|
|
DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - download
Length: 3072 (0xc00)
Types: Ada Source
Notes: 03_class, FILE, R1k_Segment, e3_tag, function Arccoth, seg_0130be, separate Generic_Elementary_Functions
└─⟦8527c1e9b⟧ Bits:30000544 8mm tape, Rational 1000, Arrival backup of disks in PAM's R1000
└─⟦5a81ac88f⟧ »Space Info Vol 1«
└─⟦this⟧
separate (Generic_Elementary_Functions)
function Arccoth (X : Float_Type) return Float_Type is
-- On input, X is a floating-point value in Float_Type;
-- On output, the value of Arccoth(X) (the inverse hyperbolic cotangent of X)
-- is returned.
-- The definition of Arccoth(Y) is log((Y+1)/(Y-1)) / 2, which is also
-- equivalent to the following three formulas:
-- 1. ( log(Y+1) - log(Y-1) ) / 2
-- 2. ( log(Y+1) - log(Y+1-2) ) / 2.
-- 3. log( 1 + ( 2 / (Y-1) ) ) / 2.
-- but computationally, the last formula is better.
Z, Sign_Y : Common_Float;
Y, Abs_Y, Temp : Common_Float;
Log2 : constant Common_Float := 16#0.B17217F7D1CF79ABC9E3B39803F2F6AF40#;
Log2_Times_2 : constant Common_Float := (2.0 * Log2);
begin
-- Filter out exceptional cases.
Y := Common_Float (X);
Abs_Y := abs (Y);
if (Abs_Y = 1.0) then
raise Constraint_Error;
end if;
if (Abs_Y < 1.0) then
raise Argument_Error;
end if;
-- Calculate Arccoth(Y) by using KF_L1p.
if (Y >= 0.0) then
Sign_Y := 1.0;
else
Sign_Y := -1.0;
end if;
Temp := 2.0 / (Abs_Y - 1.0);
Temp := Kf_L1p (Temp);
Z := Sign_Y * 0.5 * Temp;
return (Float_Type (Z));
end Arccoth;
nblk1=2
nid=0
hdr6=4
[0x00] rec0=25 rec1=00 rec2=01 rec3=030
[0x01] rec0=12 rec1=00 rec2=02 rec3=000
tail 0x2150db4ce82b1516ad979 0x42a00066462061e03