|
|
DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 Tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: B T
Length: 1844 (0x734)
Types: TextFile
Names: »B«
└─⟦5f3412b64⟧ Bits:30000745 8mm tape, Rational 1000, ENVIRONMENT 12_6_5 TOOLS
└─⟦91c658230⟧ »DATA«
└─⟦458657fb6⟧
└─⟦1472c4407⟧
└─⟦this⟧
└─⟦d10a02448⟧ Bits:30000409 8mm tape, Rational 1000, ENVIRONMENT, D_12_7_3
└─⟦fc9b38f02⟧ »DATA«
└─⟦9b46a407a⟧
└─⟦2e03b931c⟧
└─⟦this⟧
separate (Generic_Elementary_Functions)
function Coth (X : Float_Type) return Float_Type is
-- On input, X is a floating-point value in Float_Type;
-- On output, the value of coth(X) (the hyperbolic cotangent of X) is returned.
-- The definition of coth(Y) is 1/tanh(Y) = cosh(Y)/sinh(Y), which is also
-- equivalent to the following three formulas.
-- 1. ( exp(Y) + exp(-Y) ) / ( exp(Y) - exp(-Y) )
-- 2. ( 1 + ( 2 / ( exp(2*Y) - 1 ) ) )
-- 3. ( exp(2*Y) + 1 ) / ( exp(2*Y) - 1 ).
-- but computationally, some formulas are better on some ranges.
Z, Sign_Y : Common_Float;
Y, Abs_Y : Common_Float;
Log2 : constant Common_Float := 16#0.B17217F7D1CF79ABC9E3B39803F2F6AF40#;
Base_Digits : constant Common_Float :=
Common_Float (6 * Float_Type'Base'Digits);
Log2_Times_2 : constant Common_Float := (2.0 * Log2);
Cond : constant Common_Float := (Base_Digits * Log2);
begin
-- Filter out exceptional cases.
Y := Common_Float (X);
if (Y = 0.0) then
raise Constraint_Error;
end if;
Abs_Y := abs (Y);
-- Calculate the coth(X).
if (Y >= 0.0) then
Sign_Y := 1.0;
else
Sign_Y := -1.0;
end if;
if (Abs_Y <= (Log2_Times_2)) then
-- Formula 3 should be used in this situation to guarantee accuracy.
Z := Kf_Em1 (2.0 * Abs_Y);
Z := Sign_Y * ((Z + 2.0) / Z);
return (Float_Type (Z));
elsif (Abs_Y > Cond) then
-- Formula 2 should be used in this situation to guarantee accuracy,
-- but observe that 2/(exp(2*Y) - 1) will be so small compared to 1
-- that it is negligible.
return (Float_Type (Sign_Y));
else
-- When ( Log2_Times_2 < Abs_Y <= Cond ), use formula 2 for best accuracy.
Z := Kf_Em1 (2.0 * Abs_Y);
Z := Sign_Y * (1.0 + 2.0 / Z);
return (Float_Type (Z));
end if;
end Coth;