|
|
DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - download
Length: 31194 (0x79da)
Types: TextFile
Notes: R1k Text-file segment
└─⟦8527c1e9b⟧ Bits:30000544 8mm tape, Rational 1000, Arrival backup of disks in PAM's R1000
└─⟦5a81ac88f⟧ »Space Info Vol 1«
└─⟦a034c005a⟧
└─⟦this⟧
With Binary_Trees_Pkg,Bounded_String;
Use Bounded_String;
Package Verbs_Dictionary is
Duplicate_Value:Exception;
type Object is private;
Procedure Create (dict: in out Object);
Procedure Destroy (dict: in out Object);
Procedure Add_New (new_verb: String; dict: Object);
Procedure Add_Synonym (new_syn: String; dict: Object);
Function Exist (scan_verb: String; dict: Object) return Boolean;
Procedure Dump (dict: Object);
Private
type Verb is record
Name:Variable_String(32);
Source:Variable_String(32);
end record;
Function Compare (a,b:Verb) return Integer;
Package Verbs_Tree is new Binary_Trees_Pkg (Verb,Compare);
type Object is record
Root:Verbs_Tree.Tree;
end record;
end Verbs_Dictionary;
With Binary_Trees_Pkg,Bounded_String,Text_Io;
Use Bounded_String;
Package body Verbs_Dictionary is
Lower: Constant Integer := -1;
Equal: Constant Integer := 0;
Upper: Constant Integer := 1;
Current_Verb: Verb;
-- ----------------------------------------------------
-- Definition des fonctions pour le paquetage generique
-- ----------------------------------------------------
Function Compare (a,b:Verb) return Integer is
begin
if Image(a.Name)<Image(b.Name) then
return Lower;
else
if Image(a.Name)=Image(b.Name) then
return Equal;
else
return Upper;
end if;
end if;
end Compare;
Procedure Write (scr:Verb) is
begin
Text_Io.Put_Line ("Name -> "&Image(scr.Name) &
" / Source ->"&Image(scr.Source));
end Write;
Procedure Show is new Verbs_Tree.Visit (Write);
-- -------------------------------------------
-- Definition des fontions de Verbs_Dictionary
-- -------------------------------------------
Procedure Create (dict: in out Object) is
begin
dict.Root:=Verbs_Tree.Create;
end Create;
Procedure Destroy (dict: in out Object) is
begin
Verbs_Tree.Destroy (dict.Root);
end Destroy;
Procedure Add_New (new_verb:String; dict:Object) is
tmp_verb:Verb;
begin
Bounded_String.Free(tmp_verb.Name);
Bounded_String.Free(tmp_verb.Source);
Bounded_String.Copy(tmp_verb.Name,new_verb);
Bounded_String.Copy(tmp_verb.Source,new_verb);
Current_Verb:=tmp_verb;
Verbs_Tree.Insert(tmp_verb,dict.Root);
Exception
when Verbs_Tree.Duplicate_Value => raise Duplicate_Value;
end Add_New;
Procedure Add_Synonym (new_syn:String; dict:Object) is
tmp_verb:Verb;
begin
Bounded_String.Free(tmp_verb.Name);
Bounded_String.Copy(tmp_verb.Name,new_syn);
tmp_verb.Source:=Current_Verb.Source;
Verbs_Tree.Insert(tmp_verb,dict.Root);
Exception
when Verbs_Tree.Duplicate_Value => raise Duplicate_Value;
end Add_Synonym;
Function Exist (scan_verb:String; dict:Object) return Boolean is
tmp_verb:Verb;
begin
Bounded_String.Free(tmp_verb.Name);
Bounded_String.Free(tmp_verb.Source);
Bounded_String.Copy(tmp_verb.Name,scan_verb);
return Verbs_Tree.Is_Found(tmp_verb,dict.Root);
end Exist;
Procedure Dump (dict:Object) is
begin
Show(dict.Root,Verbs_Tree.InOrder);
end Dump;
end Verbs_Dictionary;
With Binary_Trees_Pkg,Bounded_String;
Use Bounded_String;
Package Comps_Dictionary is
Duplicate_Value:Exception;
type Object is private;
Procedure Create (dict: in out Object);
Procedure Destroy (dict: in out Object);
Procedure Add_New (new_comp: String; dict: Object);
Function Exist (scan_comp: String; dict: Object) return Boolean;
Procedure Dump (dict: Object);
Private
type Comp is record
Name:Variable_String(32);
end record;
Function Compare (a,b:Comp) return Integer;
Package Comps_Tree is new Binary_Trees_Pkg (Comp,Compare);
type Object is record
Root:Comps_Tree.Tree;
end record;
end Comps_Dictionary;
With Binary_Trees_Pkg,Bounded_String,Text_Io;
Use Bounded_String;
Package body Comps_Dictionary is
Lower: Constant Integer := -1;
Equal: Constant Integer := 0;
Upper: Constant Integer := 1;
-- ----------------------------------------------------
-- Definition des fonctions pour le paquetage generique
-- ----------------------------------------------------
Function Compare (a,b:Comp) return Integer is
begin
if Image(a.Name)<Image(b.Name) then
return Lower;
else
if Image(a.Name)=Image(b.Name) then
return Equal;
else
return Upper;
end if;
end if;
end Compare;
Procedure Write (scr:Comp) is
begin
Text_Io.Put_Line ("Name -> "&Image(scr.Name));
end Write;
Procedure Show is new Comps_Tree.Visit (Write);
-- -------------------------------------------
-- Definition des fontions de Comps_Dictionary
-- -------------------------------------------
Procedure Create (dict: in out Object) is
begin
dict.Root:=Comps_Tree.Create;
end Create;
Procedure Destroy (dict: in out Object) is
begin
Comps_Tree.Destroy (dict.Root);
end Destroy;
Procedure Add_New (new_comp:String; dict:Object) is
tmp_comp:Comp;
begin
Bounded_String.Free(tmp_comp.Name);
Bounded_String.Copy(tmp_comp.Name,new_comp);
Comps_Tree.Insert(tmp_comp,dict.Root);
Exception
when Comps_Tree.Duplicate_Value => raise Duplicate_Value;
end Add_New;
Function Exist (scan_comp:String; dict:Object) return Boolean is
tmp_comp:Comp;
begin
Bounded_String.Free(tmp_comp.Name);
Bounded_String.Copy(tmp_comp.Name,scan_comp);
return Comps_Tree.Is_Found(tmp_comp,dict.Root);
end Exist;
Procedure Dump (dict:Object) is
begin
Show(dict.Root,Comps_Tree.InOrder);
end Dump;
end Comps_Dictionary;
generic
type Value_Type is private; --| Type of values stored in the tree.
with function Difference(P, Q: Value_Type) return integer is <>;
--| Must return a value > 0 if P > Q, 0 if P = Q, and less than
--| zero otherwise.
package binary_trees_pkg is --| Efficient implementation of binary trees.
--| OVERVIEW
--| This package is an efficient implementation of unbalanced binary trees.
--| These trees have the following properties:
--|-
--| 1. Inserting a value is cheap (log n Differences per insertion).
--| 2. Finding a value is cheap (log n Differences per querey).
--| 3. Can iterate over the values in sorted order in linear time.
--| 4. Space overhead is moderate (2 "pointers" per value stored).
--|+
--| They are thus useful both for sorting sequences of indeterminate size
--| and for lookup tables.
--|
--| OPERATIONS
--|
--|-The following operations are provided:
--|
--| Insert Insert a node into a tree
--| Insert_if_not_Found Insert a node into a tree if not there already
--| Replace_if_Found Replace a node if duplicate exists, else insert.
--| Destroy Destroy a tree
--| Destroy_Deep* Destroy a tree and its contents
--| Balanced_Tree* Create a balanced tree from values supplied in order
--| Copy* Copy a tree. The copy is balanced.
--|
--| Queries:
--| Is_Empty Return TRUE iff a tree is empty.
--| Find Search tree for a node
--| Is_Found Return TRUE iff tree contains specified value.
--| Size Return number of nodes in the tree.
--|
--| Iterators:
--| Visit* Apply a procedure to every node in specified order
--| Make_Iter Create an iterator for ordered scan
--| More Test for exhausted iterator
--| Next Bump an iterator to the next element
--|
--| * Indicates generic subprogram
--|
--| USAGE
--|
--| The following example shows how to use this package where nodes in
--| the tree are labeled with a String_Type value (for which a natural
--| Difference function is not available).
--|-
--| package SP renames String_Pkg;
--|
--| type my_Value is record
--| label: SP.string_type;
--| value: integer;
--| end record;
--|
--| function differ_label(P, Q: SP.string_type) return integer is
--| begin
--| if SP."<"(P, Q) then return -1;
--| elsif SP."<"(Q, P) then return 1;
--| else return 0;
--| end if;
--| end differ_label;
--|
--| package my_Tree is new Binary_Trees_pkg(my_Value, differ_Label);
--|
--| Note that the required Difference function may be easily written in terms
--| of "<" if that is available, but that frequently two comparisons must
--| be done for each Difference. However, both comparisons would have
--| to be done internally by this package for every instantiation if the
--| generic parameter were "<" instead of Difference.
--|
--| PERFORMANCE
--|
--| Every node can be visited in the tree in linear time. The cost
--| of creating an iterator is small and independent of the size
--| of the tree.
--|
--| Recognizing that comparing values can be expensive, this package
--| takes a Difference function as a generic parameter. If it took
--| a comparison function such as "<", then two comparisons would be
--| made per node visited during a search of the tree. Of course this
--| is more costly when "<" is a trivial operation, but in those cases,
--| Difference can be bound to "-" and the overhead in negligable.
--|
--| Two different kinds of iterators are provided. The first is the
--| commonly used set of functions Make_Iter, More, and Next. The second
--| is a generic procedure called Visit. The generic parameter to Visit is
--| a procedure which is called once for each value in the tree. Visit
--| is more difficult to use and results in code that is not quite as clear,
--| but its overhead is about 20% of the More/Next style iterator. It
--| is therefore recommended for use only in time critical inner loops.
----------------------------------------------------------------------------
-- Exceptions --
----------------------------------------------------------------------------
Duplicate_Value: exception;
--| Raised on attempt to insert a duplicate node into a tree.
Not_Found: exception;
--| Raised on attempt to find a node that is not in a tree.
No_More: exception;
--| Raised on attempt to bump an iterator that has already scanned the
--| entire tree.
Out_Of_Order: exception;
--| Raised if a problem in the ordering of a tree is detected.
Invalid_Tree: exception;
--| Value is not a tree or was not properly initialized.
----------------------------------------------------------------------------
-- Types --
----------------------------------------------------------------------------
type Scan_Kind is (inorder, preorder, postorder);
--| Used to specify the order in which values should be scanned from a tree:
--|-
--| inorder: Left, Node, Right (nodes visited in increasing order)
--| preorder: Node, Left, Right (top down)
--| postorder: Left, Right, Node (bottom up)
type Tree is private;
type Iterator is private;
----------------------------------------------------------------------------
-- Operations --
----------------------------------------------------------------------------
Function Create --| Return an empty tree.
return Tree;
--| Effects: Create and return an empty tree. Note that this allocates
--| a small amount of storage which can only be reclaimed through
--| a call to Destroy.
----------------------------------------------------------------------------
Procedure Insert( --| Insert a value into a tree.
V: Value_Type; --| Value to be inserted
T: Tree --| Tree to contain the new value
);
--| Raises: Duplicate_Value, Invalid_Tree.
--| Effects: Insert V into T in the proper place. If a value equal
--| to V (according to the Difference function) is already contained
--| in the tree, the exception Duplicate_Value is raised.
--| Caution: Since this package does not attempt to balance trees as
--| values are inserted, it is important to remember that inserting
--| values in sorted order will create a degenerate tree, where search
--| and insertion is proportional to the N instead of to Log N. If
--| this pattern is common, use the Balanced_Tree function below.
----------------------------------------------------------------------------
procedure Insert_if_not_Found(
--| Insert a value into a tree, provided a duplicate value is not already there
V: Value_Type; --| Value to be inserted
T: Tree; --| Tree to contain the new value
Found: out boolean; --| Becomes True iff V already in tree
Duplicate: out Value_Type --| the duplicate value, if there is one
); --| Raises: Invalid_Tree.
--| Effects: Insert V into T in the proper place. If a value equal
--| to V (according to the Difference function) is already contained
--| in the tree, Found will be True and Duplicate will be the duplicate
--| value. This might be a sequence of values with the same key, and
--| V can then be added to the sequence.
----------------------------------------------------------------------------
procedure Replace_if_Found(
--| Replace a value if label exists, otherwise insert it.
V: Value_Type; --| Value to be inserted
T: Tree; --| Tree to contain the new value
Found: out boolean; --| Becomes True iff L already in tree
Old_Value: out Value_Type --| the duplicate value, if there is one
); --| Raises: Invalid_Tree.
--| Effects: Search for V in T. If found, replace the old value with V,
--| and return Found => True, Old_Value => the old value. Otherwise,
--| simply insert V into T and return Found => False.
----------------------------------------------------------------------------
procedure Destroy( --| Free space allocated to a tree.
T: in out Tree --| The tree to be reclaimed.
);
--| Effects: The space allocated to T is reclaimed. The space occupied by
--| the values stored in T is not however, recovered.
----------------------------------------------------------------------------
generic
with procedure free_Value(V: in out Value_Type) is <>;
procedure Destroy_Deep( --| Free all space allocated to a tree.
T: in out Tree --| The tree to be reclaimed.
);
--| Effects: The space allocated to T is reclaimed. The values stored
--| in T are reclaimed using Free_Value, and the tree nodes themselves
--| are then reclaimed (in a single walk of the tree).
----------------------------------------------------------------------------
generic
with function next_Value return Value_Type is <>;
--| Each call to this procedure should return the next value to be
--| inserted into the balanced tree being created. If necessary,
--| this function should check that each value is greater than the
--| previous one, and raise Out_of_Order if necessary. If values
--| are not returned in strictly increasing order, the results are
--| unpredictable.
Function Balanced_Tree(
Count: natural
) return Tree;
--| Effects: Create a balanced tree by calling next_Value Count times.
--| Each time Next_Value is called, it must return a value that compares
--| greater than the preceeding value. This function is useful for balancing
--| an existing tree (next_Value iterates over the unbalanced tree) or
--| for creating a balanced tree when reading data from a file which is
--| already sorted.
----------------------------------------------------------------------------
generic
with function Copy_Value(V: Value_Type) return Value_Type is <>;
--| This function is called to copy a value from the old tree to the
--| new tree.
Function Copy_Tree(
T: Tree
) return Tree; --| Raises Invalid_Tree.
--| Effects: Create a balanced tree that is a copy of the tree T.
--| The exception Invalid_Tree is raised if T is not a valid tree.
----------------------------------------------------------------------------
Function Is_Empty( --| Check for an empty tree.
T: Tree
) return boolean;
--| Effects: Return TRUE iff T is an empty tree or if T was not initialized.
----------------------------------------------------------------------------
Function Find( --| Search a tree for a value.
V: Value_Type; --| Value to be located
T: Tree --| Tree to be searched
) return Value_Type; --| Raises: Not_Found, Invalid_Tree.
--| Effects: Search T for a value that matches V. The matching value is
--| returned. If no matching value is found, the exception Not_Found
--| is raised.
Procedure Find( --| Search a tree for a value.
V: Value_Type; --| Value to be located
T: Tree; --| Tree to be searched
Found: out Boolean; --| TRUE iff a match was found
Match: out Value_Type --| Matching value found in the tree
); --| Raises: Invalid_Tree;
--| Effects: Search T for a value that matches V. On return, if Found is
--| TRUE then the matching value is returned in Match. Otherwise, Found
--| is FALSE and Match is undefined.
----------------------------------------------------------------------------
function is_Found( --| Check a tree for a value.
V: Value_Type; --| Value to be located
T: Tree --| Tree to be searched
) return Boolean; --| Raises: Invalid_Tree;
--| Effects: Return TRUE iff V is found in T.
----------------------------------------------------------------------------
function Size( --| Return the count of values in T.
T: Tree --| a tree
) return natural;
--| Effects: Return the number of values stored in T.
----------------------------------------------------------------------------
generic
with procedure Process(V: Value_Type) is <>;
procedure Visit(
T: Tree;
Order: Scan_Kind
); --| Raises: Invalid_Tree;
--| Effects: Invoke Process(V) for each value V in T. The nodes are visited
--| in the order specified by Order. Although more limited than using
--| an iterator, this function is also much faster.
----------------------------------------------------------------------------
function Make_Iter( --| Create an iterator over a tree
T: Tree
) return Iterator; --| Raises: Invalid_Tree;
----------------------------------------------------------------------------
function More( --| Test for exhausted iterator
I: Iterator --| The iterator to be tested
) return boolean;
--| Effects: Return TRUE iff unscanned nodes remain in the tree being
--| scanned by I.
----------------------------------------------------------------------------
procedure Next( --| Scan the next value in I
I: in out Iterator; --| an active iterator
V: out Value_Type --| Next value scanned
); --| Raises: No_More.
--| Effects: Return the next value in the tree being scanned by I.
--| The exception No_More is raised if there are no more values to scan.
----------------------------------------------------------------------------
private
type Node;
type Node_Ptr is access Node;
type Node is
record
Value: Value_Type;
Less: Node_Ptr;
More: Node_Ptr;
end record;
type Tree_Header is
record
Count: natural := 0;
Root: Node_Ptr := Null;
end record;
type Tree is access Tree_Header;
type Iter_State is (Left, Middle, Right, Done);
type Iterator_Record;
type Iterator is access Iterator_Record;
type Iterator_Record is
record
State: Iter_State;
Parent: Iterator;
subtree: Node_Ptr;
end record;
end binary_trees_pkg;
with unchecked_deallocation;
Package body Binary_Trees_Pkg is
--| Efficient implementation of binary trees.
----------------------------------------------------------------------------
-- Local Operations --
----------------------------------------------------------------------------
procedure Free_Node is
new unchecked_deallocation(Node, Node_Ptr);
procedure Free_Tree is
new unchecked_deallocation(Tree_Header, Tree);
procedure Free_Iterator is
new unchecked_deallocation(Iterator_Record, Iterator);
----------------------------------------------------------------------------
-- Visible Operations --
----------------------------------------------------------------------------
Function Create --| Return an empty tree.
return Tree is
begin
return new Tree_Header'(0, Null);
end Create;
----------------------------------------------------------------------------
Procedure Insert_Node(
V: Value_Type;
N: in out Node_Ptr;
Found: out boolean;
Duplicate: out Value_Type
)
is
D: integer;
begin
Found := False;
if N = null then
N := new Node'(V, Null, Null);
else
D := Difference(V, N.Value);
if D < 0 then
Insert_Node(V, N.Less, Found, Duplicate);
elsif D > 0 then
Insert_Node(V, N.More, Found, Duplicate);
else
Found := True;
Duplicate := N.Value;
end if;
end if;
end Insert_Node;
Procedure Replace_Node(
V: Value_Type;
N: in out Node_Ptr;
Found: out boolean;
Duplicate: out Value_Type
)
is
D: integer;
begin
Found := False;
if N = null then
N := new Node'(V, Null, Null);
else
D := Difference(V, N.Value);
if D < 0 then
Replace_Node(V, N.Less, Found, Duplicate);
elsif D > 0 then
Replace_Node(V, N.More, Found, Duplicate);
else
Found := True;
Duplicate := N.Value;
N.Value := V;
end if;
end if;
end Replace_Node;
Procedure Insert( --| Insert a value into a tree.
V: Value_Type; --| Value to be inserted
T: Tree --| Tree to contain the new value
) --| Raises: Duplicate_Value, Invalid_Tree.
is
Found: boolean;
Duplicate: Value_Type;
begin
if T = null then
raise Invalid_Tree;
end if;
Insert_Node(V, T.Root, Found, Duplicate);
if Found then
raise Duplicate_Value;
end if;
T.Count := T.Count + 1;
end Insert;
Procedure Insert_if_not_Found(
--| Insert a value into a tree, provided a duplicate value is not already there
V: Value_Type; --| Value to be inserted
T: Tree; --| Tree to contain the new value
Found: out boolean;
Duplicate: out Value_Type
) --| Raises: Invalid_Tree.
is
was_Found: boolean;
begin
if T = null then
raise Invalid_Tree;
end if;
Insert_Node(V, T.Root, was_Found, Duplicate);
Found := was_Found;
if not was_Found then
T.Count := T.Count + 1;
end if;
end Insert_if_Not_Found;
procedure Replace_if_Found(
--| Replace a value if label exists, otherwise insert it.
V: Value_Type; --| Value to be inserted
T: Tree; --| Tree to contain the new value
Found: out boolean; --| Becomes True iff L already in tree
Old_Value: out Value_Type --| the duplicate value, if there is one
) --| Raises: Invalid_Tree.
is
was_Found: boolean;
Duplicate: Value_Type;
begin
if T = null then
raise Invalid_Tree;
end if;
Replace_Node(V, T.Root, was_Found, Duplicate);
Found := was_Found;
if was_Found then
Old_Value := Duplicate;
else
T.Count := T.Count + 1;
end if;
end Replace_if_Found;
----------------------------------------------------------------------------
procedure Destroy_Nodes(
N: in out Node_Ptr
) is
begin
if N /= null then
Destroy_Nodes(N.Less);
Destroy_Nodes(N.More);
Free_Node(N);
end if;
end Destroy_Nodes;
procedure Destroy( --| Free space allocated to a tree.
T: in out Tree --| The tree to be reclaimed.
) is
begin
if T /= Null then
Destroy_Nodes(T.Root);
Free_Tree(T);
end if;
end Destroy;
----------------------------------------------------------------------------
procedure Destroy_Deep( --| Free all space allocated to a tree.
T: in out Tree --| The tree to be reclaimed.
)
is
procedure Destroy_Nodes(
N: in out node_Ptr
) is
begin
if N /= null then
Free_Value(N.Value);
Destroy_Nodes(N.Less);
Destroy_Nodes(N.More);
Free_Node(N);
end if;
end Destroy_Nodes;
begin
if T /= Null then
Destroy_Nodes(T.Root);
Free_Tree(T);
end if;
end Destroy_Deep;
----------------------------------------------------------------------------
Function Balanced_Tree(
Count: natural
) return Tree
is
new_Tree: Tree := Create;
procedure subtree(Count: natural; N: in out Node_Ptr)
is
new_Node: Node_Ptr;
begin
if Count = 1 then
new_Node := new Node'(next_Value, Null, Null);
elsif Count > 1 then
new_node := new Node;
subtree(Count/2, new_Node.Less); -- Half are less
new_Node.Value := next_Value; -- Median value
subtree(Count - Count/2 - 1, new_Node.More); -- Other half are more
end if;
N := new_Node;
end subtree;
begin
new_Tree.Count := Count;
subtree(Count, new_Tree.Root);
return new_Tree;
end Balanced_Tree;
----------------------------------------------------------------------------
Function Copy_Tree(
T: Tree
) return Tree
is
I: Iterator;
function next_Val return Value_type
is
V: Value_Type;
begin
Next(I, V);
return copy_Value(V);
end next_Val;
function copy_Balanced is new Balanced_Tree(next_Val);
begin
I := Make_Iter(T); -- Will raise Invalid_Tree if necessary
return copy_Balanced(Size(T));
end Copy_Tree;
----------------------------------------------------------------------------
Function Is_Empty( --| Check for an empty tree.
T: Tree
) return boolean is
begin
return T = Null or else T.Root = Null;
end Is_Empty;
----------------------------------------------------------------------------
procedure Find_Node(
V: Value_Type; --| Value to be located
N: Node_Ptr; --| subtree to be searched
Match: out Value_Type; --| Matching value found in the tree
Found: out Boolean --| TRUE iff a match was found
)
is
D: integer;
begin
if N = null then
Found := False;
return;
end if;
D := Difference(V, N.Value);
if D < 0 then
Find_Node(V, N.Less, Match, Found);
elsif D > 0 then
Find_Node(V, N.More, Match, Found);
else
Match := N.Value;
Found := TRUE;
end if;
end Find_Node;
Function Find( --| Search a tree for a value.
V: Value_Type; --| Value to be located
T: Tree --| Tree to be searched
) return Value_Type --| Raises: Not_Found.
is
Found: Boolean;
Match: Value_Type;
begin
if T = Null then
raise Invalid_Tree;
end if;
Find_Node(V, T.Root, Match, Found);
if Found then
return Match;
else
raise Not_Found;
end if;
end Find;
Procedure Find( --| Search a tree for a value.
V: Value_Type; --| Value to be located
T: Tree; --| Tree to be searched
Found: out Boolean; --| TRUE iff a match was found
Match: out Value_Type --| Matching value found in the tree
) is
begin
if T = Null then
raise Invalid_Tree;
end if;
Find_Node(V, T.Root, Match, Found);
end Find;
----------------------------------------------------------------------------
function is_Found( --| Check a tree for a value.
V: Value_Type; --| Value to be located
T: Tree --| Tree to be searched
) return Boolean
is
Found: Boolean;
Match: Value_Type;
begin
if T = Null then
raise Invalid_Tree;
end if;
Find_Node(V, T.Root, Match, Found);
return Found;
end is_Found;
----------------------------------------------------------------------------
function Size( --| Return the count of values in T.
T: Tree --| a tree
) return natural is
begin
if T = Null then
Return 0;
else
Return T.Count;
end if;
end Size;
----------------------------------------------------------------------------
procedure Visit(
T: Tree;
Order: Scan_Kind
) is
procedure visit_Inorder(N: Node_Ptr) is
begin
if N.Less /= null then
visit_Inorder(N.Less);
end if;
Process(N.Value);
if N.More /= null then
visit_Inorder(N.More);
end if;
end visit_Inorder;
procedure visit_preorder(N: Node_Ptr) is
begin
Process(N.Value);
if N.Less /= null then
visit_preorder(N.Less);
end if;
if N.More /= null then
visit_preorder(N.More);
end if;
end visit_preorder;
procedure visit_postorder(N: Node_Ptr) is
begin
if N.Less /= null then
visit_postorder(N.Less);
end if;
if N.More /= null then
visit_postorder(N.More);
end if;
Process(N.Value);
end visit_postorder;
begin
if T = Null then
raise Invalid_Tree;
else
case Order is
when inorder =>
Visit_Inorder(T.Root);
when preorder =>
Visit_preorder(T.Root);
when postorder =>
Visit_postorder(T.Root);
end case;
end if;
end Visit;
----------------------------------------------------------------------------
function subtree_Iter( --| Create an iterator over a subtree
N: Node_Ptr;
P: Iterator
) return Iterator is
begin
if N = Null then
return new Iterator_Record'(State => Done, Parent => P, subtree => N);
elsif N.Less = Null then
return new Iterator_Record'(State => Middle, Parent => P, subtree => N);
else
return new Iterator_Record'(State => Left, Parent => P, subtree => N);
end if;
end subtree_Iter;
function Make_Iter( --| Create an iterator over a tree
T: Tree
) return Iterator is
begin
if T = Null then
raise Invalid_Tree;
end if;
return subtree_Iter(T.Root, Null);
end Make_Iter;
----------------------------------------------------------------------------
function More( --| Test for exhausted iterator
I: Iterator --| The iterator to be tested
) return boolean is
begin
if I = Null then
return False;
elsif I.Parent = Null then
return I.State /= Done and I.subtree /= Null;
elsif I.State = Done then
return More(I.Parent);
else
return True;
end if;
end More;
----------------------------------------------------------------------------
procedure pop_Iterator(
I: in out Iterator
)
is
NI: Iterator;
begin
loop
NI := I;
I := I.Parent;
Free_Iterator(NI);
exit when I = Null;
exit when I.State /= Done;
end loop;
end pop_Iterator;
procedure Next( --| Scan the next value in I
I: in out Iterator; --| an active iterator
V: out Value_Type --| Next value scanned
) --| Raises: No_More.
is
NI: Iterator;
begin
if I = Null or I.State = Done then
raise No_More;
end if;
case I.State is
when Left => -- Return the leftmost value
while I.subtree.Less /= Null loop -- Find leftmost subtree
I.State := Middle; -- Middle is next at this level
I := subtree_Iter(I.subtree.Less, I);
end loop;
V := I.subtree.Value;
if I.subtree.More /= Null then -- There will be more...
I.State := Right; -- ... coming from the right
else -- Nothing else here
pop_Iterator(I); -- Pop up to parent iterator
end if;
when Middle =>
V := I.subtree.Value;
if I.subtree.More /= Null then -- There will be more...
I.State := Right; -- ... coming from the right
else -- Nothing else here so...
pop_Iterator(I); -- ... Pop up to parent iterator
end if;
when Right => -- Return the value on the right
I.State := Done; -- No more at this level
I := subtree_Iter(I.subtree.More, I);
Next(I, V);
when Done =>
pop_Iterator(I);
Next(I, V);
end case;
end Next;
----------------------------------------------------------------------------
end binary_trees_pkg