|
|
DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - download
Length: 9216 (0x2400)
Types: Ada Source
Notes: 03_class, FILE, R1k_Segment, e3_tag, generic, package Generic_Math, seg_01c4a9
└─⟦8527c1e9b⟧ Bits:30000544 8mm tape, Rational 1000, Arrival backup of disks in PAM's R1000
└─⟦5a81ac88f⟧ »Space Info Vol 1«
└─⟦this⟧
with System;
generic
Fast : Boolean := False;
package Generic_Math is
M_E : constant Long_Float := 2.7182818284590452354E0;
M_Log2e : constant Long_Float := 1.4426950408889633870E0;
M_Log10e : constant Long_Float := 4.3429448190325181667E-1;
M_Ln2 : constant Long_Float := 6.9314718055994530942E-1;
M_Ln10 : constant Long_Float := 2.3025850929940456840E0;
M_Pi : constant Long_Float := 3.1415926535897931160E0;
M_2pi : constant Long_Float := 6.2831853071795862320E0;
M_Pi_2 : constant Long_Float := 1.5707963267948965580E0;
M_Pi_4 : constant Long_Float := 7.8539816339744827900E-1;
M_1_Pi : constant Long_Float := 3.1830988618379067154E-1;
M_2_Pi : constant Long_Float := 6.3661977236758134308E-1;
M_2_Sqrtpi : constant Long_Float := 1.1283791670955125739E0;
M_Sqrt2 : constant Long_Float := 1.4142135623730951455E0;
M_Sqrt_2 : constant Long_Float := 7.0710678118654752440E-1;
Erange : constant Integer := 34;
Edom : constant Integer := 33;
Fp_Plus_Norm : constant Integer := 0;
Fp_Minus_Norm : constant Integer := 1;
Fp_Plus_Denorm : constant Integer := 6;
Fp_Minus_Denorm : constant Integer := 7;
Fp_Plus_Zero : constant Integer := 2;
Fp_Minus_Zero : constant Integer := 3;
Fp_Plus_Inf : constant Integer := 4;
Fp_Minus_Inf : constant Integer := 5;
Fp_Snan : constant Integer := 8;
Fp_Qnan : constant Integer := 9;
subtype Long_Positive_Float is
Long_Float range Long_Float'Safe_Small .. Long_Float'Safe_Large;
subtype Long_Natural_Float is Long_Float range 0.0 .. Long_Float'Safe_Large;
subtype Long_Plus1_Float is Long_Float range 1.0 .. Long_Float'Safe_Large;
subtype Long_Minus1_Float is Long_Float range -1.0 .. Long_Float'Safe_Large;
subtype Unity_Range is Long_Float range -1.0 .. 1.0;
type Long_Complex_Float is
record
Real : Long_Float;
Imaginary : Long_Float;
end record;
function Errno return Integer;
pragma Inline (Errno);
function Exponent (Value : in Long_Float) return Integer;
pragma Inline (Exponent);
function Mantissa (Value : in Long_Float) return Long_Float;
pragma Inline (Mantissa);
function Ldexp (Mant : in Long_Float; Exp : in Integer) return Long_Float;
pragma Inline (Ldexp);
function Fraction (Value : in Long_Float) return Long_Float;
pragma Inline (Fraction);
function Integral (Value : in Long_Float) return Long_Float;
pragma Inline (Integral);
function Atof (X : in String) return Long_Float;
pragma Inline (Atof);
function J0 (X : in Long_Float) return Long_Float;
pragma Inline (J0);
function J1 (X : in Long_Float) return Long_Float;
pragma Inline (J1);
function Jn (N : in Integer; X : in Long_Float) return Long_Float;
pragma Inline (Jn);
function Y0 (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Y0);
function Y1 (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Y1);
function Yn (N : in Integer; X : in Long_Positive_Float) return Long_Float;
pragma Inline (Yn);
function Erf (X : in Long_Float) return Long_Float;
pragma Inline (Erf);
function Erfc (X : in Long_Float) return Long_Float;
pragma Inline (Erfc);
function Exp (X : in Long_Float) return Long_Float;
pragma Inline (Exp);
function Expm1 (X : in Long_Float) return Long_Float;
pragma Inline (Expm1);
function Log (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Log);
function Log10 (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Log10);
function Ln (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Ln);
function "**" (X : in Long_Float; Y : in Long_Float) return Long_Float;
pragma Inline ("**");
function Sqrt (X : in Long_Natural_Float) return Long_Float;
pragma Inline (Sqrt);
function Ceil (X : in Long_Float) return Long_Float;
pragma Inline (Ceil);
function Floor (X : in Long_Float) return Long_Float;
pragma Inline (Floor);
function "abs" (X : in Long_Float) return Long_Float;
pragma Inline ("abs");
function "mod" (X : in Long_Float; Y : in Long_Float) return Long_Float;
pragma Inline ("mod");
function Gamma (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Gamma);
function Signgam (X : in Long_Positive_Float) return Integer;
pragma Inline (Signgam);
function Hypot (X : in Long_Float; Y : in Long_Float) return Long_Float;
pragma Inline (Hypot);
function Sin (X : in Long_Float) return Long_Float;
pragma Inline (Sin);
function Cos (X : in Long_Float) return Long_Float;
pragma Inline (Cos);
function Tan (X : in Long_Float) return Long_Float;
pragma Inline (Tan);
function Asin (X : in Unity_Range) return Long_Float;
pragma Inline (Asin);
function Acos (X : in Unity_Range) return Long_Float;
pragma Inline (Acos);
function Atan (X : in Long_Float) return Long_Float;
pragma Inline (Atan);
function Sinh (X : in Long_Float) return Long_Float;
pragma Inline (Sinh);
function Cosh (X : in Long_Float) return Long_Float;
pragma Inline (Cosh);
function Tanh (X : in Long_Float) return Long_Float;
pragma Inline (Tanh);
function Atan2 (X : in Long_Float; Y : in Long_Float) return Long_Float;
pragma Inline (Atan2);
function Copysign (X : in Long_Float; Y : in Long_Float) return Long_Float;
pragma Inline (Copysign);
function "abs" (X : in Long_Complex_Float) return Long_Float;
pragma Inline ("abs");
function Nearest (X : in Long_Float) return Long_Float;
pragma Inline (Nearest);
function Truncate (X : in Long_Float) return Long_Float;
pragma Inline (Truncate);
function Truncate (X : in Long_Float) return Integer;
pragma Inline (Truncate);
function Rint (X : in Long_Float) return Long_Float;
pragma Inline (Rint);
function Exp_E (X : in Long_Float; Y : in Long_Float) return Long_Float;
pragma Inline (Exp_E);
function Log1p (X : in Long_Minus1_Float) return Long_Float;
pragma Inline (Log1p);
function Log_L (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Log_L);
function Logb (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Logb);
function Logb (X : in Long_Positive_Float) return Integer;
pragma Inline (Logb);
function Lgamma (X : in Long_Positive_Float) return Long_Float;
pragma Inline (Lgamma);
function Asinh (X : in Long_Float) return Long_Float;
pragma Inline (Asinh);
function Acosh (X : in Long_Plus1_Float) return Long_Float;
pragma Inline (Acosh);
function Atanh (X : in Long_Float) return Long_Float;
pragma Inline (Atanh);
function "rem" (X : in Long_Float; Y : in Long_Float) return Long_Float;
pragma Inline ("rem");
function Class (X : in Long_Float) return Integer;
pragma Inline (Class);
function Isnan (X : in Long_Float) return Integer;
pragma Inline (Isnan);
function Finite (X : in Long_Float) return Integer;
pragma Inline (Finite);
function Cbrt (X : in Long_Float) return Long_Float;
pragma Inline (Cbrt);
function Long_To_Int (X : in Long_Float) return Integer;
pragma Inline (Long_To_Int);
function Unordered (X : in Long_Float; Y : in Long_Float) return Integer;
pragma Inline (Unordered);
function Next_After
(X : in Long_Float; Y : in Long_Float) return Long_Float;
pragma Inline (Next_After);
function Scalb (X : in Long_Float; N : in Integer) return Long_Float;
pragma Inline (Scalb);
end Generic_Math;
nblk1=8
nid=0
hdr6=10
[0x00] rec0=14 rec1=00 rec2=01 rec3=04c
[0x01] rec0=15 rec1=00 rec2=02 rec3=02c
[0x02] rec0=16 rec1=00 rec2=03 rec3=07c
[0x03] rec0=16 rec1=00 rec2=04 rec3=066
[0x04] rec0=16 rec1=00 rec2=05 rec3=050
[0x05] rec0=16 rec1=00 rec2=06 rec3=034
[0x06] rec0=15 rec1=00 rec2=07 rec3=034
[0x07] rec0=15 rec1=00 rec2=08 rec3=001
tail 0x21518b8a483657c8301a4 0x42a00088462060003