemet er at skabe
et alternativ til BASIC programmeringssproget.

Programmer skrevet i BASIC har en tendens til at blive uover-
skuelige og korer ofte meget langsomt. Programmer skrevet i det
blokstrukturerede sprog Pascal er langt mere overskuelige og

k@rer meget hurtigere, da de ikke skal fortolkes, men i stedet
overs@ttes til maskinkode.

BLS Pascal er et meget kompakt system, der kun krever ca. 12 K
lager, hvoraf ce ca. 5 1/2 K er compilerdelen. Naturligvis kan
det pa en sa lille plads ikke lade sig gore at lave en komplet i
pascalcompiler. I.BLS Pascal er der derfor givet afkald pa
nogle Pascal faciliteter, bl. a. brugerdefinerede variabeltyp-
er, mengder og filtyper. Imidlertid er alle setningskonstruk-

tioner bibeholdt, ligesom procedurer og funktioner bade kan
tage value- og var-parametre. De grundleggendende datatyper
INTEGER, REAL og BOOLEAN er ogsa bibeholdt, mens datatypen
CHAR er blevet erstattet af en den mere fleksible datatype
STRING.

li
n

L
i
l
i
e
n

i

i

t
a

S
t

|
n
a
t
h
a
n

d
e
e

tn

 e
e
t

s
s

nm

e
e

e
e
 e
e
e

e
e

e
e

e
e

S
e
a
 d

ei
ad

ii
ti

at
ia

ni
as

in
ea

nc
ar

ei
em

ma
ea

aa
er

en
t

a
e

Denne manual definerer fuldstendigt BLS Pascal sproget, og bor
derfor gennemleses grundigt for programmeringen pabegyndes. fo

t
e
i
n

dtt
on

BLS Pascal systemet og de dertil hgrende manualer er udviklet
af Anders Hejlsberg i efterdret 1980. =a

un
ee
nm
er
me
et
es
s

to
aaa

.
we.

ee
ar
am
a

he
l

at
e

2
Me

ee

A
e

i
O

ap

o
m
e

e
e
n

t
i
n
e

O
l

es

|

,
a
d
i
e

S0
8

an
e

Copyright (C) 1981 Poly-Data microcenter ApS

—

a
.

ee
oo

ee
e

ee
ey

2

e
e

e
o

8
=

«4
>

.
a

ta
te

r
“

aa
7

<p
it
ha
as
ta

:

as aS
Ee arek See
} 1 Pe Peer

1: SPROGETS GRUNDLEGGENDE ELEMENTER
—— oe Se Oe Oe Oe Oe ee Oe 8 Re eT an ee aes Oe Bee et Ee Gee ome et ee ee ee ee oe me ee es ee oe we

 SYMBOLER

Folgende tegn er de grundleggende symboler i Pascal:

pogstevers: A til Z, a til 2, '_' oe ' 4%,
Talcifre: D123 45.6 7 € 9
Symboler: toe fa fee pd }

Nogle operatorer og seperatorer er sammensat af to tegn:

vs. SD} KS: Pe. ts -
2 (. og .) kan bruges i stedet for [og].
3. (* og *) kan bruges i stedet for {: o¢*}.

1.2 RESERVEREDE ORD OG STANDARDIDENTIFIERE

Reserverede ord kan ikke benyttes som brugercefinerede identi-
fiere. De reserverede ord er:

¥ AND /FOR | PROCEDURE
. ARRAY FUNCTION PROGRAM
’ BEGIN GOTO REAL
» BOOLEAN ‘IF REPEAT
» CASE INIT — SHIFT

v DIV INTEGER — STRING
) DO) LABEL THEN
\ DOVNTO “MOD i:
v ELSE NOT UNTIL

_Y END ‘OF VAR
EXOR OR WHILE

~ EXTERNAL ~ OTHERS

I BLS Pascal findes ogs& et antal Standardidentifiere, der ikke
er reserverede, men som er navne pa predefinerede procedurer,
funktioner og konstanter. Disse identifiere Kan overskrives med
brugerens egne definitioner.

Yabs left ' read
addr ln ’ readin
arctan load ~ right

~call ymaxint ‘round
chr mem save
concat mid sin
cos. - odd ‘ sqr
empty ord sart

| exp ~ pi suce
false - plot ‘true

- frec point ’trune
- int / pred ‘write
Keyboarc —~ random 'writeln :

Der skelnes ikke mellem sma og store bogstaver i reserverede
ord og standardidentifiere.

1.3 SEPERATORER |
¢

Blanktegn, linieskift og kommentarer anses for seperatorer. I-
mellem to Pascal elementer skal der vere mindst een seperator.

2: BRUGERDEFINEREDE SPROGELEMENTER

BLN i ona ,
.1 IDENTIFIERE ©

* ’

En identifier bruges til at navngive konstanter, procedurer,

funktioner, variable og labels. En identifier bestar af et bog-
Stav efterfulgt af et vilkdrligt antal bogstaver, talcifre el-
ler '.'-tegn. Eksempler:

PASCAL Pascal NAVN.41.CODE

Compileren skelner mellem sma og store bogstaver i brugerdefi-
nerede identifiere.

Tal skrives i decimal eller hexadecimal notation. Hexadecimal

notation velges ved at skrive et $-tegn foran tallet. Bogstavet
E foran skalafaktoren udtales som 'gange 10 opl¢ftet i'.

-Eksempler:

1 100 S25EC 0.138 5E10 87.13E-8

Talkonstanter ma ikke indeholde blanktegn.

2.3 STRENGE ©

En streng er en sekvens af tegn omsluttet af enkelte anf¢rel-
sestegn. Anfgrelsestegnet kan indga i strengen, hvis det skri-
ves dobbelt. Eksempler:

BUS: Pascai' rR! ‘a : "—amac'*s at) folks '

2.4 KOMMENTARER

En kommentar er en sekvens af tegn, der kan fjernes fra prog-
rammet, uden at dettes mening endres. Kommentarer skal omslut-
tes af symbolerne { og } eller af symbolerne (* og *).
Eksempel:

(* Dette er en kommentar *)

* e
e
 e
e

e
e
e

Ae
ak

wince W
a
n
d
a

Ai
l
ta

n
t
e

Ad
en

isl

S
c
t

e
s
t
e

a

—

9 e
d

ae
hs
 a
n
a
l
 OS
s

mt
s

ot
e

wnt
 G
or

ey
 s
e
t

te
l

th
as
 o
e

e
e

e
e
e

-

3
n
e
e

a
e
:

c
e

‘
e
e

=

o
a

ie ss

33 “DATATYPER
—— oF on &e on FF oe ee oe ow oF

En variabels datatype er afgorende for hvilke verdier, den kan
antage 1 programmet. I BLS Pascal er der fire datatyper: Integ-
er, real, boolean og string.

3.1 INTEGERS ©

En integer er et heltal i omradet -32768 <= I <= 32767. Over-.
flow pa integers detekteres ikke.

3.2 REALS”

En real er et reelt tal i omraderne:

~1.7014118346E38 <= R <= -2.9387358770E-39
R = Q
2.9387358770E-39 <= R <= 1.7014118346E38

I BLS Pascal regnes reelle tal med 11+ betydende cifre. Ved un-
derflow pa reelle tal settes resultatet lig 0. Ved overflow
Stepper programmet med en fejlmeddelelse.

I BLS Pascal opfattes Integers og Booleans ens. Typen boolean

er kun medtaget for at give kompatibilitet med andre Pascal-
compilere. Booleans bor ikke antege andre verdier end true
(-1) eller false (0).

3.4 STRINGS

Nar en string erkleres, angiver man den maksimale langde, denne
kan antage (mellem 1 og 255). Eksempler:

SIRIHG (.32.)
STRING (.stringsize.)

3.5 ARRAYSTRUKTURER

Et arrey bestar af et antal dataelementer, der alle er af samme
type. Et element refereres ved-at angive et (eller flere) in-
dex, der afgor, hvor i strukturen elementet findes. Nar en ar-
raystruktur erkl@res, angiver man den nedre og @vre grense for
hver enkelt dimension. Eksempler:

ARRAY (.1..10.) OF INTEGER

ARRAY (.0. .<maxsizé.) OF STRING (.32.)
ARRAY (.-5..11,29..45.) OF REAL

Veriable i en n-dimensional arraystruktur refereres ved at an-
Give arreystrukturens identifier efterfulgt af n heltalsudtryk,
adskilt af kommaer, omsluttet af firkantparenteser. Eksempler:

data(.12.)
BC .445,7 <2
navne(.pil(.8.),3.)

3.5.1 mem array strukturen
2m arraystrukturen er et predefineret endimensionalt array,

Et element kan saledes kun antage verdier mellem 0 og 255.
Skrives en verdi stgrre end 255, bliver den aktuelle verdi
let modulus 256. Eksempler:

(1)
(OU

(ft)

iz:=mem(.$CO0.) AND $16;
Ce Oty riag As

FOR p:=1 TO length(s) DO
mem(.offset+p.):sord(mid(s,p,1));

wnddhdldas a2) SCOOH AKO md ILH

presenterer computerens memory. Hver enkelt element sva-
en byte hvis adresse er dens index i arraystrukturen.

Til-
tal-

F
O

A
S
e
n

B
S

 .
m
e
t
i
c
.

4 O
r
e

a
t
s

e
t
e

rn

ON

al
l

a
N
N

li
ct
l
S

te

S
e

a
o
r
n

re
—

77
a

oe

ee

n
e

nS

En
n
n

n
a
m

a

mn
a

h
h

mc
mL

lo

e
a
e

: -8-
4; ERKLERINGER OG DEFINERINGER

Et program bestar af tre dele:

1. Programhovedet
e. Erkleringsdelen
3. Setningsdelen :

I programhovedet erkl@reées programmets navn og input/output pa-
rametre. Eksempler:

PROGRAM konverter;

PROGRAM beregning(input, output);

I BLS Pascal er programhovedet ikke nodvendigt, og hvis det er
tilstede opfattes alt, mellem symbolet PROGRAM og det. neste se-
mikolon, som en kommentar.

Erkleringer skal foretages i rekkefolgen:

1. Labelerkléringer
2. Konstantdefineringer
3. Variavdelerkleringer
4, Procedure/Funktion erkleringer

Ingen af de ovennevnte punkter beh¢ver at vere til stede (sale-
des kan erkleringsdelen godt vere tom).

4.1 LABELERKLERINGER

I labelerkleringsdelen, der starter med det reserverede ord
LABEL, skrives identifierne for alle de labels der obruges i
programmet adskilt af kommaer. I BLS Pascal kan en label enten
vere et fortegnsfrit heltal eller en identifier. Eksempel:

LABEL 1,error,999,stop;

En label defineres ved at skrive navnet efterfulgt af et kolon.
Eksempel:

999:--write('Siet'?:

En label bor kun refereres indenfor den blok hvori den er. er-

kl@ret.

4.2 KONSTANT DEFINERINGER

Konstantdefineringsdelen startes med det reserverede ord CONST.
HNavnet pa en konstant er en identifier. ‘Konstante verdier kan
vere tal eller strenge. Eksempel: -

CONST

antal=45;
~ max=193.158;
min=-max;
navn='Jensen'; aes

Folgende Standardkonstanter behg@ver ingen definering:

pi Real 3.1415926536.
true Boolean Sand (-1). ae
false Boolean Falsk (0). J
maxint Integer 32767.
empty String '? (Den tomme streng).

4.3 VARIABELERKLERINGER

Alle variable, der anvendes i et program, skal erklg@res i en
VAR-erkleéringsdel. Denne definerer, hvilken datatype variablen
Skal vere, og dermed hvilke verdier den kan antage. Eksempel:

VAR
i,j,k: INTEGER;
x.coor,y.coor: REAL;

Rayne: ARRAY (.1..100.) OF STRING:-(..32..)

Flere variable af samme detatype kan erkleres samtidigt ved at
_Skrive deres identifiere adskilt af kommaer. En variabel kan
kun bruges i den blok, hvori den erkl@res, samt de blokke, der
erkleres inden for denne blok.

Under indgangen til en blok bliver alle de heri erklerede vari-
able nulstillet, dvs. reals og integers antager verdien 0, boo-
leans antager verdien false og strings antager verdien empty.

4.4 PROCEDURE- OG FUNKTIONSERKLERINGER

Procedureerklaringsdelen bruges til at definere underprogranmmer
i hovedprogrammet (se afsnit 7)-.

Funktionserkloringsdelen bruges til at definere underprogrammer
der returnerer en verci (se afsnit 8).

e
e
l

-10~

I BLS Pascal er der 4 klasser af operatorer. Operatoren NOT har
den h@jeste prioritet, efterfulgt af de sakaldte’ multipliceren-
de operatorer (* / DIV MOD AND SHIFT), igen efterfulgt af de
sakaldte adderende operatorer (+ - OR EXOR), og til sidst sam-
méenligningsopératorerne (= <> > <: Ss . <2).
Alle opratecrer der tillader integers tillader ogsa booleans.

5.1 NOT OPERTOREN

Operatoren NOT indikerer, at operanden skal komplementeres.
Operanden skal vere af typen boolean eller integer. Eksempler:

NOT true = {aise
NOT false = true
NOT 5 = -6

MULTIPLICERENDE OPERATORER

Operator Operation Operandtype Resultattype

% Multiplikation real,integer real,integer
/ Division real,integer real
DIV Heltalsdivision integer integer
MOD Modulus integer integer

SHIFT Logisk skiftning integer integer
AND Logisk AND integer integer

Operationen I SHIFT J har folgende virkning: I skiftes J gange
mod venstre, hvis J er positiv og -J gange mod h@jre ,hvis Jer
negativ. Hvis ABS(J) er storre end 15 er resultatet altid nul.

5.3 ADDERENDE OPERATORER

Operator Operation Operandtype Resultattype

+ Addition real,integer real,integer
- Subtraktion real,integer real,integer
OR Logisk INCLUSIVE OR integer integer
EXOR Logisk EXCLUSIVE OR integer integer

Kvis + eller - bruges med kun een operand, indikerer cde hen-
holdsvis identisk og inverteret fortegn.

S.4 SAMMENLIGNENDE OPERATORER)
<

Le sammenlignendce operatorer: = 4, <> , > , < , 328°, Ss. detyder
henholdsvis lig med, forskellig fra, st@rre enc, mindre end,
ste¢rre enc eller lig med og mindre end eller lig med. Alle da-
tatyper kan indga som oper amr dog ma tal ikke sammenlignes
med strings.

Resultatet af en sammenligning har enten verdien true (-1) el-
ler false (0), og typen integer (boolean).

Ved sammenligning af strings, sammenlignes ASCII verdien af

hver enkelt karakter, ‘til en forskel mgdes, eller en af de to
Strenge ikke er lengere. Eksempler: ;

w ose" true

"HIJK'< 'HIJKLMN'! true

5.5 PARANTESER I UDTRYK

Udtrykket

at+b¥e
‘

beregnes ved at multiplicere b og cc og addere a -hertil, idet
multiplikation har hg@jere prioritet end addition.

O@nsker man at endre denne rekkef¢eclge kan der indsettes parante-
ser i udtrykket, idet paranteser altid har nojeste prioritet:

(a+b) ¥*c

tiu bliver additicnen udf¢rt f¢r multiplikationen.

5.6 FUNKTIONSKALD

Et funktionskald (til enten en standardfunktion eller en bru-
gerdefineret funktion) kan indga i et udtryk ved at angive
funktionens identifier eventuelt efterfulgt af en parameterlis-
te. Funktionens resultat kan betragtes som en variabel af sanme
datatype som funktionen. Eksempler:

sin(y)+cos(x)
concat('Nevn: ',fornavn,' ',efternavn)
arctan(1.0)*4.0
afstand(x,y)>5 AND (z=0)

ee
‘7

7

.

6: SETNINGER

Setninger i Pascal kan opdeles i to hovedgrupper: Simple set-
ninger, der ikke kan indeholde andre setninger, .og strukturer-

ede setninger, der indeholder andre s@tninger.

Enhver sétning kan forudgas af en label, der kan refereres i en
GOTO satning (se afs. 4.1 og 6.1.3).

6.1 SIMPLE SETNINGER

I BLS Pascal er der fem simple setninger: Tilskrivningssetning-
en, proceduresetningen, GOTO-setningen, INIT-setningen og den

tomme setning.

6.1.1 Tilskrivningssetningen

Malet med en tilskrivningssetning er at tilskrive en variabel
eller et funktionsresultat en verdi.

I en tilskrivning bruges operatoren := til at adskille variab-
len (eller funktionen) og udtrykket.

eriablen (eller funktionen) og udtrykket skal vere at samme
datatype, dog med den undtagelse at reals godt kan tilskrives
integer (heltallige) verdier. Eksempler:

Xr=y+2 (* x antager verdien y plus z #*)

Hvis en strengvariabel tilskrives et strengudtryk, der er leng-
ere en strengvariablens maksimale chia sail overf¢res kun de ven-

Stremest justerede tegn.

6.1.2 Proceduresétningen |

En proceduresetning bruges til at aktivere den procedure, hvis
identifier indgdr i setningen. Procedcuresetningen kan desuden
indeholde en liste over aktuelle paremetre, der under’ kaldet
bliver substitueret af de tilsvarende formelle parametre.

Eksempler:

sorter(navne);
ombyt(x,y);
plot(x,round(sin(x*f)#20)+20,1);

6.1.3 GOTO-setningen

En GOTO-setning indikerer, at programudforslen skal fortsettes
fre den label der refereres.

Ved orugen ef GOTO-setninger bor folgence regler iagtteges:

1) En label ber kun refereres inden for cen blok, hvori
den er erkleret. Det er saledes ikke tilladt at hoppe
ind og ud af procedureblokke.

2) ‘Et hop ud af og ind i en FOR-setning er ikke tilladt.

6.1.4 INIT-saetningen

En INIT-setning bruges til at tilskrive en arraystruktur_ kon-
‘stante verdier. De givne verdier skal vere af samme datatype

som arraystrukturen.

eT ee eee

‘ | ~13e

| Hvis der er ferre elementer i INIT-listen end i arraystruktu-
| ren, bliver kun de forste elementer initieret. Eksempel:;

VAR
data: ARRAY (.1..6.): OF INTEGER;

BEGIN
data(.6.)=100;
INIT data TO -15,6,99,341;

.

e

END.

Efter INIT-setningen har elementerne i DATA de f¢lgende verdi-
er:

data(.1.)==+15 @ata(2.396 data(.3.)=99
data(.4.)=341 data’ .5.:) £0 data(.6.)=100

Hvis arraystrukturen har flere dimensioner bliver der talt bag-

fra. Eksempel:

VAR
a: ARRAY (.1..3,1..3.) OF INTEGER;

BEGIN
THIT a TO -9,6,~3,18,%1,, 38. 1357 ,~-1,5;

END.

Svarer til:

VAR :
Os RRRAT C6400 3 515.36). 0F TEEGER;

BEGIN |
9; at .t;e.): Bi l,3 2) te-3;

a(. 8; a(.2,2.): =e ee 62 Sa 22536:
a(. 357: a023,26)% 06.3, 507 80;

END.

INIT-setningen kan ogsa bruges til at initiere en blok af mem-
ory. Eksempel:

INIT mem(.mc.) TO SEF,$41,$42,$43,$00,SC9;

Hvis heltalsvariabdlen mc har verdien $DO0O0O g@lder der uecee endt
vudf¢rsel af denne setning at adressen $D0O0 her verdien $EF, ad-
ressen SDO1 vercien $41 etc.

6.1.5 Tomme setninger :

Den tomme setning indeholder ingen symboler (undtaget kommen-
tarer) og giver séaledes heller ingen aktion. En tom. setning
forekommer de steder hvor Pascalsyntaxen forventer en setning,
men hvor der ingen er. Eksempler:

BEGIN END; :

WHILE digit AND (a>17) DO (# ingenting *);
REPEAT (* vent *) UNTIL keyboard;

ween *

n
e
R
e
H
e

H
E
H

H
E

H
e

HE
HE

HE
HEH

He
He

He
EE

F&
F

WH
F
F

bel

7- a

W
N
 —

~
~

~~
»

©

—_

Jt

a
e

i

eon

ott

—

—

|

 —

Z
h
i

H
H
H

H
H

HE
He

H
e

HE
H
E

HE
HEH

HE
E
e

E
F

F
F

En struktureret setning er en setning der blandt andet indehol-
der andre setninger.

6.2.1 Sammensat setning

I nogle tilfelde ma man kun anvende en enkelt setning. Sa&afremt
man i denne situation @nsker at skrive flere setninger, skal de
omsluttes af BEGIN og END, der virker som setningsparanteser.
Eksempel:

If a=1 THEN
BEGIN 7

Sctks Kieys yroe (* ombyt x og y ved hjelp af z *)
END;

De enkelte setninger, i den sammensatte setning, adskilles med
semikolon. Der behover ikke at vere et semikolon efter den sid-

ste setning i den sammensatte setning.

6.2.2 Betingede setninger

En betinget setning er en setning, der pa grundlag af et valg
udfgrer en af de indeholdte setninger.

IF-setningen bruges i de tilfelde, hvor en setning kun skal ud-
f¢gres, hvis et (boolean) udtryk er sandt. Hvis udtrykket er
falsk, gelder der enten, at der ikke udfgres nogen aktion, el-
ler at sxtningen efter ELSE symbolet skal udf¢res. Setningen:

IF <ei> THEN IF <e2> THEN <s1> ELSE <s2)>;

skal forstas pa f¢lgende made:

Hvis <el> er falsk, udf@res der ingen aktion.
Hvis <el> er sand, og <e2> er sand, udf¢res <si>.
Hvis <el> er sand, og <e2> er falsk, udfores <s2>.

Generelt gelder cer, at en ELSE-del h¢rer sammen med den sidste
IF-del, der mangler en ELSE-cel.
Eksempler:

£F.x<1.5 THEN ze=x+y ELSE 2:21.5:
IF nevn= ead THEN navni='Ikke opgivet';

CASE-setningen bestaér af et udtryk (kaldet valgudtrykket) og
en liste af setninger hver foregaet af en verdiliste bestdende
af en eller flere konstanter af samme type som valgudtrykket.
En setning bliver udf¢rt, hvis verdien af valgudtrykket findes

i setningens verdiliste. Hvis ingen af verdilisterne indeholder
en konstant, svarende til valgudtrykkets verdi, bliver setning-
en, der er forudgaet af OTHERS:, udfort. Hvis verdilisten
OTHERS ikke er tilstede, udf@res der ingen aktion i det sidst-
nevnte tilfelde. Verdilisten OTHERS: skal, hvis den er tilste-
de, vere den sidste verdiliste.
Valgudtrykket skal vere af typen THRCECT boolean eller string

(reals er ‘ikke tilladt).
~~

 setningen

~5-
Eksempler:

[i ,

[] | .

CASE operator OF

4's XS ExX+y;
Hats XESKy;
- t Biexy;
ays Meensy

END;

CASE i OF
1: write('ten');
2: write('to');
5.5 5: writeCfleres);
OTHERS: write('mange')

END;

Det er ikke nodvendigt med et semikolon efter den sidste set-
ning i CASE-sétningen (men det ma godt vere tilstede).

6.2.3 Repetitionssetninger

En repetitionssetning bruges de steder, hvor man @nsker at gen-
tage en, eller flere, setninger. Er antallet af gentagelser pa
forhand kendt, b¢r man bruge FOR-setningen; ellers kan WHILE-
og REPEAT-setningerne bruges.

6.2.3.1 WHILE-setningen a. | !

‘ket, der kontrollerer WHILE-setningen, skal vere af typen
(integer). Sadlenge WHILE-udtrykket er sandt, gentages

efter DO. Eksempel:

* WHILE a<1000 do
BEGIN

a:=sqr(a); b:=b+1
END;

(6.2.3.2 REPEAT-satningen

Udtrykket, der kontrollerer REPEAT-setningen, skal vere af ty-
pen boolean (integer). Hvergang setningerne mellem REPEAT o¢
UNTIL er ucfert, testes sanahedsudtrykket. Hvis dette er falskt
udf¢res setningerne igen. Eksempel:

REPEAT

read(digit); write(digit);
number :=number*10+ord(digit)-46;

UNTIL number>10000;

a « “ - eee 7S i

FOR-setningen indikerer, at en setning skal udf¢@res gentagne
gange, mens en stigende eller faldende rekke af verdier’ bliver
tilskrevet en variabel, keldet styrevariablen. Styrevariablen,
Startverdien og slutverdien skal vere af typen integer.
Verdierne kan enten stige i spring af 1 (TO) eller falde i
spring af 1 af (DOWNTO).

Hvis slutverdien er mindre end startverdien ved TO, eller slut-
verdien er st¢rre end startverdien ved DOWNTO, udfores setning-
en i FOR-l@kken ikke. ,

Oe nme

«
.

e
t
h
 lh

a
a

e
e
e

a)
en
ce

S
l
a
s
h
 sh

O
A

a
n
e
y

a
l
l
e
n

en
e

we
e

nn

w
h

B
e

pe
a

oh
se
id
 om

e
at

e
t
e

=

S
e
e

li

Det er ikke tilladt at afbryde en FOR-setning med en GOTO-set-

ning. I stedet bor en WHILE- eller REPEAT-setning bruges.

Eksempler:

FOR i:s1 TQ: 400 -DO write(i:3,ser(id:6):

roe i3;=1 TO: 100: 90. FOR 4:=1 Te 10 DO
BEGIN on :

IF af.i,j.3>5°THEN afi, ds d25:
essce+a(.i,§)

END;

Efter endt udf@rsel af en FOR-setning, ge@lder der folgende om
Styrevariadlens verdi:

Hvis FOR-setningen blev oversprunget, er styrevariablen
lig startverdien.

Hvis FOR-setningen blev aktiveret, er styrevariablen lig
Slutverdcien plus eller minus 1, alt efter om der blev
brugt TO eller DOWNTO i FOR-setningen.

—
_

m
n

H
H
H

H
e

H
e

HE
H
E

HE
HE

HE
HE

HE
HE

H
H

F
F

F
F

ie.

‘T: PROCEDURER ©

En procedure (underprogram) er en selvstendig enhed i det. sam-
lede program, med egne labels, konstanter, variable og eventelt
andre procedurer og funktioner. En procedure aktiveres fra en
proceduresetning (se afsnit 6.1.2).

7.1 PROCEDUREERKL&RINGER

Procedureerkl@ringer bestar generelt af 3 dele:

1) Procedurehovedet
2) Erkleringsdelen
3) Setningsdelen

Eksempel:

PROCEDURE ombyt(VAR x,y: REAL);
VER

temp: REAL; (* hjelpevariabel #*)
BEGIN

temp:=X; x:=y; y:stemp (* ombyt x og y *)
END; :

7.1.1 Procedurehovedet
!

I procedurehovedet erkleres procedurens navn og dens eventuelle
parametre. Procedurens navn er en identifier og skal f¢elge de
regler, der er givet for saddanne. Procedurehovedet kan eventu-
elt efterfelges af symbolet EXTERNAL. Dette betyder at procedu-
ren er et uncerprogram i maskinkode, der starter i den adresse,
der er givet ved heltalskonstanten, der efterf¢lger EXTERNAL.
Hvis en procedure er erkl@ret som EXTERNAL, er erkleringsdelen
Og Setningsdelen tomme. Eksterne underprogrammer er yderligere
beskrevet i APPENDIX E.

7.1.2 Erkleringsdelen

En procedures erkleringsdel har samme form som et programs (se
afs nit 4).

En procedures setningsdel har samme form som et programs (se
efsnit €), dog med den undtagelse, at man i tilskrivninger og
udtryk, ud over de lokale variable, ogs& kan bruge procedurens
parametre.

7.2 STANDARDPROCEDURER.

Standardprocedurerne i BLS Pascal behover ingen erklering, og
kan overskrives med brugerens egne erkleéringer. -

call(a) Genererer et kald til den adresse, der er gi-
vet ved heltalsudtrykket a.’

screen(x,y) © Flytter cursoren til linie y position x; x og
y er heltalsudtryk. Hvis en af koordinatver-
dierne er ulovlige, bliver den nuverende ver-

di i denne koordinat bibeholdt. screen proce-
duren kan saledes bruges som tabulator ved at
sette y-koordinaten lig 0. ---.—— -™———~

oro we

re

a

e
s
t
e

AY
ES

we

e
ee
s.

=
—

4
i
n
 t

ow
ne
.

5

m
m

HE
HE

E
E

E
e

lh
a
 a
d

plot(x,y,f)

Standardprocedurerne for input og output er beskrevet i
10,

~18-

Udfgrer en operation pa det semigrafiske
punkt x,y (hvor x og y er heltalsudtryk i om-
raderne 0 <= x <=-95 og 0 <= y <= 47), afhen-
gigt af heltalsudtrykket f's verdi:

f-0: Slukkes

f=-=1: Tendes

f=2: Inverteres

I proceduren plot er der kompenseret for
Skermadresseringen, saledes at punkter’ med
y-koordinater mellem O og 2 bliver plottet
pa skermens ¢verste linie.

afsnit

wi 6.
8: FUNKTIONER

En'funktion er et underprogram der beregner, og returnerer, en
verdi. En funktion aktiveres ved at lade den indga i et udtryk
(se afsnit 5.6).

8.1 FUNKTIONSERKLERINGER

En funktionserklering bestar af tre dele:

1) Funktionshovedet
2) Erkleringsdelen
3) Setningsdelen ee

Eksempler:

FUNCTION afstand(x,y: REAL): REAL;
BEGIN

afstand:=saqrt(sqr(x)+sqr(y))
END;

FUNCTION snit(VAR a: ARRAY(.1..100.) OF INTEGER ;

start,slut: INTEGER): REAL;

VAR

i,s: INTEGER; | ;
BEGIN | :

FOR it=start. TO: slut dO
$:=<s+a(.i.)’s
snit:=s/(slut-start+1)

END;

8.121 Funktionshovedet

I funktionshovedet defineres funktionens navn og resultattype
Og dens eventuelle parametre. Funktionens navn er en identifier
Og skal f¢lge de regler, der er givet for sddanne. En funktion
kan kun returnere verdier af standard datatyper, dvs. real, in-
teger, boolean eller string. Funktionens parametre skal folge
de regler, der er givet i afsnit 9. Funktionshovedet kan even-
tuelt efterfolges af symbolet EXTERNAL. Dette betyder, at funk-
tionen er et underprogram i maskinkode, der starter iden ad-
resse, der er givet ved heltalskonstanten, der efterfolger
EXTERNAL. Hvis en funktion er erkle@ret som EXTERNAL, er erkle-
ringsdelen og setningsdelen tomme. Eksterne underprogrammer er
yderligere beksrevet i APPENDIX E.

8.1.2 Erkléringsdelen

En funktions erkleringsdel har samme form som et programs (se
afsnit 4).

8.1.3 Setningsdelen

En funktionss setningsdel har samme form som et programs (se
afs. 6), dog med den undtagelse, at man i tilskrivninger og ud-
tryk, ud over de lokale variable, ogsa kan bruge funktionens
parametre. Desuden skal man pa et tidspunkt tildele funktionens
identifier en verdi, der afgor funktionens resultat.

A
S
A
D

TE
S

UE

G
N

T
e

OE

a
:

S
e

T
e

ih
e

c
r
e
t
e

P
e
t
e

sa
at

se
al

oe o
o

cat

o
e

te

m
a
e

si

i -20-

'
,

t
.

Ls

ar"

8.2 STANDARDFUNKTIONER

Standardfunktionerne i BLS Pascal beh¢@ver ingen erklering,
kan overskrives med brugerens wegne erkleringer.

8.2.1 Reelle funktioner

De reelle standardfunktioner tager et argument af typen real

giver et resultat af typen real.

abs(x)

sqar(x)

sqrt(x)

sin(x)

pestk) =.

arctan(x)

In(x)

exp(x)

int(x)

‘

frac(x)

Den absolutte verdi af x.

Kvadratet af x.

Kvedratroden af x.

Sinus til x i radianer.

Cosinus til x i radianer.

Arccus tangens til x i radianer.

Den naturlige logaritme af x.

Exponentialfunktionen: 2.7182818285 oploftet
i potens x.

Heltalsdelen af x. Returnerer det stérste
heltal, der er mindre end x, hvis x>=0, eller
det mindste heltal, der er st¢rre end x, hvis
x<0.

Decimaldelen af x med-samme fortegn som x (er
defineret som frac(x)=x-int(x)).

8.2.2 Heltelsfunktioner

Og

O86

Heltalsfunktionerne tager et argument af typen integer og giver
et resultat af typen integer.

abs(i)

sqr(i)

succ(i)

pred(i)

odd(i)

~ Returnerer

Den absolutte verdi af i.

Returnerer

Returnerer

Returnerer verdien false (0), hvis i er lige
Og true (-1), hvis i er ulige.

8.2.3 Stringfunktioner

length(s)

oe 4

LA “ ~ J

(Q,4,4) it

mid(s,p)

“Returnerer den streng,

Returnerer lengden af strengen s. Resultatet

er af typen integer.

der fremkommer ved at

tage n tegn fra strengen s startende fra _ po-
sition p. n og p skal vere heltalsudtryk.

IYOOR &
Returnerer alle tegn til werstre for position
p i strengen s. p skal vere et heltalsudtryk.

-

4

left(s,n)

right(s,n)

concat(s1,
ons, «, 8h)

UY: = LEFT(Ce, 2) e. 67 muerte

Returnerer de venstre n tegn fra strengen s.
n skal vere et heltalsudtryk.

Returnerer de hojre n tegn fra strengen s.
n skal vere et heltalsudtryk.

Returnerer string 1, string 2 frem til string
n sammensat i den naevnrte rekkefolge,

he

Gi2.4 Konverteringsfunktioner

trunc(x)

deuancla-8)= &

~ round(x)
ey,

round \ QS) hom

~enr (i)

ord(s)

4

x er et udtryk af typen real. Resultatet er
Gen stérste integer, der er mindre end eller
jig x, hvis x>=0, eller den mindste integer,
cer, @r stdrre end eller lig x, hvis:' x<0.

x er et udtryk af typen real. Resultatet, der
er af typen integer, er den afrundede verdi
at x, nhvilket.s#e@rer til:

round(x) = trune(x+0.5), for x>=0
trune(x-0.5), for x<0

ier et heltalsudtryk. Resultatet -er:-en
Streng, med léngden 1, hvis tegn har ASCII-
verdien i.

Ss er et strengudtryk. Resultatet er en inte-
ger, der svarer til ASCII-verdien af det for-
Ste tegn is. Hvis s er den tomme streng re-
turneres 0O.

8.2.5 Andre standardfunktioner

eddr(v)

random

randoin(i)

keyboarc

point (x,y)

Returnerer variablen v's memoryadresse. En
arraystrukturs adresse kan fas ved at refere-
re til det forste element i strukturen-

Returnerer et tilfeldigt tal af typen real i
omrédet. O-Se rr ¢ 1.

i er et heltaelsudtryk. Returnerer et tilfél-
digt heltal i omradet 0 <= t < i.

Scanner tastaturet, og returnerer den ned-
trykkede tasts ASCII verdi. Hvis ingen tester
er nedtrykket returneres et QO.

Returnerer true (-1), --h det’ semigrafiske
pune«t (x,y) er tendt o se, hvis. det . ér
Slukket. .

OM

c
o
e

~22- ‘

Parametre bruges til at overf¢re verdier ti en funktion. I selve und
som almindelige variable.

9.1 PARAL

l en procedure eller erprogrammet kan parametrene betragtes

ETERTYPER

I BLS Pascal er der to paremetertyper: Value-parametre Og var- Paremetre. Parametre Specificeret med VAR j Procedurehovedet eller funktionshovedet kaldes var-parametre.

4.1 Value-parametre “
fivis en parameter er en value~parameter, Oprettes der ved pro- cedurekaldet en veriabe] (den formelle Parameter), hvis start- verdi er givet den aktuelle parameter,

Ved enkeltvariable Skal den aktuelle Pperameter vere et udtryk (hvoraf en Vériabel er et tilfelde). Ved arraystrukturer § skal den aktuelle Parameter vere en arreysStruktur af samme type, og med samme antal e€lementer, som den formelle parameter.
Tilskrivninger til den formelle parameter bergrer ikke den ak-- tuelle parameter, — ° !

9.1.2 Var-parametre

Hvis en parameter €r en ver-parameter, er bade den aktuelle O¢ den formelle Perenmeter lig den samme lagerplads. Under udf¢rel- €n af underprogrammet representerer den formelle Pperameter den aktuelle Parameter, og tilskrivninger til den formelle pareme- ter --vil géndre den aktuelle parameter tilsvarende., Aktuelle var- Parametre skal altid vere en Variabels eller en arraystrukturs identifier,

9.2 FORMELLE 0G AKTUELLE PARAMETRE

arametre, der navnes i procedure/funktions-erkleringen, kaldes rmelle perametre. Parametre der navnes 1 procedure/funktions~ ‘aldet kaldes aktuelle Parametre. De formelle Og aktuelle para- metre skal stemme overens med hensyn til antei, reakkefolge o¢ type, dog mead felgende undtagelser:

1) Hvis en formel Parameter er en value-parameter af ty- Pen real, ma den aktuelle Parameter godt vere af ty- pen integer. Dette gaelder imidlertid ikke for Var-pa- rametre.

2) Hvis en forme) Parameter er en value-parameter ar ty- pen String, ma den aktuelle Stringparameter have hvilkensomhelst lengde. Dog gelder der, at hvis den aktuelle stringparameters lengde er st¢rre end den : | formelle Stringparameters maksimale lengde, bliver | kun de venstremest Justerede tegn overfort. Ovenneyn- te gelder ikke for Var-parametre,

. @

3) Hvis den formelle parameter er en arraystruktur, skal den aktuelle parameter vere en arraystruktur af samme type og med samme antal elementer. Imidlertid behgver der ikke at vere overensstemmelse mellem gvre og ned- re grenser og antallet af dimensioner, |

m
H

HEH
H
H

F
E

|
H
H

H
F

FT

woes
10; INDLESNING OG UDLESNING
om ee ee ee ee oe ee ee ee ee ee ee ee ee ee ee ee ee ee ee

I Pascal varetages indlesning fra og udlesning til konsollen
af fire standarcprocedurer (read, readin, write og writeln).
BLS Pascal indeholder yderligere to standardprocedurer til
indlesning og udlesning af arraystrukturer fra og til band-
optager (load og save). .

10.1 INDLESNING FRA KONSOLLEN

Indlesning fra konsollen varetages af standardprocedurerne read
og readln.

10.1.1 read proceduren

ReAD aa apollo kan indlése enkeltvariable af or datatyper.
Formatet af READ proceduresetningen er:

read(v1,v2,...,vn);

Hvilket svarer til:

read(v1); read(v2); ... read(vn);

Under indtastningen ma brugeren benytte fe¢lgende specialnogler:

<BS> Sletter cet sidst indtastede tegn.
<ESC> Sletter hele indtastningen.
<ENTERD Afslutter indtastningen.

Vea Andlésning af talvariable (reals og integers) gelder der,
at tallet mai forecis af et vilkarligt ental blanktegn, men det
ia ikke indenolde clanktesn. Det skrevne tal skal felge de san-
me regler fcr formater som talkonstanter i et progran, og skal
vere af samme datatype som den variabel det indleses i (dog med
den undtegelse at heltal godt ma indleses i reals). En indles-
ning skal afsluttes med et linieskift. Linieskiftet bliver ikke
udskrevet. Hvis det indtastede tal indeholder fejl (overflow
eller ulovlige tegn), bliver indtastningen slettet og, cursoren
returnerer til startpositionen, hvorefter en ny indtastning kan
roretazes.

Ved indtestning af strengvariable bliver alle de ‘indleste tegn
gemt i strengen. Der kan maksimalt indleses det antal tegn der,
Svarer til strengvariablens lengde, eller hvis strengvariablens
maksimale lengde er st¢rre end 64, 64 tegn. Hvis strenzgvariab-
lens maksimale lengde er 1, fortsetter programkorslen umiddel-
bart efter en tast er nedtrykket, uden at tegnet bliver udskre-
vet.

10.1.2 reecin proceduren ae 7

‘Forskellen pa read proceduren og readln proceduren er, at det
afsluttende linieskift bliver udskrevet med readln. Formatet af
readln proceduresetningen er:

readlin(v1,v2,...,vn); | es

Hvilket svarer til:

-readin(v1); readin(v2); ... readin(vn);
H

i

| if

t

i. “5
~

| eee Se

, c.. -24-
10.2 UDLESNING TIL KONSOLLEN

Udlesning til konsollen varetages af standardprocedurerne write
og writeln.

10.2.1 write proceduren

WRITE proceduren kan udskrive enkeltvariable af alle datatyper.
Formatet af WRITE procedurese@tningen er:

write(p1,p2,...,pn);

Hvilket svarer til:

write(p1); write(p2); ... write(pn);

hvor pi,p2,...,pn er sadkaldte write-parametre. Write-parametre-
ne kan have forskellig form alt efter hvilken . datatype, der
skal udskrives. I beskrivelsen er m og n synonymer for heltals-
udtryk.

INTEGER:

i Udtrykket i udskrives i frit format.

itn Udtrykket i udskrives héjrejusteret i et felt pa
n tegn. ;

REAL:

r Udtrykket r udskrives i exponentiel notation i et
: felt pa 18 tegn. Formatet af udskriften er:

" sd. ddddddddddEtdd" |

hvor s- enten er " “eller "-", der et ciffer,. og
t er enten "+" eller "-",

P2n Udtrykket r udskrives i exponentiel notation.
Formatet er afhengigt af n's verdi:

n<&: "~d,dEtdd" eller "d.dEtdd"

S<en< 17.2. Fad. <dieitsdEtdd",; hvor <digits> er
n-6 cifre.

n>17: "<spaces>sd.ddddddddddEtdd", hvor
<spaces> er n-17 blanktegn.

rin:m Udtrykket r udskrives héjrejusteret i fastkomma-
2 notation i et felt pan tegn med m decimaler. am

skal vere i omradet 0 <= m <= 24. Hvis dette ikke
er tilfeldet, velges exponentiel notation.

STRING:

cS Stringudtrykket s udskrives.

s$:n Stringudtrykket s udskrives ‘i et felt aa n ae
ner en heltalskonstant.

ee a a ee ope Sane wet ee mrt ne te See dime te ee etl clit Ties remote meg

4. tea

*

i
Generelt gelder der f¢lgende for udskrifter:

1) Hvis n er mindre end lengden pa det der skal udskrives
udvides feltet.

2) Hvis n er mindre end 0, betragtes n som verende 0.

3) Hvis n er stgrre end 255, betragtes n som verende 255.

10.2.2 writeln proceduren

Forskellen pa writeln og write procedurerne er,.. at der efter
endt udskrift udskrives et linieskift, hvis writeln proceduren
benyttes. Formatet for writeln proceduresetningen er:

writeln(p1,p2,...,pn);

Hvilket sverer til:

write(p1); write(p2); ... writeln(pn);

Hvis writeln proceduren kaldes uden parametre er resultatet, at
der udfgres et linieskift.

10.3 INDLESNING OG UDLESNING AF ARRAYSTRUKTURER

Indlesning og udlésning af array strukturer fra og til bandop-
tager varetages af standardprocedurerne load og save.

10.3.1 save proceduren

Save standardproceduren kan udlése arraystrukturer ef alle da-
.tatyper til bandoptager. Formatet af save proceduresetningen
er:

save(a);

hvor aer en arraystrukturs identifier. Ved procedurekaldet
teandes tape-lysdioden, arraystrukturen udskrives, og lysdioden
Slukkes igen.

10.3.2 load proceduren

load standardproceduren kan indlese arraystrukturer, der er ud-
lest med save proceduren. Formatet af load proceduresetningen
er:

load(a,i);

Hvor a er en arreystrukturs identifier, og i er en neeae ever i
abel, hvori en eventuel fejlkode kan returneres.

Ved procedurekaldet tendes tape-lysdioden. Denne slukkes igen
nar proceduren forlades, hvilket kan ske pa en af cde felgende
mader: |

Brugeren afbrod proceduren ved at trykke <ESC>.
En fejl forekom under indlesningen.
Indlesningen forlgb OK.

’

tes . Areas “ge -ePere, Lane eter gate Mim enees oh Sew 5 Chere el Ops oe eT. ose gate 0 e jai en, 9'e 5 ee geen tele, epee tt irtepeg Te wt Maye ry
* ‘ « te - 4 - oe

-26- ‘

I heltalsvariablen i kan f¢lgende verdier forekomme efter pro-

cedurekaldet:

i=0: Indlesningen forlgeb OK.
iz1i: Arraystrukturernes elementantal eller datatype

stemmer ikke overens.
2: Checksumfejl.
3: Brugeren afbrgd proceduren ved at trykke <ESC>,

‘

i
i

lf

| '
A

| i

~ yon! - et ee Oe ee

ne ee ee ene ee eee ee eR ee RR ee ee Se RE ee RE ET SE Se ee SRE NE Ee Ge Se et

i. het |
APFENDIX A -- SYNTAXDIAGRAMMER

smtifier Cident)

I + hocsteyv

(——+{ bosstav) | | = |
,

i “

FRieerers

9 ence

heltal

talstremns

i

i i

i, fl
° + :

q ‘talstrensa Lo- talstrenG | E talstremnea >

' | i {i
7

[heltal ~~) I
, |

fi |
konstant Ckomst) .

j

: : :
kLonmst ident i

Opes
Peed Lect

teen <1)}-——

P
S
A
P

am

SE

re
ne

an
e
A
t
t

lea
t
n
h

T
P

t
t

et

se
c
a
r
n
e

i

S
T

2

l
l

th
e
M
a
c
t
a
n

di

N
N

-

-

n
e

w
o

we

<.

.
of

 , t
e
e
n

a

a
se

t
u

Vv. isabel

‘ \e

 a

& oy

tern

b
e
e

ia

A
e

D
e

S
a
t
e
s
!

——el variabel ident PoC udtryk. | J

'

er

tor

| > konst |

. “varisbel >

funktion ident ¢ udtryk. Oy

,

en udgtr yk. Ly) >

~(NOT > faktor —

 Gren (> udgtryk

faktor

simrelt udtrysk

O ED GD) GD GD
«

-
cln

uni
moe

nic
btt

iea
ee

| A
t
e
i
a
g

tate
 s
ca

ns

aa
ti
 v

ii

eR
 i

s
e
e

At

e
e
e

ae
Se
 R

ae
 R

e

‘
. ,

seq-- mW ML ge

term

l
l | : ,
|

|

!

oostryk
! A.3

 i o————a Simpelt udtruk | , ~

1 68058
| a ture

Simrelt udtryk

INTEGER } ae

pee, REAL
5

~

; Y

| EOOLEAN

STRING konst HC)

< Q

 Konst

Y > simrel ture ae

rameterliste
:

©

 ait,

ident

“(+ Lure

tealstremnaG

o
e

| ~

'

*

etn
a t
i
n
t
 wate

saetninGe

a
e

‘
t
i
e
:

P
e
t
:

a
S

E
E

t
O

Car
ett

a
i S
E

er
ai

he
er

o
o
o

s
e
.

S
e
c
r
e
t

— —
a
ee

aie
Oo E

R
e
r

ee
at

O
e

cis

le
So
ns

R
R
R

DR

oe
2

ath

i
t
i
,

Ee
RR

os
F
l

ae
*

e
a
n

*
en

ts

ER

at

a

-
os

=

udgtr sk.

‘
WHILE bef udtren 10

 A

cee nai

om REPEAT

s3setnimnG

konst

Loe
OTHERS

label a

rm

variahel udtresk.

C uGtrsk.

*™.

+ procedure ident eS Udgtr vk. LD
ve \

i
aaa f oe fa :

> BEGIN saetninG * END } "

| —~. ee

VIF <3

i. pi, 7
—> IF | udtryk. } THEN saetnina ELSE ssetning HK
oe [+ CTHEN + |

{

fax. }

sazetninmnG

 s3zetninG

ugtrsyk. ~CUNTIL }>

 DOWNTO

FOR re veriahel ident udtryuk pe: 16 :

- | : ;

! udtryk. DO} saetnine ech

(GoTo # a eo label
~

INIT array ident F TO kLonst

MEM C udtryuk

J

=

> Janel]
 ot AGEL }

ne f ~~.

+ CONST }

iti, andes

tt
e

t
o
e

or

ident H+(=)+4 konst

ident [Tm tp ture
| ee

aame,
: ‘ |

Fe 4

‘ ‘,

Scam (EXTERNAL)

ae

ee ee ee ee

tilok.

 on l
—({ PROCEDURE -e idert | narameterliste |

- I celeleneinthatitemenannteaied

FUNCTION >| ident bo

Faramnmeterliste ts

ot + 2 “BEGIN

Sagetm1ims

Yr

n
H

HE
HE
H

H
E

H
E

HE
H

HE
HE

HE
HE

HEH
H
F

F
F

EZ

OX

Froarem™

ila emare ee. eee.

\ Fe
PROGRAM ee

. tear

—— 7 ee

a 4 ™

i po blow 7,
a

simrel tyre

2
Ba
ws
 i

ns
ta

arson
+

oe

t
e
e

Al
l

AS

me

nt
ee

6

ob

a
N

wr
c
e
e

e
e

ee

APPENDIX B ~~ EKSEMPLER PA UNDERPROGRAMMER

(* Funktionen value konverterer tallet i strenges s til et
(* reelt tal. Variablen p peger pa det forste tegn der skal

(* ste tegn der ikke indgik i konverteringen

FUNCTION value(s: STRING(.48.); VAR p: INTEGER): REAL;

CONST

zero=48; (* ASCII zero #*)

VAR
rf: REAL;
ch: STRING(.1.);
neg,decpoint: BOOLEAN;

PROCEDURE nextchar; : : r
BEGIN

ch:=mid(s,p,1); p:=suce(p)
EWD (* of nextchar *);

BEGIN
fr=t;: nextchar; i
IF ch='-'- THEN
BEGIN neg:=true; nextchar END;
WHIGE (ch>="0*).-AND {(ch<2'9') DO
BEGIN

r:=r*104+(ord(ch)-zero);
« IPF decpoint THEN f ssf#10;

nextchar;

IF (ch='.') AND NOT decpoint THEN
BEGIN decpoint:=true; nextchar END;

END;
p:=pred(p);
IF neg THEN value:=-r/f ELSE value:=r/f

END (* of value #*);

(* Funktionen pos returnerer den ferste position i streng-

(* udtrykket s hvor strengudtrykket t forekommer. Hvis t
(* ikke findes i. s returneres et 0.

FUNCTION pos(t,s: STRING(.48.)): INTEGER;
LABEL exit;
VAR

ldif,1t,p: INTEGER;
BEGIN

It:slength(t); ldif:=length(s)-1lt;
WHILE p<=ldif DO
BEGIN

p:=suce(p);
IF mid(s,p,lt)=t THEN
BEGIN pos:=p; GOTO exit END

END;
exit:

END (* of pos *);

*)
*)

€* indga i konverteringen. Efter kaldet peger p pa det for~ *)
*)

B.2

(* Procedure topline placerer strengudtrykket s pa skermens *)
(* overste linie, og fjerner alle ovrige tegn.. *)

PROCEDURE topline(s: STRING(.48.));
CONST

toplineadr=$BC9; (* topliniens adresse -1 *)
space=32; (* ASCII blanktegn #*)

VAR

ps: INTEGER 3.
BEGIN

FOR p:=1 TO length(s) DO
mem(.p+toplineadr.):=ord(mid(s,p,1));
FOR p:=p TO 48 DO
mem(.p+toplineadr.):=space

END;

.
ro

GA
G
S
N

A
R
S
E

LS

Se
de

a
e

te

AS

E
e
e

ee

P
E
L
E

L
S

a

L
E

E
E
S

O
A

Tu
it

e
l
e
e

ee

te,

e
n
a

|
R
e
e

ce
t
b
e
h

ae
 e
e

ee
et
re
th

mot
h

E
L
E
M
I
S

a
-

eo

l
t
h

o
a

«
n
i
e

ee
S
e

ee

e
A

A
A E
m

NE

N
R
E

Rl

ee
a
e

cae

*

APPENDIX C -- SYSTEMARBEJDSLAGERET -
oe Se Se Be ee OE eee ee SS Oe EF Se ee ee et me ee Oe ee ee eee ee re ee ee ee ee oe Oe Oe oe Ge ae fee

Systemet bruger 128 bytes arbejdslager i omradet $C80 til $DO00.
I dette omrade kan fglgende vere af interesse for brugeren:

C92-C93 - WSP Programarbejdslagerets stackpointer. Nar pro-
grammet startes, settes WSP til programmets
Slutadresse. Hvergang en blok aktiveres (ho-
vedprogrammet eller et underprogram), flyttes
WSP lengere op i lageret for at give plads
til blokkens variable og parametre. Nar blok-
ken forlades, flyttes WSP tilbage til sin op-
rindelige verdi.

C94-C95 PHTP Den @verste adresse i RAM-lageret, der md be-

nyttes af programmet. Hvis WSP bliver stg¢rre
end eller lig med PMTP, stoppes' programmet

bn med runtime error 99.

C98-C9B RNDN Rendomgeneretorens sidst udregnede verdi.
Brugeren kan starte en bestemt randomsekvens
ved at legge et fast teal ud i disse fire by-
tes.

Den forste instruktionssekvens i et programs objektkode er et
kald til systemets initialiseringsrutine, efterfulgt af 5 bytes
parametre:

CD xx xx: aa Bo ec dd ee

Adressen bbaa er programmets slutadresse. ‘SP bliver sat lig
denne verdi ved initieringen. Adressen ddcc angiver den ¢verste
adresse i nkAM-lageret, der m& benyttes af programmet. PMTP bli-
ver sat lig denne verdi ved initieringen. Byten ee afzggr hvor-

til kontrollen skal overgives i tilfelde af en runtime fejl. Er
ee nul, bliver kontrollen overgivet til sprogsystemet. Er ee
forskellig fra nul, overgives kontrollen til NAS-SYS.

Omrédet fra $DO0 til $1000 bruges til systemstakken. Ved star-
ten af et progran bliver stackpointeren (SP) sat til $1000. Om
Stakkens brug gelder der bl. a. folgende:

Et procedure- eller funktionskald optager 2 bytes.

En aktiv FOR-lokke optager 4 bytes.

Under evaluering af udtryk bruges stakken til at gemme
-‘mellemresultater. Ved sammenligning af strengudtryk kan
Ger s&éledes optages indtil 512 bytes, hvis begge strenge
er 255 tegn iange. :

Under programkorsel bliver der IKKE checket pa stakpointerens
position. Brugeren bor derfor sikre sig, at rekursive underpro-
grammer ikke kalder sig selv uendeligt.

ys

'
p
y

APPENDIX D -- INTERN DATAREPRESENTATION
ee ee ee ee ae et ee ee me ee eee ae ee ee ee ee ee et ee ee oe ee oe ae

Dette appendix er medtaget for at give brugeren en indsigt i,
hvorleces BLS Pascal behandler de forskellige datatyper in-
ternt. I beskrivelsen skal symbolet ‘adr' forstés som adressen
pa den f¢rste byte, en variabel af den beskrevne datatype op-
tager i lageret. Det er denne verdi, ‘standerdfunktionen addr
returnerer.

INTEGER og BOOLEAN: 2

Internt behandles integers og booleans ens. En integer repre-
senteres ved et 16 bit 2's komplement tal. I lageret gemmes en
integer pa fFelgende made:

edr Mindst tetydende byte.
adr+1 Hest betydende byte.

Dette sverer til Z-€0 processorens stenderc.

REAL

o% real regsrcsenteres ved en 46 bits mantisse og en & bits 2's
2xuponent 2 legeret pemnes en real p&é felgende made:

adr Hiantissens mest betydende byte.

adr+4 Mentissens mindst betydende byte.
adr+5 e's exponent.

4

Exponenten er et tinert tal med et offset ca $80. Sdaledes svar-
+ anaes . A. @8y + 33 “fa ar SE Sy 2URPeti . cm: Bos sonent -23 Lil, 2t mantissen sual sganges ted 2°(S84-

$380) = 274 = 16. Hvis exponentens verci er $66 opfettes hele
tallet som verende 0. Verdien af mantissen kan opfattes som det
fortegnsl¢se heltal, bestaende af de 5 ferste bytes, divideret
med 2°40. Mantissen er altid normaliseret, dvs. den mest bety-
dende bit skal altid opfattes som verende sat. Fortegnet gemmes
i den mest betydende bit: Er denne sat er tallet negativt, er
den nul er tallet positivt.

STRING: -

En string optager den maksimale lengde plus 1 bytes i lageret.
I den f¢erste byte star strengens nuve@rende lengde. I den anden
byte star strengens sidste tegn, i den tredje byte det nest-
Sidste tegn, e'tc.: :

adr Longde (=n).
acr+] Tegn nr. n.
adr+2 Tegn nr. n-l. . -

adr+n Tegn nr. 1.

Hvis en streng ikke er fyldt helt ud, er indholdet af de res-
terende bytes ukendt. ‘

a t
hn

pe
te

MO
OT

Da
t

mt

ch
abe

t
Si
te
s
o
n
g

spe
 t

h
AD

Ml
B
a
n
e
 t
e

si
ng

h

ji
i

7
ce

“
S
e
a
t
e
r

te
e
a
m
e
s

ce
ca

l
cam

a
Sa

ge

i

a

D
h
:

ba
le

 w
h“

Re

D
E

RO

ee

So

—

ie:
gt
 i

a

oat
e
e

i
i

cel
 t

a
ee

ei

e
e

—
—

er.

e

;
.

l
e
a
n
s
.

‘
a
i
e

—
—

w
a
e

e
e

o
e

h
a
p
a

o
e

Nh a en

D.2
ARRAYSTRUKTURER?

Et element i en erraystruktur har samme format som en enkeltva-~
riabel af samme datatype. I lageret ligger elementet med det
laveste index forst (dvs. pa den laveste adresse). Hvis array-~
Strukturen har flere dimensioner, telles der op startende med
den sidste dimension. En arraystruktur erkleret som:

St ARRAYC A, 5354. .3.).

vil saledes blive gemt i den denne rekkef¢lge:

laveste adr. e{.1, te)
a{.lies2 -
als) .3 x2
a(.2. fy
e(2,2.)

hoejeste adr. a(.3,3.)

!

 —

= ere ee we > po ee ere Oe Beer ox mepetopaar

«<

.

4 4 =
9"

3
!

Set
APPENDIX E -- EKSTERNE UNDERPROGRAMMER
ee ee ee ee re ee ee ee ee ee ee ee ee ee ee ee ee Ge ee ee ee ee ere eee eee oe

Procedurer og funktioner erklewret med EXTERNAL specifikationen
giver brugeren mulighed for at kalde maskinkodesubrutiner. I
pascalprogranmet behandles et EXTERNAL specificeret underpro-
gram som et almindeligt underprogranm.

Parameteroverfc¢rsel til et underprogram foregar via programar-
bejdslageret. Hvis underprogrammet er en funktion, afsettes der
forst plads til returverdien. Parametrene bliver derefter skub-
bet pé arbejdsstakken en ad gangen. I en maskinkoderutine kan
brugeren fé tilgang til parametrene ved at indexere sig frem i
forhold til programarbejdslagerets stackpointer WSP (se herom i
APPENDIX C).

Value-parametre folger de regler, der er givet for de forskel-
lige datatyper i APPENDIX D. Hvis en parameter er VAR’ specifi-
ceret, overf¢res adressen pa den férste byte i lageret, der op-
tages af cen aktuelle parameter. Hvis en var-parameter er en
arraystrvuktur, overf¢res adressen pa det forste element.

ivis en funktion fx. er erkla@ret som:

FUNCTION test(VAR i: INTEGER; r: REAL): STRING(.16.);

vil toppen af arbejdslageret se saledes ud ved kaldet:

laveste adr. WSP-25 17 bytes til resultetet
: (nulstillede ved kaldet).

ro WSP-9

WSP-€é Acressen 94 heltalsveriablen der
WSP-7 udgor daen ektuelle paranieter.

WSP-6 Verdi af typen real.

hojeste adr. WSP-1

hvor WSP er den adresse der stér i adresserne $C92-$C93 (se
herom i APPENDIX C). Adressen pad den ferste byte i resultatet
kan fx. nas pa fe@lgende made:

WSP: EQU OC92H

LD HL, (WSP)
LD DE,-25
ADD HL,DE

efter udferslen af koden peger HL registret pd den fe¢rste byte
af den lagerplads, der er sat af til strengresultatet. Adressen
pa heltalsvariablen kan fx. nas pa f¢lgende’ made:

LD HL, (WSP)
LD DE,-8

‘ADD HL,DE :
LD E, (HL)
INC HL
LD. Doth)

eae SCs ae ibe MRS of Tita sah ogee Bie ee atee la ty Ne putas dered ie ety ee cee as ah at as
ame eer an nee ouitades sistas iad 4 aypitge RA ON erin ew 6 wl carer Peter Oe wee at ange ete Cae rwsney seal. ates boatenteges ere el pd bene peg: meee Maree Sa OAD hy enebe eelagere eine § a- en oe ee - “ 9 ~ owen mond beg bb be wre - “ - ee t-

ss RD Le mE ok ee Re oS amy pagina ny SE NOP PT III I ak gem guns: SEN Ne pene EEE Oe OF, eter aie: te RN DR Ud ANE. 4 ORAM Hae OREO fe EM oe aye eee Te ome * ‘

an
e
m
e
t
e
r
s
 es

ne
e
e
e

a
Oo

i
+

wa
dt
id
ag
~

0
mme

nte

buster

ans

a
M
b
a

+
at
e
a
e

sm
c

ne
ta

en
ys

~~
*

“
ate

et

ie
s

Ra
st
se
te

ie
8

or
e

E.2
Som et eksempel p& brugen af EXTERNAL specificerede underpro-
grammer er vist en procedure til udlesning pa en dataport, og
en funktion til indlesning fra en dataport. I programteksten er
felgende erkl@ringer ngdvendige:

CONST
outportadr=$D00; ‘
inportadr=$DOD;

PROCEDURE outport(port,data: INTEGER);
EXTERNAL outportadr;

FUNCTION inport(port: INTEGER): INTEGER; ~~
EXTERNAL inportadr; I

~

Maskinkoderutinerne kan fx. laves pa folgende made: ~
$
.
3
.
*

‘
:

.
a
.

0001 ODOO ORG ODOOH
0002
0003 0c92 WSP: EQU OC92H
0004 .
COOS OD00 DD2AG920C OUTP: LD IX,(WSP)
0006 CDO4 DD7EFE [o Aftxe2
0007 ODO7 DD4EFC LD <8, (1X+4)
0008 ODOA ED79 OUT... 6C) <A
0009 ODOC cg RET
0010
0011 ODOD DD2A920C INP: LD IX, (WSP)
0012 0D11 DDYEFE LD. ©,41X%~2)

. 0013 OD14 ED78 IN A,(C)
0014 OD16 DD77FC ip (1X4) A
0015 ODi9 Cg RET
0016
0017 END

I en maskinkoderutine kan brugeren frit benytte RAM-lageret
over WISP som arbejdslager.

~ la Net le Seo se Oe og
‘ : : ‘ t ca ees

oS « ee ee see's . oe ** : 3 ae te one OSs if Ties ate "* en op take Pian t 5 ie os 8 o-< eo, tt et ah tag Tm tp Nea a 2 s8'ahs , eed SS ee ee ee enn ree gfe Ete Se gee pene ee Pee wr ee Te gen rere & sree lerenmow marr eR #9 ety act, Eien by TE Ey Ea NE NR Te MeN wee gi) aay Oe

TAREE I ay Sage esny ORNL EET Ble kink Am MTN GE TIS a Ean hg eA RI TIES, 50 ota ae mane SO pe en ete cad OF cat eT OCT ETT, a pain yt AiO seanoysi lew Sat tr kn One He

—

!

e
e
)

i $ ' z

4 ’ ‘

APPENDIX F -- BENCHMARKTESTS OG TIDER
— es ee ee ee ee ee ee ee ee ee ee ee ee ee oe ee ee ee ee ee ee oe oe Oe ee ee Oe Gee ee ee ee De me ee ome

P&é side F.2 er vist de 14 Pascal benchmarktests, som de er fo-
reslaet i Personal Computer World fra december 1980. Malingerne
er foretaget pa en NASCOM 2 (2-80 microprocessor, 4 MHz med 1
waitstate). Til sammenligning med de opndede tider er vist ma-
linger foretaget pa en Heathkit H-11A (LSI 11/2 16-bits pro-
cessor) med UCSD Pascal. Alle tider er i sekunder: |

TEST BLS Pascal H-11A

Magnifier 0.8 3.9
Forloop 8.6 42.8
Whileloop 23.0 40.1
Repeatloop 20.8 35.0
Litteralassign 11.7 50.0
Memoryacces 15.1 52.0
Realarithmetic 59.8 61.7
Reelalgebra 5€.5 40.6
Vector 62.2 102.9
equelif 2k ,2 66.6
Unequeiir 2u 0 65.8
ioparaneters 6.6 26.4
Value t2.5 29.3
Reference 12.1 29.7
ee ee ee ee eee eee eee ee ee ee ee ee

Det bor nevnes at UCSD Pascal regner reals med 6+ betydende
cifre, mens BLS Pascal regner med 11+ betydende cifre.

‘

7 eg en

a
n

n
n
e
r

. E
T

L
I

A
T

A
a

I
a

an L
a
l

a ne pierces

APPENDIX G -~- LITTERATURLISTE
— oe om oe oe Oe oe oe a Oe eS Ge Be ee Ge Ge OF GY OY Gee eee ee te me oes oe ee

Kathleen Jensen, Niklaus Wirth:
PASCAL user manual and report
Springer-Verlag

Anders Haraldsson:
Programmering i Pascal
Teknisk forlag A/S

I.R. Wilson, A.M. Addyman:
A Practical Introduction to Pascal

Springer-Verlag

Rodnay Zaks:
Introduction to PASCAL

a

Sy bey

| . la

wiklaus wirth
Algorithnas + Deta Structures = Progrenis
Prentice-Hall

e
e
e

Ne RT le eget My eee er Le A et herent Oe PRAMS a ee tee

wie 2098 8 ‘we

2 Nee RE Ny ae eget tile sl PE hall Linnea ate Tate ant ie? WOT a eset nee as TA Kesh Leet. ner Ch atime nt nt pried eget o

,
é

RET ne NERD ERR MI eh MEN IE EN A ANE Nay OO gt TA TON Mt Ar te De Pat Tes eter R HRY IRR, Bog APN yt | Cae MEU La ON Batt Dae BNE tye RE A we Thae fear AA Ne CLEP L NN WA RORIN TL Tt Pat et ET LAs «, 8 cf . “4 * a . oe ee - “2 . =f . . wo Se Pars tele gy” T- oa os es oP ea~ 05) , , hy . se” tee * ot oe Se a v Sey . Cite dae Oe . s*. wee we a ee . mye » ore ae Way a Sy ‘ : -¥,

}
.

APPENDIX H -- COMPILER FEJLMEDDELELSER
oe ee ee ee ee ee ee ee ee eee ee ee ee ee ee ee mee ee ee ee eee ee ee et ee ee

00 Fejladresse fundet.

taxfejl eller manglende ';', 01:--Syn
O2. *s' forventet.
03 ‘e* forventet.
04 ' * forventet.
wo. ©) forventet.

oo: 6 OP C* Forventet. s
or: *)* forventet.
OS ',* forventet.
oy '.'. forventet.
10 fae’ TOC VERZE...

11 ris! forventet.

20 Nedre grense stcrre end ovre grense i arréeydeklaration.
21 Overflow i arraydekléeretion.
ee. Of? sancler i arreydeklareticg;
23 Ulovligt tegn i identifier.
Sh a tt we kl

a ote: hs dong Se Sr Tax i 2: Velen eG nul,

to 1 ok a
fo S80 we we wae ww us oom

30 Konstant af typen INTEGER forventet.
31 Konstant af typen STRING forventet.
32 Konstant af typen REAL forventet.
33 Heltalskonstant ikke i omraddet 0 <= k <= 255.

40 'BECIN' forventet.
41: !'THEN' mangler i IF-setning.
HO Valgudtryk skéal vere af typen INTEGER eller STRING.
wa, POSS meme ler i CASE=-setnine
QQ END’ mangler i CASE- setning.
45 'DO' mangler i WHILE-setning.

46 Variabel af typen INTEGER forventet.
47 = ='TO'/'DOWNTO' mangler i FOR-setning.
48 'DO' mangler i FOR-setning.
49 Labelidentifier er ikke erkleret.
50 'TO' mangler i INIT-setning.

60 Typen STRING er ikke tilladt her.
61 Udtryk af typen INTEGER forventet.
62 Udtryk af typen STRING forventet.
63 Typeuoverensstemmelse i udtryk.
64 Ukendt identifier i udtryk.
65 Syntaxfejl eller overflow i talkonstant, eller streng-

konstant indeholder et linieskift.
66 Strengkonstant for lang.

70 Ty peuoverensstemmelse i tilskrivning eller parameterliste.
71 Ukendt variabelidentifier.
72 Ukendt arrayidentifier.

80 Label erkleret og refereret men ikke defineret.

99 Progranmmet afsluttet ulovligt. | o

as Pee eg La gam eS put

WPe Me Saw abort: 2 eth Jan See ao 6h een
: ° ° ° fea . ‘ . 7 : . Pay - ats verre oe ole ty * . , . -

LOR Re eee A eg ETE NS Se EN LR eat en ate RTT Sg BIN ee ag ST gemma 8 e OME mn ey ME De GND Ope re rah Aa OTT age IN SE ge ee

eR ae ee awe

Ore parece cmap Ame

=

S
A
A
R
I

ve
E
E

a

Ni
O
E
!

R
a

E
n
 a

aa)

“
R
e

RI
DE
R

De
a
e

ne
e
R
M
N

e
n
c
a
s
e

a

et
e

a
8

|
A,

LS
 A
R
S

ET

A
C
T
E
D

FN
 E
R
T

A

=
Se

a e
e
s

2s

.
w
e
t

A
t
n
e

M
S

ae

ae

Si
e

a
e
s

a

‘
e
a

ll

“aH

pee fii

01
02

03
04

05

10

20

99

Overflow pa REAL regneoperation.
Division med O fors@gt.

Kvadratroden fors@¢@gt udregnet med et nogewiate argument.
Den naturlige logaritme forsggt udregnet med et argument
der er mindre end eller lig med O.

Reelt tal udenfor omraddet -32768 <= R <= 32767 forsogt
konverteret til et heltal. |

Den resulterende streng ved CONCAT har en lengde der er
stgrre end 255, eller positionsnummeret ved MID er mindre
end eller lig med 0O.

Et af index ved en reference til et arrayelement er udenfor
de tilladte grenser.

Workspace overflow. Alt tilgengeligt arbejdslager er op-
brugt.

