DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 Tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - downloadIndex: ┃ B T ┃
Length: 2409 (0x969) Types: TextFile Names: »B«
└─⟦5f3412b64⟧ Bits:30000745 8mm tape, Rational 1000, ENVIRONMENT 12_6_5 TOOLS └─ ⟦91c658230⟧ »DATA« └─⟦458657fb6⟧ └─⟦1472c4407⟧ └─⟦this⟧ └─⟦d10a02448⟧ Bits:30000409 8mm tape, Rational 1000, ENVIRONMENT, D_12_7_3 └─ ⟦fc9b38f02⟧ »DATA« └─⟦9b46a407a⟧ └─⟦2e03b931c⟧ └─⟦this⟧
separate (Generic_Elementary_Functions) function Sinh (X : Float_Type) return Float_Type is -- On input, X is a floating-point value in Float_Type; -- On output, the value of sinh(X) (the hyperbolic sine of X) is returned. -- The definition of sinh(Y) is (exp(Y) - exp(-Y))/2, therefore -- the bulk of the computations are performed by the procedure -- KP_Exp (Y, M, Z1, Z2) which returns exp(Y) in M, Z1, and Z2 -- where -- exp(Y) = 2**M * ( Z1 + Z2 ) -- M of integer value, and Z1 only has at most 12 significant bits. Z, Sign_Y : Common_Float; Y, Abs_Y, Z1, Z2, Cond : Common_Float; M, J : Common_Int; One : constant Common_Float := 1.0; Log2 : constant Common_Float := 16#0.B17217F7D1CF79ABC9E3B39803F2F6AF40#; Base_Digits : constant Common_Float := Common_Float (6 * Float_Type'Base'Digits); Two_To : constant array (Common_Int range -3 .. 3) of Common_Float := (0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0); Large_Threshold : constant Common_Float := 8.0 * Common_Float (Float_Type'Safe_Emax) * 0.6931471806; begin -- Filter out exceptional cases. if (X = 0.0) then return (X); end if; Y := Common_Float (X); if (Y > 0.0) then Sign_Y := One; else Sign_Y := -One; end if; Abs_Y := abs (Y); if Abs_Y >= Large_Threshold then -- Y := Common_Float (Common_Float'Machine_Radix ** -- Common_Float'Machine_Emax); -- return (Float_Type (Sign_Y * Y * Y * Y)); raise Constraint_Error; --pbk end if; Cond := Base_Digits * Log2; if (Abs_Y >= Cond) then -- Get the values of M, Z1, and Z2 so that the natural exponential of Y -- can be calculated by Exp(Y) = 2**M * (Z1 + Z2) Kp_Exp (Abs_Y, M, Z1, Z2); M := M - 1; case Radix is when 2 => Y := Z1 + Z2; when others => J := M rem 4; M := (M - J) / 4; Z1 := Z1 * Two_To (J); Z2 := Z2 * Two_To (J); Y := Z1 + Z2; end case; Z := Sign_Y * Scale (Y, M); -- Now, Z = sign(X) * 1/2 * exp( abs(X) ). -- When abs(Y) gets so big, subtracting (1/4)/Z will not make -- a difference in the outcome of the sinh(X). return (Float_Type (Z)); else Z := Kf_Em1 (Abs_Y); return (Float_Type (Sign_Y * 0.5 * (Z + (Z / (Z + 1.0))))); end if; end Sinh;