|
DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 Tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - downloadIndex: ┃ B T ┃
Length: 5240 (0x1478) Types: TextFile Names: »B«
└─⟦5f3412b64⟧ Bits:30000745 8mm tape, Rational 1000, ENVIRONMENT 12_6_5 TOOLS └─ ⟦91c658230⟧ »DATA« └─⟦458657fb6⟧ └─⟦1472c4407⟧ └─⟦this⟧ └─⟦d10a02448⟧ Bits:30000409 8mm tape, Rational 1000, ENVIRONMENT, D_12_7_3 └─ ⟦fc9b38f02⟧ »DATA« └─⟦9b46a407a⟧ └─⟦2e03b931c⟧ └─⟦this⟧
separate (Generic_Elementary_Functions) function Kf_R1psm (Y : Common_Float) return Common_Float is -- On input, Y lies in the interval [-1/64, 1/64] -- On output, the value sqrt( 1 + Y ) - 1 is returned. -- The approximation employs both minmax polynomial and Newton Iteration. -- -- First, sqrt(1+Y)-1 is approximated by a polynomial of the form -- 0.5 Y - Y^2*(A1 - Y*(A2 - Y*(A3 ... ))). -- Depending of the number of digits required, this polynomial may or may -- not be the value return. Should the polynomial fall short of the -- accuracy requirement, one step of the Newton iteration is applied to -- the equation -- (P + 1)^2 = 1 + Y, where P is the unknown. -- Thus, -- new P := P - (P^2 + 2P - Y)/(2P + 2) -- where the initial guess P is the value of the polynomial. Poly : Common_Float; begin case Float_Type'Base'Digits is when 1 .. 6 => declare type Working_Float is digits 6; R, P : Working_Float; begin R := Working_Float (Y); P := R * 0.5 - R * R * (0.12500_79870 - R * (0.62505_22999E-01)); Poly := Common_Float (P); end; when 7 .. 15 => declare type Working_Float is digits (15 + System.Max_Digits - abs (15 - System.Max_Digits)) / 2; -- this is min( 15, System.Max_Digits ) R, P, Two_P, Correction : Working_Float; begin R := Working_Float (Y); P := R * 0.5 - R * R * (0.12500_79870 - R * (0.62505_22999E-01)); Two_P := P + P; Correction := (P * P + (Two_P - R)) / (Two_P + 2.0); Poly := Common_Float (P) - Common_Float (Correction); end; when 16 => declare type Working_Float is digits (16 + System.Max_Digits - abs (16 - System.Max_Digits)) / 2; R, P, Two_P, Correction : Working_Float; begin R := Working_Float (Y); P := R * 0.5 - R * R * (0.12500_79870 - R * (0.62505_22999E-01)); Two_P := P + P; Correction := (P * P + (Two_P - R)) / (Two_P + 2.0); Poly := Common_Float (P) - Common_Float (Correction); end; when 17 .. 18 => declare type Working_Float is digits (18 + System.Max_Digits - abs (18 - System.Max_Digits)) / 2; R, P, Two_P, Correction : Working_Float; begin R := Working_Float (Y); P := R * 0.5 - R * R * (0.125 - R * (0.62505_85095_32379_40606E-01 - R * (0.39067_55576_62793_58660E-01))); Two_P := P + P; Correction := (P * P + (Two_P - R)) / (Two_P + 2.0); Poly := Common_Float (P) - Common_Float (Correction); end; when 19 .. 27 => declare type Working_Float is digits (27 + System.Max_Digits - abs (27 - System.Max_Digits)) / 2; R, P, Two_P, Correction : Working_Float; begin R := Working_Float (Y); P := R * 0.5 - R * R * (0.12500_00000_00043_29869_79603 - R * (0.62499_99949_58313_28657_64839E-01 - R * (0.39062_49897_81141_25807_82311E-01 - R * (0.27349_66395_87080_51587_13279E-01 - R * (0.20514_47322_06561_78273_82000E-01))))); Two_P := P + P; Correction := (P * P + (Two_P - R)) / (Two_P + 2.0); Poly := Common_Float (P) - Common_Float (Correction); end; when 28 .. 33 => declare type Working_Float is digits (33 + System.Max_Digits - abs (33 - System.Max_Digits)) / 2; R, P, Two_P, Correction : Working_Float; begin R := Working_Float (Y); P := R * 0.5 - R * R * (0.12500_00000_00035_79677_13859_89202_617 - R * (0.62500_00000_00664_48622_98045_60336E-01 - R * (0.39062_49911_61750_24807_32583_41508E-01 - R * (0.27343_74885_03551_93697_91233_69204E-01 - R * (0.20514_00699_96599_52762_98109_70261E-01 - R * (0.16119_54134_09746_99174_73737_89068E-01)))))); Two_P := P + P; Correction := (P * P + (Two_P - R)) / (Two_P + 2.0); Poly := Common_Float (P) - Common_Float (Correction); end; when others => raise Program_Error; -- assumption (1) is violated. end case; return (Poly); end Kf_R1psm;