DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 Tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - downloadIndex: ┃ B T ┃
Length: 16301 (0x3fad) Types: TextFile Names: »B«
└─⟦149519bd4⟧ Bits:30000546 8mm tape, Rational 1000, !projects 93-07-13 └─ ⟦124ff5788⟧ »DATA« └─⟦this⟧ └─⟦a7d1ea751⟧ Bits:30000550 8mm tape, Rational 1000, !users!projects 94_04_11 └─ ⟦129cab021⟧ »DATA« └─⟦this⟧ └─⟦f64eaa120⟧ Bits:30000752 8mm tape, Rational 1000, !projects 93 02 16 └─ ⟦6f12a12be⟧ »DATA« └─⟦this⟧
with Text_Io; use Text_Io; with Floating_Characteristics; use Floating_Characteristics; with Numeric_Io; use Numeric_Io; with Numeric_Primitives; use Numeric_Primitives; package body Core_Functions is -- The following routines are coded directly from the algorithms and -- coeficients given in "Software Manual for the Elementry Functions" -- by William J. Cody, Jr. and William Waite, Prentice_Hall, 1980 -- CBRT by analogy -- A more general formulation uses MANTISSA_TYPE, etc. -- The coeficients are appropriate for 25 to 32 bits floating significance -- They will work for less but slightly shorter versions are possible -- The routines are coded to stand alone so they need not be compiled together -- These routines have been coded to accept a general MANTISSA_TYPE -- That is, they are designed to work with a manitssa either fixed of float -- There are some explicit conversions which are required but these will -- not cause any extra code to be generated -- 16 JULY 1982 W A WHITAKER AFATL EGLIN AFB FL 32542 -- T C EICHOLTZ USAFA function Sqrt (X : Float) return Float is M, N : Exponent_Type; F, Y : Mantissa_Type; Result : Float; subtype Index is Integer range 0 .. 100; -- ######################### Sqrt_L1 : Index := 3; -- Could get away with SQRT_L1 := 2 for 28 bits -- Using the better Cody-Waite coeficients overflows MANTISSA_TYPE Sqrt_C1 : Mantissa_Type := 8#0.3317777777#; Sqrt_C2 : Mantissa_Type := 8#0.4460000000#; Sqrt_C3 : Mantissa_Type := 8#0.55202_36314_77747_36311_0#; begin if X = Zero then Result := Zero; return Result; elsif X = One then -- To get exact SQRT(1.0) Result := One; return Result; elsif X < Zero then New_Line; Put ("CALLED SQRT FOR NEGATIVE ARGUMENT "); raise Program_Error; --Put (X); Put (" USED ABSOLUTE VALUE"); New_Line; Result := Sqrt (abs (X)); return Result; else Defloat (X, N, F); Y := Sqrt_C1 + Mantissa_Type (Sqrt_C2 * F); for J in 1 .. Sqrt_L1 loop Y := Y / Mantissa_Divisor_2 + Mantissa_Type ((F / Mantissa_Divisor_2) / Y); end loop; if (N mod 2) /= 0 then Y := Mantissa_Type (Sqrt_C3 * Y); N := N + 1; end if; M := N / 2; Refloat (M, Y, Result); return Result; end if; exception when others => New_Line; Put (" EXCEPTION IN SQRT, X = "); raise Program_Error; --Put (X); Put (" RETURNED 1.0"); New_Line; return One; end Sqrt; function Cbrt (X : Float) return Float is M, N : Exponent_Type; F, Y : Mantissa_Type; Result : Float; subtype Index is Integer range 0 .. 100; -- ######################### Cbrt_L1 : Index := 3; Cbrt_C1 : Mantissa_Type := 0.5874009; Cbrt_C2 : Mantissa_Type := 0.4125990; Cbrt_C3 : Mantissa_Type := 0.62996_05249; Cbrt_C4 : Mantissa_Type := 0.79370_05260; begin if X = Zero then Result := Zero; return Result; else Defloat (X, N, F); F := abs (F); Y := Cbrt_C1 + Mantissa_Type (Cbrt_C2 * F); for J in 1 .. Cbrt_L1 loop Y := Y - (Y / Mantissa_Divisor_3 - Mantissa_Type ((F / Mantissa_Divisor_3) / Mantissa_Type (Y * Y))); end loop; case (N mod 3) is when 0 => null; when 1 => Y := Mantissa_Type (Cbrt_C3 * Y); N := N + 2; when 2 => Y := Mantissa_Type (Cbrt_C4 * Y); N := N + 1; when others => null; end case; M := N / 3; if X < Zero then Y := -Y; end if; Refloat (M, Y, Result); return Result; end if; exception when others => Result := One; if X < Zero then Result := -One; end if; New_Line; Put ("EXCEPTION IN CBRT, X = "); raise Program_Error; --Put (X); Put (" RETURNED "); raise Program_Error; --Put (Result); New_Line; return Result; end Cbrt; function Log (X : Float) return Float is -- Uses fixed formulation for generality Result : Float; N : Exponent_Type; Xn : Float; Y : Float; F : Mantissa_Type; Z, Zden, Znum : Mantissa_Type; C0 : constant Mantissa_Type := 0.20710_67811_86547_52440; -- SQRT(0.5) - 0.5 C1 : constant Float := 8#0.543#; C2 : constant Float := -2.12194_44005_46905_82767_9E-4; function R (Z : Mantissa_Type) return Mantissa_Type is -- Use fixed formulation here because the float coeficents are > 1.0 -- and would exceed the limits on a MANTISSA_TYPE A0 : constant Mantissa_Type := 0.04862_85276_587; B0 : constant Mantissa_Type := 0.69735_92187_803; B1 : constant Mantissa_Type := -0.125; C : constant Mantissa_Type := 0.01360_09546_862; begin return Z + Mantissa_Type (Z * Mantissa_Type (Mantissa_Type (Z * Z) * (C + Mantissa_Type (A0 / (B0 + Mantissa_Type (B1 * Mantissa_Type (Z * Z))))))); end R; begin if X < Zero then New_Line; Put ("CALLED LOG FOR NEGATIVE "); raise Program_Error; --put (X);; Put (" USE ABS => "); Result := Log (abs (X)); raise Program_Error; --Put (Result); New_Line; elsif X = Zero then New_Line; Put ("CALLED LOG FOR ZERO ARGUMENT, RETURNED "); Result := -Xmax; -- SUPPOSED TO BE -LARGE raise Program_Error;--Put (Result); New_Line; else Defloat (X, N, F); Znum := F - Mantissa_Half; Y := Convert_To_Float (Znum); Zden := Znum / Mantissa_Divisor_2 + Mantissa_Half; if Znum > C0 then Y := Y - Mantissa_Half; Znum := Znum - Mantissa_Half; Zden := Zden + Mantissa_Half / Mantissa_Divisor_2; else N := N - 1; end if; Z := Mantissa_Type (Znum / Zden); Result := Convert_To_Float (R (Z)); if N /= 0 then Xn := Convert_To_Float (N); Result := (Xn * C2 + Result) + Xn * C1; end if; end if; return Result; exception when others => New_Line; Put (" EXCEPTION IN LOG, X = "); raise Program_Error; --put (X);; Put (" RETURNED 0.0"); New_Line; return Zero; end Log; function Log10 (X : Float) return Float is Log_10_Of_2 : constant Float := Convert_To_Float (Mantissa_Type ( 8#0.33626_75425_11562_41615#)); begin return Log (X) * Log_10_Of_2; end Log10; function Exp (X : Float) return Float is Result : Float; N : Exponent_Type; Xg, Xn, X1, X2 : Float; F, G : Mantissa_Type; Bigx : Float := Exp_Large; Smallx : Float := Exp_Small; One_Over_Log_2 : constant Float := 1.4426_95040_88896_34074; C1 : constant Float := 0.69335_9375; C2 : constant Float := -2.1219_44400_54690_58277E-4; function R (G : Mantissa_Type) return Mantissa_Type is Z, Gp, Q : Mantissa_Type; P0 : constant Mantissa_Type := 0.24999_99999_9992; P1 : constant Mantissa_Type := 0.00595_04254_9776; Q0 : constant Mantissa_Type := 0.5; Q1 : constant Mantissa_Type := 0.05356_75176_4522; Q2 : constant Mantissa_Type := 0.00029_72936_3682; begin Z := Mantissa_Type (G * G); Gp := Mantissa_Type ((Mantissa_Type (P1 * Z) + P0) * G); Q := Mantissa_Type ((Mantissa_Type (Q2 * Z) + Q1) * Z) + Q0; return Mantissa_Half + Mantissa_Type (Gp / (Q - Gp)); end R; begin if X > Bigx then New_Line; Put (" EXP CALLED WITH TOO BIG A POSITIVE ARGUMENT, "); raise Program_Error; --put (X);; Put (" RETURNED XMAX"); New_Line; Result := Xmax; elsif X < Smallx then New_Line; Put (" EXP CALLED WITH TOO BIG A NEGATIVE ARGUMENT, "); raise Program_Error; --put (X);; Put (" RETURNED ZERO"); New_Line; Result := Zero; elsif abs (X) < Eps then Result := One; else N := Exponent_Type (X * One_Over_Log_2); Xn := Convert_To_Float (N); X1 := Round (X); X2 := X - X1; Xg := ((X1 - Xn * C1) + X2) - Xn * C2; G := Mantissa_Type (Xg); N := N + 1; F := R (G); Refloat (N, F, Result); end if; return Result; exception when others => New_Line; Put (" EXCEPTION IN EXP, X = "); raise Program_Error; --put (X);; Put (" RETURNED 1.0"); New_Line; return One; end Exp; function "**" (X, Y : Float) return Float is -- This is the last function to be coded since it appeared that it really -- was un-Ada-like and ought not be in the regular package -- Nevertheless it was included in this version -- It is specific for FLOAT and does not have the MANTISSA_TYPE generality M, N : Exponent_Type; G : Mantissa_Type; P, Temp, Iw1, I : Integer; Result, Z, V, R, U1, U2, W, W1, W2, W3, Y1, Y2 : Float; K : constant Float := 0.44269_50408_88963_40736; Ibigx : constant Integer := Integer (Truncate (16.0 * Log (Xmax) - 1.0)); Ismallx : constant Integer := Integer (Truncate (16.0 * Log (Xmin) + 1.0)); P1 : constant Float := 0.83333_32862_45E-1; P2 : constant Float := 0.12506_48500_52E-1; Q1 : constant Float := 0.69314_71805_56341; Q2 : constant Float := 0.24022_65061_44710; Q3 : constant Float := 0.55504_04881_30765E-1; Q4 : constant Float := 0.96162_06595_83789E-2; Q5 : constant Float := 0.13052_55159_42810E-2; A1 : array (1 .. 17) of Float := (8#1.00000_0000#, 8#0.75222_5750#, 8#0.72540_3067#, 8#0.70146_3367#, 8#0.65642_3746#, 8#0.63422_2140#, 8#0.61263_4520#, 8#0.57204_2434#, 8#0.55202_3631#, 8#0.53254_0767#, 8#0.51377_3265#, 8#0.47572_4623#, 8#0.46033_7602#, 8#0.44341_7233#, 8#0.42712_7017#, 8#0.41325_3033#, 8#0.40000_0000#); A2 : array (1 .. 8) of Float := (8#0.00000_00005_22220_66302_61734_72062#, 8#0.00000_00003_02522_47021_04062_61124#, 8#0.00000_00005_21760_44016_17421_53016#, 8#0.00000_00007_65401_41553_72504_02177#, 8#0.00000_00002_44124_12254_31114_01243#, 8#0.00000_00000_11064_10432_66404_42174#, 8#0.00000_00004_72542_16063_30176_55544#, 8#0.00000_00001_74611_03661_23056_22556#); function Reduce (V : Float) return Float is begin return Float (Integer (16.0 * V)) * 0.0625; end Reduce; begin if X <= Zero then if X < Zero then Result := (abs (X)) ** Y; New_Line; Put ("X**Y CALLED WITH X = "); raise Program_Error; --put (X); New_Line; Put ("USED ABS, RETURNED "); raise Program_Error;--Put (Result); New_Line; else if Y <= Zero then if Y = Zero then Result := Zero; else Result := Xmax; end if; New_Line; Put ("X**Y CALLED WITH X = 0, Y = "); raise Program_Error; --put (Y); New_Line; Put ("RETURNED "); raise Program_Error;--Put (Result); New_Line; else Result := Zero; end if; end if; else Defloat (X, M, G); P := 1; if G <= A1 (9) then P := 9; end if; if G <= A1 (P + 4) then P := P + 4; end if; if G <= A1 (P + 2) then P := P + 2; end if; Z := ((G - A1 (P + 1)) - A2 ((P + 1) / 2)) / (G + A1 (P + 1)); Z := Z + Z; V := Z * Z; R := (P2 * V + P1) * V * Z; R := R + K * R; U2 := (R + Z * K) + Z; U1 := Float (Integer (M) * 16 - P) * 0.0625; Y1 := Reduce (Y); Y2 := Y - Y1; W := U2 * Y + U1 * Y2; W1 := Reduce (W); W2 := W - W1; W := W1 + U1 * Y1; W1 := Reduce (W); W2 := W2 + (W - W1); W3 := Reduce (W2); Iw1 := Integer (Truncate (16.0 * (W1 + W3))); W2 := W2 - W3; if W > Float (Ibigx) then Result := Xmax; Put ("X**Y CALLED X ="); raise Program_Error; --put (X); Put (" Y ="); raise Program_Error; --put (Y); Put (" TOO LARGE RETURNED "); raise Program_Error;--Put (Result); New_Line; elsif W < Float (Ismallx) then Result := Zero; Put ("X**Y CALLED X ="); raise Program_Error; --put(X); Put (" Y ="); raise Program_Error; Put (" TOO SMALL RETURNED "); raise Program_Error;--Put (Result); New_Line; else if W2 > Zero then W2 := W2 - 0.0625; Iw1 := Iw1 + 1; end if; if Iw1 < Integer (Zero) then I := 0; else I := 1; end if; M := Exponent_Type (I + Iw1 / 16); P := 16 * Integer (M) - Iw1; Z := ((((Q5 * W2 + Q4) * W2 + Q3) * W2 + Q2) * W2 + Q1) * W2; Z := A1 (P + 1) + (A1 (P + 1) * Z); Refloat (M, Z, Result); end if; end if; return Result; end "**"; begin Exp_Large := Log (Xmax) * (One - Eps); Exp_Small := Log (Xmin) * (One - Eps); end Core_Functions;