|
|
DataMuseum.dkPresents historical artifacts from the history of: Rational R1000/400 Tapes |
This is an automatic "excavation" of a thematic subset of
See our Wiki for more about Rational R1000/400 Tapes Excavated with: AutoArchaeologist - Free & Open Source Software. |
top - metrics - downloadIndex: B T
Length: 1304 (0x518)
Types: TextFile
Names: »B«
└─⟦5f3412b64⟧ Bits:30000745 8mm tape, Rational 1000, ENVIRONMENT 12_6_5 TOOLS
└─⟦91c658230⟧ »DATA«
└─⟦458657fb6⟧
└─⟦1472c4407⟧
└─⟦this⟧
└─⟦d10a02448⟧ Bits:30000409 8mm tape, Rational 1000, ENVIRONMENT, D_12_7_3
└─⟦fc9b38f02⟧ »DATA«
└─⟦9b46a407a⟧
└─⟦2e03b931c⟧
└─⟦this⟧
separate (Generic_Elementary_Functions)
function Arctanh (X : Float_Type) return Float_Type is
-- On input, X is a floating-point value in Float_Type;
-- On output, the value of Arctanh(X) (the inverse hyperbolic tangent of X)
-- is returned.
-- The definition of Arctanh(Y) is log((1+Y)/(1-Y)) / 2, which is also
-- equivalent to the following three formulas:
-- 1. ( log(1+Y) - log(1-Y) ) / 2
-- 2. ( log(Y+1) - log(-Y+1) ) / 2.
-- 3. log( 1 + ( (2*Y) / (1-Y) ) ) / 2.
-- but computationally, the last formula is better.
Z, Sign_Y : Common_Float;
Y, Abs_Y, Temp : Common_Float;
Log2 : constant Common_Float := 16#0.B17217F7D1CF79ABC9E3B39803F2F6AF40#;
Log2_Times_2 : constant Common_Float := (2.0 * Log2);
begin
-- Filter out exceptional cases.
if (X = 0.0) then
return (X);
end if;
Y := Common_Float (X);
Abs_Y := abs (Y);
if (Abs_Y = 1.0) then
raise Constraint_Error;
end if;
if (Abs_Y > 1.0) then
raise Argument_Error;
end if;
-- Calculate Arctanh(Y) by using KF_L1p.
if (Y >= 0.0) then
Sign_Y := 1.0;
else
Sign_Y := -1.0;
end if;
Temp := (2.0 * Abs_Y) / (1.0 - Abs_Y);
Temp := Kf_L1p (Temp);
Z := Sign_Y * 0.5 * Temp;
return (Float_Type (Z));
end Arctanh;