|
DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 Tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - downloadIndex: ┃ B T ┃
Length: 2111 (0x83f) Types: TextFile Names: »B«
└─⟦5f3412b64⟧ Bits:30000745 8mm tape, Rational 1000, ENVIRONMENT 12_6_5 TOOLS └─ ⟦91c658230⟧ »DATA« └─⟦458657fb6⟧ └─⟦1472c4407⟧ └─⟦this⟧ └─⟦d10a02448⟧ Bits:30000409 8mm tape, Rational 1000, ENVIRONMENT, D_12_7_3 └─ ⟦fc9b38f02⟧ »DATA« └─⟦9b46a407a⟧ └─⟦2e03b931c⟧ └─⟦this⟧
separate (Generic_Elementary_Functions) function Arcsinh (X : Float_Type) return Float_Type is -- On input, X is a floating-point value in Float_Type; -- On output, the value of Arcsinh(X) (the inverse hyperbolic sin of X) -- is returned. -- The definition of Arcsinh(Y) is log( Y + sqrt(Y*Y + 1) ) -- For symmetry, we return sign(Y)*Arcsinh(|Y|). The discussions below -- therefore assume Y >= 0. -- To obtain good accuracy, we consider several cases: -- 1) Y <= epsilon, simply return Y. -- 2) epsilon < Y <= 0.5, -- Y + sqrt(Y*Y+1) = 1 + ( Y + Y*Y/[1 + sqrt(Y*Y+1)] ) -- = 1 + ( Y + Y / [ (1/Y) + sqrt(1 + [1/Y*Y]) ] ) -- A formula best suited for the kernel function L1p. -- 3) 0.5 < Y < 10/epsilon, -- Y + sqrt(Y*Y+1) = 2( Y + 0.5/[ sqrt(Y*Y+1) + Y ] ). -- 4) 10/epsilon <= Y, then -- Y + sqrt(Y*Y+1) = 2Y for practical purposes. -- Note that (3) and (4) are suited for invoking the kernel procedure -- KP_Log(Input) which returns M, Z1, and Z2 where -- log(Input) = M * log(2) + Z1 + Z2. -- Y, Sign_X, V, M, Z1, Z2, Result : Common_Float; One : constant := 1.0; Half : constant := 0.5; Small_Threshold : constant Common_Float := Common_Float'Base'Epsilon; Large_Threshold : constant Common_Float := 10.0 / Common_Float'Base'Epsilon; Log2_Lead : constant Common_Float := 16#0.B17#; Log2_Trail : constant Common_Float := 16#0.000217F7D1CF79ABC9E3B39803F2F6AF40#; begin Y := Common_Float (X); Sign_X := Copy_Sign (One, Y); Y := abs (Y); if (Y <= Half) then if (Y < Small_Threshold) then return (Float_Type (Copy_Sign (Y, Sign_X))); else V := Y + Y / ((One / Y) + Kf_Sqrt (One + (One / (Y * Y)))); Result := Kf_L1p (V); end if; else if (Y < Large_Threshold) then Y := Y + Half / (Y + Kf_Sqrt (One + Y * Y)); end if; Kp_Log (Y, M, Z1, Z2); M := M + One; Result := M * Log2_Lead + (Z1 + (Z2 + M * Log2_Trail)); end if; return (Float_Type (Copy_Sign (Result, Sign_X))); end Arcsinh;