|
DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - download
Length: 5120 (0x1400) Types: Ada Source Notes: 03_class, FILE, R1k_Segment, e3_tag, function Cosh, seg_0130c4, separate Generic_Elementary_Functions
└─⟦8527c1e9b⟧ Bits:30000544 8mm tape, Rational 1000, Arrival backup of disks in PAM's R1000 └─⟦5a81ac88f⟧ »Space Info Vol 1« └─⟦this⟧
separate (Generic_Elementary_Functions) function Cosh (X : Float_Type) return Float_Type is -- On input, X is a floating-point value in Float_Type; -- On output, the value of cosh(X) (the hyperbolic cosine of X) is returned. -- The definition of cosh(Y) is (exp(Y) + exp(-Y))/2, therefore -- the bulk of the computations are performed by the procedure -- KP_Exp (Y, M, Z1, Z2) which returns exp(Y) in M, Z1, and Z2 -- where -- exp(Y) = 2**M * ( Z1 + Z2 ) -- M of integer value, and Z1 only has at most 12 significant bits. Z : Common_Float; Y, Abs_Y, Z1, Z2 : Common_Float; M, J : Common_Int; Log2 : constant Common_Float := 16#0.B17217F7D1CF79ABC9E3B39803F2F6AF40#; Base_Digits : constant Common_Float := Common_Float (6 * Float_Type'Base'Digits); Two_To : constant array (Common_Int range -3 .. 3) of Common_Float := (0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0); Large_Threshold : constant Common_Float := 8.0 * Common_Float (Float_Type'Safe_Emax) * 0.6931471806; Cond : constant Common_Float := Base_Digits * Log2; begin -- Filter out exceptional cases. Y := Common_Float (X); Abs_Y := abs (Y); if Abs_Y >= Large_Threshold then -- Y := Common_Float (Common_Float'Machine_Radix ** -- Common_Float'Machine_Emax); -- return (Float_Type (Y * Y * Y)); raise Constraint_Error; --pbk end if; -- Get the values of M, Z1, and Z2 so that the natural exponential of Y -- can be calculated by Exp(Y) = 2**M * (Z1 + Z2) Kp_Exp (Abs_Y, M, Z1, Z2); M := M - 1; case Radix is when 2 => Y := Z1 + Z2; when others => J := M rem 4; M := (M - J) / 4; Z1 := Z1 * Two_To (J); Z2 := Z2 * Two_To (J); Y := Z1 + Z2; end case; -- Now, Z = 1/2 * exp( abs(X) ). Z := Scale (Y, M); if (Abs_Y >= Cond) then -- When abs(Y) gets so big, adding (1/4)/Z will not make a difference in the -- outcome of cosh(X). return (Float_Type (Z)); else return (Float_Type (Z + 0.25 / Z)); end if; end Cosh;
nblk1=4 nid=0 hdr6=8 [0x00] rec0=1d rec1=00 rec2=01 rec3=04a [0x01] rec0=01 rec1=00 rec2=04 rec3=002 [0x02] rec0=29 rec1=00 rec2=02 rec3=028 [0x03] rec0=0b rec1=00 rec2=03 rec3=000 tail 0x2150db50a82b151754590 0x42a00066462061e03