DataMuseum.dk

Presents historical artifacts from the history of:

Rational R1000/400

This is an automatic "excavation" of a thematic subset of
artifacts from Datamuseum.dk's BitArchive.

See our Wiki for more about Rational R1000/400

Excavated with: AutoArchaeologist - Free & Open Source Software.


top - download

⟦158bf0d0d⟧ Ada Source

    Length: 13312 (0x3400)
    Types: Ada Source
    Notes: 03_class, FILE, R1k_Segment, e3_tag, package body Singly_Linked_List_Generic, seg_0046ab

Derivation

└─⟦8527c1e9b⟧ Bits:30000544 8mm tape, Rational 1000, Arrival backup of disks in PAM's R1000
    └─ ⟦5a81ac88f⟧ »Space Info Vol 1« 
        └─⟦this⟧ 

E3 Source Code



package body Singly_Linked_List_Generic is

    First_Position : constant Natural := Natural (Positions'First);
    Done_Position  : constant Natural := Natural'Pred (First_Position);

    --| @SUMMARY Task that manages the internal free-list.
    --| @SPECIAL_NOTES Use of a task ensures concurrency safety.
    --|
    task Free_List_Manager is

        entry Get_Node (The_Node : out Pointer; Contents : in Element);

        entry Free_Node (This_Node : in out Pointer);

    end Free_List_Manager;

    task body Free_List_Manager is

        --| @SPECIAL_NOTES Package/task state: the internal free list.
        --|
        Free_List : Pointer := null;

    begin
        loop
            select
                accept Get_Node (The_Node : out Pointer;
                                 Contents : in  Element) do
                    declare
                        New_Node : Pointer := null;
                    begin
                        if Fee_List = null then
                            New_Node := new Node'(Contents => Contents,  
                                                  Next     => null);
                        else
                            New_Node          := Free_List;
                            Free_List         := Free_List.Next;
                            New_Node.Next     := null;
                            New_Node.Contents := Contents;
                        end if;  
                        The_Node := New_Node;
                    end;
                end Get_Node;
            or
                accept Free_Node (This_Node : in out Pointer) do
                    This_Node.Next := Free_List;
                    Free_List      := This_Node;
                end Free_Node;
            or
                terminate;
            end select;
        end loop;
    end Free_List_Manager;

    --| @DESCRIPTION Walks a pointer to an arbitrary position in the
    --| list.
    --|
    --| @SPECIAL_NOTES Blows up if position is out of range. Unsafe
    --| fo export.
    --|
    procedure Set (This_Pointer     : in out Pointer;
                   To_This_Position : in     Positions;
                   In_This_List     : in out List;
                   Permanently      :        Boolean := False) is

        Final_Position : Natural := Natural (To_This_Position) - First_Position;

    begin
        This_Pointer := In_This_List.First;
        for Counter in First_Position .. Final_Position loop
            This_Pointer := This_Pointer.Next;
        end loop;
        if Permanently then
            In_This_List.Current  := This_Pointer;
            In_This_List.Position := Final_Position;
        end if;
    end Set;

    function Create return List is

        The_List : List;

    begin  
        return The_List;  
    end Create;

    function Is_Empty (This_List : in List) return Boolean is  
    begin  
        return Elements_In This_List) = 0;  
    end Is_Empty;

    function Elements_In (This_List : in List) return Natural is  
    begin  
        return This_List.Count;  
    end Elements_In;

    function Copy (Of_List : in List) return List is

        Current : Pointer := Of_List.First;

        New_List : List := Create;

    begin
        while not (Current = null) loop
            Add (New_List, Copy (Current.Contents));
            Current := Current.Next;
        end loop;  
        if not Done (Of_List) then
            Set (New_List, Position (Of_List));
        end if;
        return New_List;
    end Copy;

    procedure Reset (This_List : in out List) is  
    begin  
        This_List.Current := This_List.First;
        if This_List.First = null then
            This_List.Position := Done_Position;
        else
            This_List.Position := First_Position;
        end if;
    end Reset;

    function Done (This_List : in List) return Boolean is
    begin
        return This_List.Current = null;
    end Done;

    procedure Next (This_List : in out List) is  
    begin
        This_List.Current  := This_List.Current.Next;
        This_List.Position := This_List.Position + 1;

    exception
        when Constraint_Error =>
            This_List.Position := Done_Position; -- Reset position.
            raise No_Next_Element;

    end Next;

    function Current (This_List : in List) return Element is  
    begin  
        return This_List.Current.Contents;

    exception
        when Constraint_Error =>
            raise No_Current_Element;

    end Current;

    function Position (In_List : in List) return Positions is
    begin
        return Positions (In_List.Position);

    exception
        when Constraint_Error =>
            raise No_Current_Element;

    end Position;

    procedure Set (This_List : in out List; To_Position : in Positions) is
    begin 
        Set (This_List.Current, To_Position, This_List, Permanently => True);

    exception
        when Constraint_Error =>
            raise Out_Of_Range;

    end Set;

    --| @ALGORITHM Walks a "probe" pointer along list, leaving internal
    --| list pointers undisturbed.
    --|
    function Element_At (This_Position : in Positions; In_List : in List)
                        return Element is

        The_List : List := In_List;

        Probe : Pointer := null;

    begin
        Set (Probe, This_Position, The_List);
        return Probe.Contents;

    exception
        when Constraint_Error =>
            raise Out_Of_Range;

    end Element_At;

    procedure Add (To_List      : in out List;  
                   This_Element : in     Element) is

        New_Node : Pointer := null;

    begin  
        Free_List_Manager.Get_Node (New_Node, Contents => This_Element);
        if Is_Empty (To_List) then  
            To_List.Position := First_Position;
            To_List.Current  := New_Node;
            To_List.First    := New_Node;  
            To_List.Last     := New_Node;
            To_List.Count    := 1;
        else  
            To_List.Last.Next := New_Node;
            To_List.Last      := New_Node;  
            To_List.Count     := To_List.Count + 1;
        end if;  
    end Add;

    procedure Modify (This_List : in out List; New_Element : in Element) is
    begin  
        This_List.Current.Contents := New_Element;

    exception
        when Constraint_Error =>
            raise No_Current_Element;

    end Modify;

    procedure Dispose (Of_This_List : in out List) is

        Current      : Pointer := Of_This_List.First;
        Delete_Point : Pointer := null;

    begin
        while Current /= null loop
            Delete_Point := Current;
            Current      := Delete_Point.Next;
            Free_List_Manager.Free_Node (Delete_Point);
        end loop;  
        Of_This_List := Create;
    end Dispose;

end Singly_Linked_List_Generic;

E3 Meta Data

    nblk1=c
    nid=0
    hdr6=18
        [0x00] rec0=20 rec1=00 rec2=01 rec3=038
        [0x01] rec0=00 rec1=00 rec2=0c rec3=002
        [0x02] rec0=18 rec1=00 rec2=02 rec3=01a
        [0x03] rec0=02 rec1=00 rec2=0b rec3=01a
        [0x04] rec0=1f rec1=00 rec2=03 rec3=036
        [0x05] rec0=00 rec1=00 rec2=0a rec3=002
        [0x06] rec0=23 rec1=00 rec2=04 rec3=062
        [0x07] rec0=26 rec1=00 rec2=05 rec3=014
        [0x08] rec0=00 rec1=00 rec2=09 rec3=002
        [0x09] rec0=25 rec1=00 rec2=06 rec3=024
        [0x0a] rec0=1f rec1=00 rec2=07 rec3=06a
        [0x0b] rec0=06 rec1=00 rec2=08 rec3=000
    tail 0x2150048dc815c66cab78a 0x42a00088462061e03